Childhood Testicular Cancer Treatment (PDQ®)–Health Professional Version

Childhood Testicular Cancer Treatment (PDQ®)–Health Professional Version

Incidence, Risk Factors, and Clinical Presentation

Testicular tumors are very rare in young boys and account for 1% to 2% of all childhood tumors.[1,2] The most common testicular tumors are benign teratomas, followed by malignant nonseminomatous germ cell tumors. For more information, see Childhood Extracranial Germ Cell Tumors Treatment.

Non–germ cell tumors such as sex cord–stromal tumors are exceedingly rare in prepubertal boys.[3] In a small series, gonadal stromal tumors accounted for 8% to 13% of pediatric testicular tumors.[4,5] Most gonadal stromal tumors present as painless testicular masses, while 10% to 20% of patients may have endocrine manifestations, such as precocious puberty.[6]

In newborns and infants, juvenile granulosa cell and Sertoli cell tumors are the most common stromal cell tumors. Sertoli cell tumors present later in infancy (median age, 7 months). Juvenile granulosa cell tumors usually present early in infancy (median age, 6 days).[6] These tumors account for less than 5% of all neoplasms in the prepubertal testis. Testicular juvenile granulosa cell tumors harbor recurrent loss of chromosome 10 and lack the GNAS and AKT1 variants described in their ovarian tumor counterparts.[7]

In older males, Leydig cell tumors are more common.[8] In a report of 12 patients with Leydig cell tumors (aged 4.2–14.7 years), precocious puberty was the presenting symptom in 7 of 12 patients.[9][Level of evidence C1]

Testicular Sertoli cell tumors and, possibly, Leydig cell tumors are associated with DICER1 syndrome. Patients with these tumors should undergo genetic testing for DICER1 germline pathogenic variants.[10]

Large-cell calcifying Sertoli cell tumors are rare testicular sex cord–stromal tumors that primarily affects young males. These tumors are usually benign, may occur in both testes, and often have slow and indolent courses.[11] One study included 18 patients with large-cell calcifying Sertoli cell tumors. Eight tumors were clinically benign (≥18 months of follow-up without metastasis), eight were clinically ambiguous (lacking sufficient follow-up to determine tumor behavior; <18 months of follow-up without metastasis), and two were clinically malignant (documented metastasis). For the patients with clinically benign tumors, median age at diagnosis was 15.5 years, and median tumor size was 1.9 cm. For the patients with clinically ambiguous tumors, median age at diagnosis was 19 years, and median tumor size was 1.6 cm. For the patients with clinically malignant tumors, median age at diagnosis was 28.5 years, and median tumor size was 2.3 cm. All patients survived except for one with a metastatic tumor (median follow-up, 33 months).[12] Large-cell calcifying Sertoli cell tumors may be indicative of an underlying genetic predisposition, such as Peutz-Jeghers syndrome or Carney complex.[13] Carney complex is an autosomal dominant, multisystem tumor disorder [14] that is most frequently caused by germline pathogenic variants in the PRKAR1A gene.[15] A retrospective multi-institutional analysis of 15 patients with large-cell calcifying Sertoli tumor (median age, 16 years) included 4 patients with Carney complex.[16] Loss of cytoplasmic PRKAR1A expression (evaluated by immunohistochemistry) was observed in all but one patient (14 of 15; 93%). PRKAR1A expression was retained in all other sex cord–stromal tumors, indicating that this testing may aid in diagnosis of this rare tumor.

References
  1. Hartke DM, Agarwal PK, Palmer JS: Testicular neoplasms in the prepubertal male. J Mens Health Gend 3 (2): 131-8, 2006.
  2. Ahmed HU, Arya M, Muneer A, et al.: Testicular and paratesticular tumours in the prepubertal population. Lancet Oncol 11 (5): 476-83, 2010. [PUBMED Abstract]
  3. Schultz KA, Schneider DT, Pashankar F, et al.: Management of ovarian and testicular sex cord-stromal tumors in children and adolescents. J Pediatr Hematol Oncol 34 (Suppl 2): S55-63, 2012. [PUBMED Abstract]
  4. Pohl HG, Shukla AR, Metcalf PD, et al.: Prepubertal testis tumors: actual prevalence rate of histological types. J Urol 172 (6 Pt 1): 2370-2, 2004. [PUBMED Abstract]
  5. Schwentner C, Oswald J, Rogatsch H, et al.: Stromal testis tumors in infants. a report of two cases. Urology 62 (6): 1121, 2003. [PUBMED Abstract]
  6. Cecchetto G, Alaggio R, Bisogno G, et al.: Sex cord-stromal tumors of the testis in children. A clinicopathologic report from the Italian TREP project. J Pediatr Surg 45 (9): 1868-73, 2010. [PUBMED Abstract]
  7. Collins K, Sholl LM, Vargas SO, et al.: Testicular Juvenile Granulosa Cell Tumors Demonstrate Recurrent Loss of Chromosome 10 and Absence of Molecular Alterations Described in Ovarian Counterparts. Mod Pathol 36 (6): 100142, 2023. [PUBMED Abstract]
  8. Carmignani L, Colombo R, Gadda F, et al.: Conservative surgical therapy for leydig cell tumor. J Urol 178 (2): 507-11; discussion 511, 2007. [PUBMED Abstract]
  9. Luckie TM, Danzig M, Zhou S, et al.: A Multicenter Retrospective Review of Pediatric Leydig Cell Tumor of the Testis. J Pediatr Hematol Oncol 41 (1): 74-76, 2019. [PUBMED Abstract]
  10. Golmard L, Vasta LM, Duflos V, et al.: Testicular Sertoli cell tumour and potentially testicular Leydig cell tumour are features of DICER1 syndrome. J Med Genet 59 (4): 346-350, 2022. [PUBMED Abstract]
  11. Lai JP, Lee CC, Crocker M, et al.: Isolated Large Cell Calcifying Sertoli Cell Tumor in a Young Boy, not Associated with Peutz-Jeghers Syndrome or Carney Complex. Ann Clin Lab Res 3 (1): 2, 2015. [PUBMED Abstract]
  12. Al-Obaidy KI, Idrees MT, Abdulfatah E, et al.: Large Cell Calcifying Sertoli Cell Tumor: A Clinicopathologic Study of 18 Cases With Comprehensive Review of the Literature and Reappraisal of Prognostic Features. Am J Surg Pathol 46 (5): 688-700, 2022. [PUBMED Abstract]
  13. Gourgari E, Saloustros E, Stratakis CA: Large-cell calcifying Sertoli cell tumors of the testes in pediatrics. Curr Opin Pediatr 24 (4): 518-22, 2012. [PUBMED Abstract]
  14. Carney JA: Carney complex: the complex of myxomas, spotty pigmentation, endocrine overactivity, and schwannomas. Semin Dermatol 14 (2): 90-8, 1995. [PUBMED Abstract]
  15. Kirschner LS, Carney JA, Pack SD, et al.: Mutations of the gene encoding the protein kinase A type I-alpha regulatory subunit in patients with the Carney complex. Nat Genet 26 (1): 89-92, 2000. [PUBMED Abstract]
  16. Anderson WJ, Gordetsky JB, Idrees MT, et al.: Large cell calcifying Sertoli cell tumour: a contemporary multi-institutional case series highlighting the diagnostic utility of PRKAR1A immunohistochemistry. Histopathology 80 (4): 677-685, 2022. [PUBMED Abstract]

Prognosis

The prognosis for patients with sex cord–stromal tumors is usually excellent after orchiectomy.[13]; [4][Level of evidence C1] In a review of the literature, 79 patients younger than 12 years were identified. No patient had high-risk pathological findings after orchiectomy, and none had evidence of occult metastatic disease, suggesting a role for a limited surveillance strategy.[5][Level of evidence C1]

References
  1. Agarwal PK, Palmer JS: Testicular and paratesticular neoplasms in prepubertal males. J Urol 176 (3): 875-81, 2006. [PUBMED Abstract]
  2. Dudani R, Giordano L, Sultania P, et al.: Juvenile granulosa cell tumor of testis: case report and review of literature. Am J Perinatol 25 (4): 229-31, 2008. [PUBMED Abstract]
  3. Cecchetto G, Alaggio R, Bisogno G, et al.: Sex cord-stromal tumors of the testis in children. A clinicopathologic report from the Italian TREP project. J Pediatr Surg 45 (9): 1868-73, 2010. [PUBMED Abstract]
  4. Hofmann M, Schlegel PG, Hippert F, et al.: Testicular sex cord stromal tumors: analysis of patients from the MAKEI study. Pediatr Blood Cancer 60 (10): 1651-5, 2013. [PUBMED Abstract]
  5. Rove KO, Maroni PD, Cost CR, et al.: Pathologic Risk Factors in Pediatric and Adolescent Patients With Clinical Stage I Testicular Stromal Tumors. J Pediatr Hematol Oncol 37 (8): e441-6, 2015. [PUBMED Abstract]

Treatment of Childhood Testicular Cancer

The European Cooperative Study Group for Pediatric Rare Tumors within the PARTNER project (Paediatric Rare Tumours Network – European Registry) has published comprehensive recommendations for the diagnosis and treatment of sex cord–stromal tumors in children and adolescents.[1]

Treatment options for childhood testicular cancer (non–germ cell tumors) include the following:

  1. Surgery.

There are conflicting data about malignant potential in older males. Most case reports suggest that in pediatric patients, these tumors can be treated with surgery alone.[2,3][Level of evidence C1]; [4][Level of evidence C2] It is prudent to check alpha-fetoprotein (AFP) levels before surgery. Elevated AFP levels usually indicate a malignant germ cell tumor. However, AFP levels and decay in levels are often difficult to interpret in infants younger than 1 year.[5]

Evidence (surgery):

  1. In a study of patients prospectively reported to the German Maligne Keimzelltumoren (MAKEI) registry, 42 patients with sex cord–stromal tumors were identified. All tumors were confined to the testes. Patients were treated with surgery alone, according to specific germ cell tumor guidelines.[6][Level of evidence C1]
    • There were no tumor recurrences.
  2. A French registry identified 11 boys with localized sex cord–stromal testicular tumors. All 11 boys were treated with surgery alone.[7][Level of evidence C1]
    • There were no tumor recurrences.
  3. The benign behavior of pediatric non–germ cell testicular tumors has led to reports of testis-sparing surgery.[812] In one series of 12 patients with Leydig cell tumors (aged 4.2–14.7 years), 3 were treated with enucleation alone, and 9 were treated with orchiectomy.[13][Level of evidence C1]
    • All patients were alive at the last follow-up.

Given the rarity of this tumor, the best surgical approach in pediatrics has not yet been defined.

References
  1. Schneider DT, Orbach D, Ben-Ami T, et al.: Consensus recommendations from the EXPeRT/PARTNER groups for the diagnosis and therapy of sex cord stromal tumors in children and adolescents. Pediatr Blood Cancer 68 (Suppl 4): e29017, 2021. [PUBMED Abstract]
  2. Agarwal PK, Palmer JS: Testicular and paratesticular neoplasms in prepubertal males. J Urol 176 (3): 875-81, 2006. [PUBMED Abstract]
  3. Thomas JC, Ross JH, Kay R: Stromal testis tumors in children: a report from the prepubertal testis tumor registry. J Urol 166 (6): 2338-40, 2001. [PUBMED Abstract]
  4. Cecchetto G, Alaggio R, Bisogno G, et al.: Sex cord-stromal tumors of the testis in children. A clinicopathologic report from the Italian TREP project. J Pediatr Surg 45 (9): 1868-73, 2010. [PUBMED Abstract]
  5. Blohm ME, Vesterling-Hörner D, Calaminus G, et al.: Alpha 1-fetoprotein (AFP) reference values in infants up to 2 years of age. Pediatr Hematol Oncol 15 (2): 135-42, 1998 Mar-Apr. [PUBMED Abstract]
  6. Hofmann M, Schlegel PG, Hippert F, et al.: Testicular sex cord stromal tumors: analysis of patients from the MAKEI study. Pediatr Blood Cancer 60 (10): 1651-5, 2013. [PUBMED Abstract]
  7. Fresneau B, Orbach D, Faure-Conter C, et al.: Sex-Cord Stromal Tumors in Children and Teenagers: Results of the TGM-95 Study. Pediatr Blood Cancer 62 (12): 2114-9, 2015. [PUBMED Abstract]
  8. Cosentino M, Algaba F, Saldaña L, et al.: Juvenile granulosa cell tumor of the testis: a bilateral and synchronous case. Should testis-sparing surgery be mandatory? Urology 84 (3): 694-6, 2014. [PUBMED Abstract]
  9. Kao CS, Cornejo KM, Ulbright TM, et al.: Juvenile granulosa cell tumors of the testis: a clinicopathologic study of 70 cases with emphasis on its wide morphologic spectrum. Am J Surg Pathol 39 (9): 1159-69, 2015. [PUBMED Abstract]
  10. Emre S, Ozcan R, Elicevik M, et al.: Testis sparing surgery for Leydig cell pathologies in children. J Pediatr Urol 13 (1): 51.e1-51.e4, 2017. [PUBMED Abstract]
  11. Bois JI, Vagni RL, de Badiola FI, et al.: Testis-sparing surgery for testicular tumors in children: a 20 year single center experience and systematic review of the literature. Pediatr Surg Int 37 (5): 607-616, 2021. [PUBMED Abstract]
  12. Woo LL, Ross JH: The role of testis-sparing surgery in children and adolescents with testicular tumors. Urol Oncol 34 (2): 76-83, 2016. [PUBMED Abstract]
  13. Luckie TM, Danzig M, Zhou S, et al.: A Multicenter Retrospective Review of Pediatric Leydig Cell Tumor of the Testis. J Pediatr Hematol Oncol 41 (1): 74-76, 2019. [PUBMED Abstract]

Treatment Options Under Clinical Evaluation for Childhood Testicular Cancer

Information about National Cancer Institute (NCI)–supported clinical trials can be found on the NCI website. For information about clinical trials sponsored by other organizations, see the ClinicalTrials.gov website.

Special Considerations for the Treatment of Children With Cancer

Cancer in children and adolescents is rare, although the overall incidence has slowly increased since 1975.[1] Children and adolescents with cancer should be referred to medical centers that have a multidisciplinary team of cancer specialists with experience treating the cancers that occur during childhood and adolescence. This multidisciplinary team approach incorporates the skills of the following pediatric specialists and others to ensure that children receive treatment, supportive care, and rehabilitation to achieve optimal survival and quality of life:

  • Primary care physicians.
  • Pediatric surgeons.
  • Pathologists.
  • Pediatric radiation oncologists.
  • Pediatric medical oncologists and hematologists.
  • Ophthalmologists.
  • Rehabilitation specialists.
  • Pediatric oncology nurses.
  • Social workers.
  • Child-life professionals.
  • Psychologists.
  • Nutritionists.

For specific information about supportive care for children and adolescents with cancer, see the summaries on Supportive and Palliative Care.

The American Academy of Pediatrics has outlined guidelines for pediatric cancer centers and their role in the treatment of children and adolescents with cancer.[2] At these centers, clinical trials are available for most types of cancer that occur in children and adolescents, and the opportunity to participate is offered to most patients and their families. Clinical trials for children and adolescents diagnosed with cancer are generally designed to compare potentially better therapy with current standard therapy. Other types of clinical trials test novel therapies when there is no standard therapy for a cancer diagnosis. Most of the progress in identifying curative therapies for childhood cancers has been achieved through clinical trials. Information about ongoing clinical trials is available from the NCI website.

Dramatic improvements in survival have been achieved for children and adolescents with cancer. Between 1975 and 2020, childhood cancer mortality decreased by more than 50%.[35] Childhood and adolescent cancer survivors require close monitoring because side effects of cancer therapy may persist or develop months or years after treatment. For information about the incidence, type, and monitoring of late effects in childhood and adolescent cancer survivors, see Late Effects of Treatment for Childhood Cancer.

Childhood cancer is a rare disease, with about 15,000 cases diagnosed annually in the United States in individuals younger than 20 years.[6] The U.S. Rare Diseases Act of 2002 defines a rare disease as one that affects populations smaller than 200,000 people in the United States. Therefore, all pediatric cancers are considered rare.

The designation of a rare tumor is not uniform among pediatric and adult groups. In adults, rare cancers are defined as those with an annual incidence of fewer than six cases per 100,000 people. They account for up to 24% of all cancers diagnosed in the European Union and about 20% of all cancers diagnosed in the United States.[7,8] In children and adolescents, the designation of a rare tumor is not uniform among international groups, as follows:

  • A consensus effort between the European Union Joint Action on Rare Cancers and the European Cooperative Study Group for Rare Pediatric Cancers estimated that 11% of all cancers in patients younger than 20 years could be categorized as very rare. This consensus group defined very rare cancers as those with annual incidences of fewer than two cases per 1 million people. However, three additional histologies (thyroid carcinoma, melanoma, and testicular cancer) with incidences of more than two cases per 1 million people were also included in the very rare group due to a lack of knowledge and expertise in the management of these tumors.[9]
  • The Children’s Oncology Group defines rare pediatric cancers as those listed in the International Classification of Childhood Cancer subgroup XI, which includes thyroid cancers, melanomas and nonmelanoma skin cancers, and multiple types of carcinomas (e.g., adrenocortical carcinomas, nasopharyngeal carcinomas, and most adult-type carcinomas such as breast cancers and colorectal cancers).[10] These diagnoses account for about 5% of the cancers diagnosed in children aged 0 to 14 years and about 27% of the cancers diagnosed in adolescents aged 15 to 19 years.[4]

    Most cancers in subgroup XI are either melanomas or thyroid cancers, with other cancer types accounting for only 2% of the cancers diagnosed in children aged 0 to 14 years and 9.3% of the cancers diagnosed in adolescents aged 15 to 19 years.

These rare cancers are extremely challenging to study because of the relatively few patients with any individual diagnosis, the predominance of rare cancers in the adolescent population, and the small number of clinical trials for adolescents with rare cancers.

Information about these tumors may also be found in sources relevant to adults with cancer, such as Testicular Cancer Treatment.

References
  1. Smith MA, Seibel NL, Altekruse SF, et al.: Outcomes for children and adolescents with cancer: challenges for the twenty-first century. J Clin Oncol 28 (15): 2625-34, 2010. [PUBMED Abstract]
  2. American Academy of Pediatrics: Standards for pediatric cancer centers. Pediatrics 134 (2): 410-4, 2014. Also available online. Last accessed February 25, 2025.
  3. Smith MA, Altekruse SF, Adamson PC, et al.: Declining childhood and adolescent cancer mortality. Cancer 120 (16): 2497-506, 2014. [PUBMED Abstract]
  4. National Cancer Institute: NCCR*Explorer: An interactive website for NCCR cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed February 25, 2025.
  5. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed December 30, 2024.
  6. Ward E, DeSantis C, Robbins A, et al.: Childhood and adolescent cancer statistics, 2014. CA Cancer J Clin 64 (2): 83-103, 2014 Mar-Apr. [PUBMED Abstract]
  7. Gatta G, Capocaccia R, Botta L, et al.: Burden and centralised treatment in Europe of rare tumours: results of RARECAREnet-a population-based study. Lancet Oncol 18 (8): 1022-1039, 2017. [PUBMED Abstract]
  8. DeSantis CE, Kramer JL, Jemal A: The burden of rare cancers in the United States. CA Cancer J Clin 67 (4): 261-272, 2017. [PUBMED Abstract]
  9. Ferrari A, Brecht IB, Gatta G, et al.: Defining and listing very rare cancers of paediatric age: consensus of the Joint Action on Rare Cancers in cooperation with the European Cooperative Study Group for Pediatric Rare Tumors. Eur J Cancer 110: 120-126, 2019. [PUBMED Abstract]
  10. Pappo AS, Krailo M, Chen Z, et al.: Infrequent tumor initiative of the Children’s Oncology Group: initial lessons learned and their impact on future plans. J Clin Oncol 28 (33): 5011-6, 2010. [PUBMED Abstract]

Latest Updates to This Summary (09/05/2024)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

This summary was comprehensively reviewed.

This summary is written and maintained by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of pediatric testicular cancer. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Pediatric Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Childhood Testicular Cancer Treatment are:

  • Denise Adams, MD (Children’s Hospital Boston)
  • Karen J. Marcus, MD, FACR (Dana-Farber of Boston Children’s Cancer Center and Blood Disorders Harvard Medical School)
  • William H. Meyer, MD
  • Paul A. Meyers, MD (Memorial Sloan-Kettering Cancer Center)
  • Thomas A. Olson, MD (Aflac Cancer and Blood Disorders Center of Children’s Healthcare of Atlanta – Egleston Campus)
  • Alberto S. Pappo, MD (St. Jude Children’s Research Hospital)
  • Arthur Kim Ritchey, MD (Children’s Hospital of Pittsburgh of UPMC)
  • Carlos Rodriguez-Galindo, MD (St. Jude Children’s Research Hospital)
  • Stephen J. Shochat, MD (St. Jude Children’s Research Hospital)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Pediatric Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Pediatric Treatment Editorial Board. PDQ Childhood Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/testicular/hp/child-testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 31846265]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Testicular Cancer Treatment (PDQ®)–Patient Version

Testicular Cancer Treatment (PDQ®)–Patient Version

General Information About Testicular Cancer

Key Points

  • Testicular cancer is a disease in which malignant (cancer) cells form in the tissues of one or both testicles.
  • Health history can affect the risk of testicular cancer.
  • Signs and symptoms of testicular cancer include swelling or discomfort in the scrotum.
  • Tests that examine the testicles and blood are used to diagnose testicular cancer.
  • Certain factors affect prognosis (chance of recovery) and treatment options.
  • Treatment for testicular cancer can cause infertility.

Testicular cancer is a disease in which malignant (cancer) cells form in the tissues of one or both testicles.

The testicles are 2 egg-shaped glands located inside the scrotum (a sac of loose skin that lies directly below the penis). The testicles are held within the scrotum by the spermatic cord, which also contains the vas deferens and vessels and nerves of the testicles.

EnlargeAnatomy of the male reproductive and urinary systems; drawing shows front and side views of ureters, lymph nodes, rectum, bladder, prostate gland, vas deferens, urethra, penis, testicles, seminal vesicle, and ejaculatory duct.
Anatomy of the male reproductive and urinary systems, showing the testicles, prostate, bladder, and other organs.

The testicles are the male sex glands and produce testosterone and sperm. Germ cells within the testicles produce immature sperm that travel through a network of tubules (tiny tubes) and larger tubes into the epididymis (a long coiled tube next to the testicles) where the sperm mature and are stored.

Almost all testicular cancers start in the germ cells. The two main types of testicular germ cell tumors are seminomas and nonseminomas. These 2 types grow and spread differently and are treated differently. Nonseminomas tend to grow and spread more quickly than seminomas. Seminomas are more sensitive to radiation. A testicular tumor that contains both seminoma and nonseminoma cells is treated as a nonseminoma.

Testicular cancer is the most common cancer in men 20 to 35 years old.

Health history can affect the risk of testicular cancer.

Anything that increases a person’s chance of getting a disease is called a risk factor. Not every person with one or more of these risk factors will develop testicular cancer, and it will develop in people who don’t have any known risk factors. Talk with your doctor if you think you may be at risk. Risk factors for testicular cancer include:

Signs and symptoms of testicular cancer include swelling or discomfort in the scrotum.

These and other signs and symptoms may be caused by testicular cancer or by other conditions. Check with your doctor if you have any of the following:

  • A painless lump or swelling in either testicle.
  • A change in how the testicle feels.
  • A dull ache in the lower abdomen or the groin.
  • A sudden build-up of fluid in the scrotum.
  • Pain or discomfort in a testicle or in the scrotum.

Tests that examine the testicles and blood are used to diagnose testicular cancer.

In addition to asking about your personal and family health history and doing a physical exam, your doctor may perform the following tests and procedures:

  • Physical exam of the testes: An exam in which a doctor checks for lumps, swelling, or pain in the testicles.
  • Ultrasound exam of the testes: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram.
  • Serum tumor marker test: A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. The following tumor markers are used to detect testicular cancer:

    Tumor marker levels are measured before inguinal orchiectomy and biopsy, to help diagnose testicular cancer.

  • Inguinal orchiectomy: A procedure to remove the entire testicle through an incision in the groin. A tissue sample from the testicle is then viewed under a microscope to check for cancer cells. (The surgeon does not cut through the scrotum into the testicle to remove a sample of tissue for biopsy, because if cancer is present, this procedure could cause it to spread into the scrotum and lymph nodes. It’s important to choose a surgeon who has experience with this kind of surgery.) If cancer is found, the cell type (seminoma or nonseminoma) is determined in order to help plan treatment.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis and treatment options depend on the following:

  • Stage of the cancer (whether it is in or near the testicle or has spread to other places in the body, and blood levels of AFP, beta-hCG, and LDH).
  • Type of cancer.
  • Size of the tumor.
  • Number and size of retroperitoneal lymph nodes.

Testicular cancer can usually be cured in patients who receive adjuvant chemotherapy or radiation therapy after their primary treatment.

Treatment for testicular cancer can cause infertility.

Certain treatments for testicular cancer can cause infertility that may be permanent. Patients who may wish to have children should consider sperm banking before having treatment. Sperm banking is the process of freezing sperm and storing it for later use.

Stages of Testicular Cancer

Key Points

  • After testicular cancer has been diagnosed, tests are done to find out if cancer cells have spread within the testicles or to other parts of the body.
  • There are three ways that cancer spreads in the body.
  • Cancer may spread from where it began to other parts of the body.
  • The following stages are used for testicular cancer:
    • Stage 0
    • Stage I
    • Stage II
    • Stage III
  • Testicular cancer can recur (come back) after it has been treated.

After testicular cancer has been diagnosed, tests are done to find out if cancer cells have spread within the testicles or to other parts of the body.

The process used to find out if cancer has spread within the testicles or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment.

The following tests and procedures may be used in the staging process:

  • Chest x-ray: An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body.
  • CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, such as the abdomen, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the abdomen. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • Abdominal lymph node dissection: A surgical procedure in which lymph nodes in the abdomen are removed and a sample of tissue is checked under a microscope for signs of cancer. This procedure is also called lymphadenectomy. For patients with nonseminoma, removing the lymph nodes may help stop the spread of disease. Cancer cells in the lymph nodes of seminoma patients can be treated with radiation therapy.
  • Serum tumor marker test: A procedure in which a sample of blood is examined to measure the amounts of certain substances released into the blood by organs, tissues, or tumor cells in the body. Certain substances are linked to specific types of cancer when found in increased levels in the blood. These are called tumor markers. The following 3 tumor markers are used in staging testicular cancer:

    Tumor marker levels are measured again, after inguinal orchiectomy and biopsy, in order to determine the stage of the cancer. This helps to show if all of the cancer has been removed or if more treatment is needed. Tumor marker levels are also measured during follow-up as a way of checking if the cancer has come back.

There are three ways that cancer spreads in the body.

Cancer can spread through tissue, the lymph system, and the blood:

  • Tissue. The cancer spreads from where it began by growing into nearby areas.
  • Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body.
  • Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.

Cancer may spread from where it began to other parts of the body.

When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood.

  • Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body.
  • Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body.

The metastatic tumor is the same type of cancer as the primary tumor. For example, if testicular cancer spreads to the lung, the cancer cells in the lung are actually testicular cancer cells. The disease is metastatic testicular cancer, not lung cancer.

Many cancer deaths are caused when cancer moves from the original tumor and spreads to other tissues and organs. This is called metastatic cancer. This animation shows how cancer cells travel from the place in the body where they first formed to other parts of the body.

The following stages are used for testicular cancer:

Stage 0

In stage 0, abnormal cells are found in the tiny tubules where the sperm cells begin to develop. These abnormal cells may become cancer and spread into nearby normal tissue. All tumor marker levels are normal. Stage 0 is also called germ cell neoplasia in situ.

Stage I

In stage I, cancer has formed. Stage I is divided into stages IA, IB, and IS.

EnlargeDrawing shows different sizes of a tumor in centimeters (cm) compared to the size of a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm). Also shown is a 10-cm ruler and a 4-inch ruler.
Tumor sizes are often measured in centimeters (cm) or inches. Common food items that can be used to show tumor size in cm include: a pea (1 cm), a peanut (2 cm), a grape (3 cm), a walnut (4 cm), a lime (5 cm or 2 inches), an egg (6 cm), a peach (7 cm), and a grapefruit (10 cm or 4 inches).

Stage II

Stage II is divided into stages IIA, IIB, and IIC.

Stage III

Stage III is divided into stages IIIA, IIIB, and IIIC.

  • In stage IIIA, cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer may have spread to one or more nearby lymph nodes. Cancer has spread to distant lymph nodes or to the lungs.

    All tumor marker levels are normal or slightly above normal.

  • In stage IIIB, cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has spread:
    • to one or more nearby lymph nodes and has not spread to other parts of the body; or
    • to one or more nearby lymph nodes. Cancer has spread to distant lymph nodes or to the lungs.

    The level of one or more tumor markers is moderately above normal.

  • In stage IIIC, cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has spread:
    • to one or more nearby lymph nodes and has not spread to other parts of the body; or
    • to one or more nearby lymph nodes. Cancer has spread to distant lymph nodes or to the lungs.

    The level of one or more tumor markers is high.

    or

    Cancer is found anywhere in the testicle and may have spread into the spermatic cord or scrotum. Cancer has not spread to distant lymph nodes or the lung, but has spread to other parts of the body, such as the liver or bone.

    Tumor marker levels may range from normal to high.

Testicular cancer can recur (come back) after it has been treated.

The cancer may come back many years after the initial cancer, in the other testicle or in other parts of the body.

Treatment Option Overview

Key Points

  • There are different types of treatment for patients with testicular cancer.
  • Testicular tumors are divided into 3 groups, based on how well the tumors are expected to respond to treatment.
    • Good Prognosis
    • Intermediate Prognosis
    • Poor Prognosis
  • The following types of treatment are used:
    • Surgery
    • Radiation therapy
    • Chemotherapy
    • Surveillance
    • High-dose chemotherapy with stem cell transplant
  • New types of treatment are being tested in clinical trials.
  • Treatment for testicular cancer may cause side effects.
  • Patients may want to think about taking part in a clinical trial.
  • Patients can enter clinical trials before, during, or after starting their cancer treatment.
  • Follow-up tests may be needed.

There are different types of treatment for patients with testicular cancer.

Different types of treatments are available for patients with testicular cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Testicular tumors are divided into 3 groups, based on how well the tumors are expected to respond to treatment.

Good Prognosis

For nonseminoma, all of the following must be true:

For seminoma, all of the following must be true:

Intermediate Prognosis

For nonseminoma, all of the following must be true:

  • The tumor is found in one testicle only or in the retroperitoneum (area outside or behind the abdominal wall); and
  • The tumor has not spread to organs other than the lungs; and
  • The level of any one of the tumor markers is more than slightly above normal.

For seminoma, all of the following must be true:

  • The tumor has spread to organs other than the lungs; and
  • The level of AFP is normal. Beta-hCG and LDH may be at any level.

Poor Prognosis

For nonseminoma, at least one of the following must be true:

  • The tumor is in the center of the chest between the lungs; or
  • The tumor has spread to organs other than the lungs; or
  • The level of any one of the tumor markers is high.

There is no poor prognosis grouping for seminoma testicular tumors.

The following types of treatment are used:

Surgery

Surgery to remove the testicle (inguinal orchiectomy) and some of the lymph nodes may be done at diagnosis and staging. (See the General Information and Stages sections of this summary.) Tumors that have spread to other places in the body may be partly or entirely removed by surgery.

After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given chemotherapy or radiation therapy after surgery to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called adjuvant therapy.

Radiation therapy

Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer.

Chemotherapy

Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy).

See Drugs Approved for Testicular Cancer for more information.

Surveillance

Surveillance is closely following a patient’s condition without giving any treatment unless there are changes in test results. It is used to find early signs that the cancer has recurred (come back). In surveillance, patients are given certain exams and tests on a regular schedule.

High-dose chemotherapy with stem cell transplant

High doses of chemotherapy are given to kill cancer cells. Healthy cells, including blood-forming cells, are also destroyed by the cancer treatment. Stem cell transplant is a treatment to replace the blood-forming cells. Stem cells (immature blood cells) are removed from the blood or bone marrow of the patient or a donor and are frozen and stored. After the patient completes chemotherapy, the stored stem cells are thawed and given back to the patient through an infusion. These reinfused stem cells grow into (and restore) the body’s blood cells.

See Drugs Approved for Testicular Cancer for more information.

EnlargeDonor stem cell transplant; (Panel 1): Drawing of stem cells being collected from a donor's bloodstream using an apheresis machine. Blood is removed from a vein in the donor's arm and flows through the machine where the stem cells are removed. The rest of the blood is then returned to the donor through a vein in their other arm. (Panel 2): Drawing of a health care provider giving a patient an infusion of chemotherapy through a catheter in the patient's chest. The chemotherapy is given to kill cancer cells and prepare the patient's body for the donor stem cells. (Panel 3): Drawing of a patient receiving an infusion of the donor stem cells through a catheter in the chest.
Donor stem cell transplant. (Step 1): Four to five days before donor stem cell collection, the donor receives a medicine to increase the number of stem cells circulating through their bloodstream (not shown). The blood-forming stem cells are then collected from the donor through a large vein in their arm. The blood flows through an apheresis machine that removes the stem cells. The rest of the blood is returned to the donor through a vein in their other arm. (Step 2): The patient receives chemotherapy to kill cancer cells and prepare their body for the donor stem cells. The patient may also receive radiation therapy (not shown). (Step 3): The patient receives an infusion of the donor stem cells.

New types of treatment are being tested in clinical trials.

Information about clinical trials is available from the NCI website.

Treatment for testicular cancer may cause side effects.

For information about side effects caused by treatment for cancer, visit our Side Effects page.

Patients may want to think about taking part in a clinical trial.

For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment.

Many of today’s standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.

Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.

Patients can enter clinical trials before, during, or after starting their cancer treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

Follow-up tests may be needed.

As you go through treatment, you will have follow-up tests or check-ups. Some tests that were done to diagnose or stage the cancer may be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back).

Men who have had testicular cancer have an increased risk of developing cancer in the other testicle. A patient is advised to regularly check the other testicle and report any unusual symptoms to a doctor right away.

Long-term clinical exams are very important. The patient will probably have check-ups frequently during the first year after surgery and less often after that.

Treatment of Stage 0 (Testicular Intraepithelial Neoplasia)

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage 0 may include the following:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage I Testicular Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage I testicular cancer depends on whether the cancer is a seminoma or a nonseminoma.

Treatment of seminoma may include the following:

  • Surgery to remove the testicle, followed by surveillance.
  • For patients who want active treatment rather than surveillance, treatment may include:

Treatment of nonseminoma may include the following:

  • Surgery to remove the testicle, with long-term follow-up.
  • Surgery to remove the testicle and lymph nodes in the abdomen, with long-term follow-up.
  • Surgery followed by chemotherapy for patients at high risk of recurrence, with long-term follow-up.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage II Testicular Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage II testicular cancer depends on whether the cancer is a seminoma or a nonseminoma.

Treatment of seminoma may include the following:

Treatment of nonseminoma may include the following:

  • Surgery to remove the testicle and lymph nodes, with long-term follow-up.
  • Surgery to remove the testicle and lymph nodes, followed by combination chemotherapy and long-term follow-up.
  • Surgery to remove the testicle, followed by combination chemotherapy and a second surgery if cancer remains, with long-term follow-up.
  • Combination chemotherapy before surgery to remove the testicle, for cancer that has spread and is thought to be life-threatening.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage III Testicular Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage III testicular cancer depends on whether the cancer is a seminoma or a nonseminoma.

Treatment of seminoma may include the following:

Treatment of nonseminoma may include the following:

  • Surgery to remove the testicle, followed by combination chemotherapy.
  • Combination chemotherapy followed by surgery to remove the testicle and all remaining tumors. Additional chemotherapy may be given if the tumor tissue removed contains cancer cells that are growing or if follow-up tests show that cancer is progressing.
  • Combination chemotherapy before surgery to remove the testicle, for cancer that has spread and is thought to be life-threatening.
  • A clinical trial of chemotherapy.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Recurrent Testicular Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of recurrent testicular cancer may include the following:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

To Learn More About Testicular Cancer

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the treatment of testicular cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/testicular/patient/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389286]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Testicular Cancer Treatment (PDQ®)–Health Professional Version

Testicular Cancer Treatment (PDQ®)–Health Professional Version

General Information About Testicular Cancer

Incidence and Mortality

Estimated new cases and deaths from testicular cancer in the United States in 2025:[1]

  • New cases: 9,720.
  • Deaths: 600.

Testicular cancer is a highly treatable, usually curable cancer that most often develops in young and middle-aged men. Most testicular cancers are germ cell tumors. For treatment planning, germ cell tumors are broadly divided into seminomas and nonseminomas because they have different prognostic and treatment algorithms. For patients with seminomas (all stages combined), the cure rate exceeds 90%. For patients with low-stage seminomas or nonseminomas, the cure rate approaches 100%.[26]

Risk Factors

Risk factors for testicular cancer include the following:[7]

  • An undescended testis (cryptorchidism).
  • A family history of testis cancer (particularly in a father or brother).
  • A personal history of testis cancer.

Surgical correction of an undescended testis (orchiopexy) before puberty appears to lower the risk of testicular cancer, but this is not certain.[8]

Histopathology

Types of testicular germ cell tumors: Seminomas versus nonseminomas

There are five histopathological subtypes of testicular germ cell tumors:

  • Seminomas.
  • Embryonal carcinomas.
  • Teratomas.
  • Yolk sac tumors.
  • Choriocarcinomas.

Tumors that are 100% seminoma are considered seminomas. All other tumors, including those that have a mixture of seminoma and nonseminoma components, are considered and should be managed as nonseminomas. Most nonseminomas consist of a mixture of the different germ cell tumor subtypes. Tumors that appear to have a seminoma histology but are accompanied by an elevated serum level of alpha-fetoprotein (AFP) should be treated as nonseminomas because seminomas do not produce AFP.

Prognosis and Staging

Serum tumor markers and testis cancer: AFP, beta-hCG, and LDH

Alpha-fetoprotein (AFP), beta-human chorionic gonadotropin (beta-hCG), and lactase dehydrogenase (LDH) play an important role as serum tumor markers in the staging and monitoring of germ cell tumors and should be measured prior to removing the involved testicle.[9] For patients with nonseminomas, one of the most significant predictors of prognosis is the degree of tumor-marker elevation after the cancerous testicle has been removed.[10] Elevated levels of serum tumor markers are often the earliest sign of relapse, making these markers useful for monitoring all stages of nonseminomas and metastatic seminomas.

AFP: Elevation of serum AFP is seen in 40% to 60% of men with nonseminomas. Seminomas do not produce AFP. Men who have an elevated serum AFP have a mixed germ cell tumor (i.e., nonseminomatous germ cell tumors [NSGCT]) even if the pathology shows a pure seminoma—unless there is a more persuasive explanation for the elevated AFP, such as liver disease.

Beta-hCG: Elevation of beta-hCG is found in approximately 14% of patients with stage I pure seminomas before orchiectomy and in about one-half of patients with metastatic seminomas.[1113] Approximately 40% to 60% of men with nonseminomas have an elevated serum beta-hCG.

Significant and unambiguously rising levels of AFP and/or beta-hCG signal relapsed germ cell tumor in most cases and are an indication for treatment even in the absence of radiological evidence of metastatic disease. Nonetheless, tumor marker elevations need to be interpreted with caution. For example, false-positive beta-hCG levels can result from cross reactivity of the assay with luteinizing hormone in which case an intramuscular injection of testosterone should result in normalization of beta-hCG values. There are also clinical reports of marijuana use resulting in elevations of serum beta-hCG and some experts recommend querying patients about drug use and retesting beta-hCG levels after a period of abstinence from marijuana use. Similarly, AFP is chronically mildly elevated in some individuals for unclear reasons and can be substantially elevated by liver disease.

LDH: Seminomas and nonseminomas alike may result in elevated LDH but such values are of unclear prognostic significance because LDH may be elevated in many conditions unrelated to cancer. A study evaluated the utility of LDH in 499 patients with a testicular germ cell tumor who were undergoing surveillance after orchiectomy or treatment of stage II or III disease. It found that 7.7% of patients had elevated LDH unrelated to cancer, while only 1.4% of patients had cancer-related increases in LDH.[14] Among 15 patients with relapsed disease, LDH was elevated in six patients and was the first sign of relapse in one patient. Over 9% of the men had a persistent false-positive increase in LDH. The positive predictive value for an elevated LDH was 12.8%.

A second study reported that among 494 patients with stage I germ cell tumors who subsequently had a relapse, 125 had an elevated LDH at the time of relapse. Of these 125 patients, all had other evidence of relapse: 112 had a concurrent rise in AFP and/or beta-hCG, one had computed tomography (CT) evidence of relapse before the elevation in LDH, one had palpable disease on examination, and one complained of back pain that led to imaging that revealed retroperitoneal relapse.[15] On one hand, measuring LDH appears to have little value for predicting relapse during surveillance of germ cell tumors. On the other hand, for patients with metastatic NSGCT, large studies of prognostic models have found the LDH level to be a significant independent predictor of survival.[10,16]

Staging and risk stratification

There are two major prognostic models for testicular cancer: staging[17] and, for risk stratification of men with distant and/or bulky retroperitoneal metastases, the International Germ Cell Cancer Consensus Group classification.[10] The prognosis of patients with testicular germ cell tumors is determined by the following factors:

  1. Histology (seminoma vs. nonseminoma).
  2. The extent to which the tumor has spread (testis only vs. retroperitoneal lymph node involvement vs. pulmonary or distant nodal metastasis vs. nonpulmonary visceral metastasis).
  3. For nonseminomas, the degree to which serum tumor markers are elevated.[10]

For men with disseminated seminomas, the main adverse prognostic variable is the presence of metastases to organs other than the lungs (e.g., bone, liver, or brain). For men with disseminated nonseminomas, the following variables are independently associated with poor prognosis:

  • Metastases to organs other than the lungs.
  • Highly elevated serum tumor markers.
  • Tumor that originated in the mediastinum rather than the testis.

Nonetheless, even patients with widespread metastases at presentation, including those with brain metastases, may have curable disease and should be treated with this intent.[18]

Radical inguinal orchiectomy with initial high ligation of the spermatic cord is the procedure of choice in diagnosing and treating a malignant testicular mass.[19] As noted above, serum AFP, LDH, and beta-hCG should be measured before an orchiectomy. Transscrotal biopsy is not considered appropriate because of the risk of local dissemination of tumor into the scrotum or its spread to inguinal lymph nodes. A retrospective analysis of reported series in which transscrotal approaches were used showed a small but statistically significant increase in local recurrence rates, compared with when the inguinal approach was used (2.9% vs. 0.4%).[20][Level of evidence C2] However, distant recurrence and survival rates were indistinguishable in the two approaches.

Diagnostics

Evaluation of the retroperitoneal lymph nodes, usually by CT scan, is an important aspect of staging and treatment planning in adults with testicular cancer.[21,22] Patients with a negative result have a substantial chance of having microscopic involvement of the lymph nodes. Nearly 20% of patients with seminoma and 30% of patients with nonseminoma who have normal CT scans and serum tumor markers will subsequently relapse if not given additional treatment after orchiectomy.[2325] For patients with nonseminoma, retroperitoneal lymph node dissection (RPLND) increases the accuracy of staging, but as many as 10% of men with normal imaging, normal tumor markers, and benign pathology at RPLND will still experience a relapse.[26] After RPLND, about 25% of patients with clinical stage I nonseminomatous testicular cancer are restaged as pathological stage II, and about 25% of clinical stage II patients are restaged as pathological stage I.[2628] In prepubertal children, the use of serial measurements of AFP has proven sufficient for monitoring response after initial orchiectomy. Lymphangiography and para-aortic lymph node dissection do not appear to be useful or necessary in the proper staging and management of testicular cancer in prepubertal boys.[29] For more information, see Childhood Testicular Cancer Treatment.

Follow-Up and Survivorship

Patients who have been cured of testicular cancer have approximately a 2% cumulative risk of developing cancer in the opposite testicle during the 15 years after initial diagnosis.[30,31] Within this range, men with nonseminomatous primary tumors appear to have a lower risk of subsequent contralateral testis tumors than men with seminomas.

Men with HIV are reported to be at increased risk of developing testicular seminomas.[32] Depending on comorbid conditions such as active infection, these men are generally managed similarly to patients without HIV.

Because most patients with testicular cancer who receive adjuvant chemotherapy or radiation therapy are curable, it is necessary to be aware of possible long-term effects of the various treatment modalities, such as the following:

  1. Fertility: Many patients have oligospermia or sperm abnormalities before therapy, but semen analysis results generally become more normal after treatment. The impact of standard chemotherapy on fertility in patients with testicular cancer is not well defined, although it is well documented that most men can father children after treatment, often without the use of cryopreserved semen. In two large studies, roughly 70% of patients fathered children after treatment for testicular cancer.[33,34] The likelihood of recovering fertility is related to the type of treatment received. The children do not appear to have an increased risk of congenital malformations, but the data are not adequate to properly investigate this issue.[35,36] It is recommended that men wait at least 3 months after completing chemotherapy before conceiving a child (unless using cryopreserved sperm collected before chemotherapy was administered).[36]

    Radiation therapy, used to treat pure seminomatous testicular cancers, can cause fertility problems because of radiation scatter to the remaining testicle during radiation therapy to retroperitoneal lymph nodes (as evidenced in the SWOG-8711 trial, for example).[37] Depending on scatter dose, sperm counts fall after radiation therapy but may recover over the course of 1 to 2 years. Shielding techniques can be used to decrease the radiation scatter to the remaining normal testicle. Because chemotherapy, RPLND, and radiation therapy can each result in infertility, men can be offered the opportunity to bank sperm before undergoing any treatment for testicular cancer other than orchiectomy.

  2. Secondary leukemias: Several reports of elevated risk of secondary acute leukemia, primarily nonlymphocytic, have appeared.[38,39] An increased risk of leukemia has been associated with platinum-based chemotherapy and radiation therapy.[38] Etoposide-containing regimens are also associated with a risk of secondary acute leukemias, usually in the myeloid lineage, and with a characteristic 11q23 translocation.[40,41] Etoposide-associated leukemias typically occur sooner after therapy than alkylating agent-associated leukemias and often show balanced chromosomal translocations on the long arm of chromosome 11. Standard etoposide dosages (<2 g/m2 cumulative dose) are associated with a relative risk of 15 to 25, but this translates into a cumulative incidence of leukemia of less than 0.5% at 5 years. Preliminary data suggest that cumulative doses of more than 2 g/m2 of etoposide may confer higher risk.
  3. Renal function: Minor decreases in creatinine clearance occur (about a 15% decrease, on average) during platinum-based therapy, but they appear to remain stable in the long term, without significant deterioration.[42]
  4. Hearing: Bilateral hearing deficits occur with cisplatin-based chemotherapy, but they generally occur at sound frequencies of 4 kHz to 8 kHz, which is outside the range of conversational tones. Therefore, hearing aids are rarely required if standard doses of cisplatin are given.[42]
  5. Lung function: A study of pulmonary function tests in 1,049 long-term survivors of testicular cancer reported a cisplatin-dose-dependent increase in the incidence of restrictive lung disease.[43] Whereas men receiving up to 850 mg of cisplatin had a normal risk of restrictive lung disease, men who received over 850 mg of cisplatin had a threefold increased risk. In absolute terms, patients who received no chemotherapy had an incidence of restrictive lung disease of less than 8%, whereas the incidence of restrictive lung disease among those receiving over 850 mg of cisplatin was nearly 18%. However, only 9.5% of those with pulmonary function testing indicative of restrictive lung disease reported dyspnea. Although cisplatin was more strongly associated with decreased lung function in this study, cumulative bleomycin dose was also associated with a decline in forced vital capacity and the 1-second forced expiratory volume (FEV1) but not with restrictive lung disease.

Although acute pulmonary toxic effects may occur with bleomycin, they are rarely fatal at total cumulative doses of less than 400 units. Because life-threatening pulmonary toxic effects can occur, the drug should be discontinued if early signs of pulmonary toxicity develop. Although decreases in pulmonary function are frequent, they are rarely symptomatic and are reversible after chemotherapy ends. Survivors of testis cancer who were treated with chemotherapy have been reported to be at increased risk of death from respiratory diseases, but it is unknown whether this finding is related to bleomycin exposure.[44]

Radiation therapy, often used in the management of pure seminomatous germ cell cancers, has been linked to the development of secondary cancers, especially solid tumors in the radiation portal, usually after a latency period of a decade or more.[45,46] These secondary cancers include melanoma and cancers of the stomach, bladder, colon, rectum, pancreas, lung, pleura, prostate, kidney, connective tissue, and thyroid. Chemotherapy has also been associated with an elevated risk of secondary cancers.

Other risk factors

Cardiovascular disease in testicular cancer survivors

Men with testicular cancer who have been treated with radiation therapy and/or chemotherapy are at increased risk of cardiovascular events.[4749] Other studies have reported that chemotherapy for testicular cancer is associated with an increased risk of developing metabolic syndrome and hypogonadism.[50,51] Moreover, an international population-based study reported that men treated with either radiation therapy or chemotherapy were at increased risk of death from circulatory diseases.[44]

In a retrospective series of 992 patients treated for testicular cancer between 1982 and 1992, cardiac events were increased approximately 2.5-fold in patients treated with radiation therapy and/or chemotherapy, compared with those who underwent surveillance for a median of 10.2 years. The actuarial risks of cardiac events were 7.2% for patients who received radiation therapy (92% of whom did not receive mediastinal radiation therapy), 3.4% for patients who received chemotherapy (primarily platinum-based), 4.1% for patients who received combined therapy, and 1.4% for patients who underwent surveillance management after 10 years of follow-up.[48]

A population-based retrospective study of 2,339 testicular cancer survivors in the Netherlands, treated between 1965 and 1995 and followed for a median of 18.4 years, found that the overall incidence of coronary heart disease (i.e., myocardial infarction and/or angina pectoris) was increased 1.17 times (95% confidence interval [CI], 1.04–1.31) compared with the general population.[49] Patients who received radiation therapy to the mediastinum had a 2.5-fold (95% CI, 1.8–3.4) increased risk of coronary heart disease, and those who also received chemotherapy had an almost threefold (95% CI, 1.7–4.8) increased risk. Patients who were treated with infradiaphragmatic radiation therapy alone had no significantly increased risk of coronary heart disease. In multivariate Cox regression analyses, the older chemotherapy regimen of cisplatin, vinblastine, and bleomycin, used until the mid-1980s, was associated with a significant 1.9-fold (95% CI, 1.2–2.9) increased risk of cardiovascular disease (i.e., myocardial infarction, angina pectoris, and heart failure combined). The newer regimen of bleomycin, etoposide, and cisplatin was associated with a borderline significant 1.5-fold (95% CI, 1.0–2.2) increased risk of cardiovascular disease. Similarly, an international pooled analysis of population-based databases reported that the risk of death from circulatory disease was increased in men treated with chemotherapy (standardized mortality ratio [SMR] = 1.58) or radiation therapy (SMR = 1.70).[44][Level of evidence C2]

Although testicular cancer is highly curable, all newly diagnosed patients are appropriate candidates for clinical trials designed to decrease morbidity of treatment while further improving cure rates.

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Ries LAG, Melbert D, Krapcho M, et al.: SEER Cancer Statistics Review, 1975-2005. National Cancer Institute, 2007. Also available online. Last accessed March 28, 2025.
  3. Krege S, Beyer J, Souchon R, et al.: European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 53 (3): 478-96, 2008. [PUBMED Abstract]
  4. Groll RJ, Warde P, Jewett MA: A comprehensive systematic review of testicular germ cell tumor surveillance. Crit Rev Oncol Hematol 64 (3): 182-97, 2007. [PUBMED Abstract]
  5. Neill M, Warde P, Fleshner N: Management of low-stage testicular seminoma. Urol Clin North Am 34 (2): 127-36; abstract vii-viii, 2007. [PUBMED Abstract]
  6. Tandstad T, Dahl O, Cohn-Cedermark G, et al.: Risk-adapted treatment in clinical stage I nonseminomatous germ cell testicular cancer: the SWENOTECA management program. J Clin Oncol 27 (13): 2122-8, 2009. [PUBMED Abstract]
  7. Holzik MF, Rapley EA, Hoekstra HJ, et al.: Genetic predisposition to testicular germ-cell tumours. Lancet Oncol 5 (6): 363-71, 2004. [PUBMED Abstract]
  8. Pettersson A, Richiardi L, Nordenskjold A, et al.: Age at surgery for undescended testis and risk of testicular cancer. N Engl J Med 356 (18): 1835-41, 2007. [PUBMED Abstract]
  9. Sturgeon CM, Duffy MJ, Stenman UH, et al.: National Academy of Clinical Biochemistry laboratory medicine practice guidelines for use of tumor markers in testicular, prostate, colorectal, breast, and ovarian cancers. Clin Chem 54 (12): e11-79, 2008. [PUBMED Abstract]
  10. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. International Germ Cell Cancer Collaborative Group. J Clin Oncol 15 (2): 594-603, 1997. [PUBMED Abstract]
  11. Gholam D, Fizazi K, Terrier-Lacombe MJ, et al.: Advanced seminoma–treatment results and prognostic factors for survival after first-line, cisplatin-based chemotherapy and for patients with recurrent disease: a single-institution experience in 145 patients. Cancer 98 (4): 745-52, 2003. [PUBMED Abstract]
  12. Oliver RT, Mason MD, Mead GM, et al.: Radiotherapy versus single-dose carboplatin in adjuvant treatment of stage I seminoma: a randomised trial. Lancet 366 (9482): 293-300, 2005 Jul 23-29. [PUBMED Abstract]
  13. Weissbach L, Bussar-Maatz R, Mann K: The value of tumor markers in testicular seminomas. Results of a prospective multicenter study. Eur Urol 32 (1): 16-22, 1997. [PUBMED Abstract]
  14. Venkitaraman R, Johnson B, Huddart RA, et al.: The utility of lactate dehydrogenase in the follow-up of testicular germ cell tumours. BJU Int 100 (1): 30-2, 2007. [PUBMED Abstract]
  15. Ackers C, Rustin GJ: Lactate dehydrogenase is not a useful marker for relapse in patients on surveillance for stage I germ cell tumours. Br J Cancer 94 (9): 1231-2, 2006. [PUBMED Abstract]
  16. van Dijk MR, Steyerberg EW, Habbema JD: Survival of non-seminomatous germ cell cancer patients according to the IGCC classification: An update based on meta-analysis. Eur J Cancer 42 (7): 820-6, 2006. [PUBMED Abstract]
  17. Brimo F, Srigley J, Ryan C: Testis. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 727–35.
  18. Krege S, Beyer J, Souchon R, et al.: European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II. Eur Urol 53 (3): 497-513, 2008. [PUBMED Abstract]
  19. Leibovitch I, Baniel J, Foster RS, et al.: The clinical implications of procedural deviations during orchiectomy for nonseminomatous testis cancer. J Urol 154 (3): 935-9, 1995. [PUBMED Abstract]
  20. Capelouto CC, Clark PE, Ransil BJ, et al.: A review of scrotal violation in testicular cancer: is adjuvant local therapy necessary? J Urol 153 (3 Pt 2): 981-5, 1995. [PUBMED Abstract]
  21. Sohaib SA, Koh DM, Husband JE: The role of imaging in the diagnosis, staging, and management of testicular cancer. AJR Am J Roentgenol 191 (2): 387-95, 2008. [PUBMED Abstract]
  22. Leibovitch L, Foster RS, Kopecky KK, et al.: Improved accuracy of computerized tomography based clinical staging in low stage nonseminomatous germ cell cancer using size criteria of retroperitoneal lymph nodes. J Urol 154 (5): 1759-63, 1995. [PUBMED Abstract]
  23. Chung P, Warde P: Surveillance in stage I testicular seminoma. Urol Oncol 24 (1): 75-9, 2006 Jan-Feb. [PUBMED Abstract]
  24. Segal R: Surveillance programs for stage I nonseminomatous germ cell tumors of the testis. Urol Oncol 24 (1): 68-74, 2006 Jan-Feb. [PUBMED Abstract]
  25. Warde P, Specht L, Horwich A, et al.: Prognostic factors for relapse in stage I seminoma managed by surveillance: a pooled analysis. J Clin Oncol 20 (22): 4448-52, 2002. [PUBMED Abstract]
  26. Stephenson AJ, Bosl GJ, Motzer RJ, et al.: Retroperitoneal lymph node dissection for nonseminomatous germ cell testicular cancer: impact of patient selection factors on outcome. J Clin Oncol 23 (12): 2781-8, 2005. [PUBMED Abstract]
  27. Choueiri TK, Stephenson AJ, Gilligan T, et al.: Management of clinical stage I nonseminomatous germ cell testicular cancer. Urol Clin North Am 34 (2): 137-48; abstract viii, 2007. [PUBMED Abstract]
  28. Donohue JP, Thornhill JA, Foster RS, et al.: Clinical stage B non-seminomatous germ cell testis cancer: the Indiana University experience (1965-1989) using routine primary retroperitoneal lymph node dissection. Eur J Cancer 31A (10): 1599-604, 1995. [PUBMED Abstract]
  29. Huddart SN, Mann JR, Gornall P, et al.: The UK Children’s Cancer Study Group: testicular malignant germ cell tumours 1979-1988. J Pediatr Surg 25 (4): 406-10, 1990. [PUBMED Abstract]
  30. Fosså SD, Chen J, Schonfeld SJ, et al.: Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J Natl Cancer Inst 97 (14): 1056-66, 2005. [PUBMED Abstract]
  31. Theodore Ch, Terrier-Lacombe MJ, Laplanche A, et al.: Bilateral germ-cell tumours: 22-year experience at the Institut Gustave Roussy. Br J Cancer 90 (1): 55-9, 2004. [PUBMED Abstract]
  32. Goedert JJ, Purdue MP, McNeel TS, et al.: Risk of germ cell tumors among men with HIV/acquired immunodeficiency syndrome. Cancer Epidemiol Biomarkers Prev 16 (6): 1266-9, 2007. [PUBMED Abstract]
  33. Brydøy M, Fosså SD, Klepp O, et al.: Paternity following treatment for testicular cancer. J Natl Cancer Inst 97 (21): 1580-8, 2005. [PUBMED Abstract]
  34. Huyghe E, Matsuda T, Daudin M, et al.: Fertility after testicular cancer treatments: results of a large multicenter study. Cancer 100 (4): 732-7, 2004. [PUBMED Abstract]
  35. Babosa M, Baki M, Bodrogi I, et al.: A study of children, fathered by men treated for testicular cancer, conceived before, during, and after chemotherapy. Med Pediatr Oncol 22 (1): 33-8, 1994. [PUBMED Abstract]
  36. Spermon JR, Kiemeney LA, Meuleman EJ, et al.: Fertility in men with testicular germ cell tumors. Fertil Steril 79 (Suppl 3): 1543-9, 2003. [PUBMED Abstract]
  37. Gordon W, Siegmund K, Stanisic TH, et al.: A study of reproductive function in patients with seminoma treated with radiotherapy and orchidectomy: (SWOG-8711). Southwest Oncology Group. Int J Radiat Oncol Biol Phys 38 (1): 83-94, 1997. [PUBMED Abstract]
  38. Travis LB, Andersson M, Gospodarowicz M, et al.: Treatment-associated leukemia following testicular cancer. J Natl Cancer Inst 92 (14): 1165-71, 2000. [PUBMED Abstract]
  39. van Leeuwen FE, Stiggelbout AM, van den Belt-Dusebout AW, et al.: Second cancer risk following testicular cancer: a follow-up study of 1,909 patients. J Clin Oncol 11 (3): 415-24, 1993. [PUBMED Abstract]
  40. Houck W, Abonour R, Vance G, et al.: Secondary leukemias in refractory germ cell tumor patients undergoing autologous stem-cell transplantation using high-dose etoposide. J Clin Oncol 22 (11): 2155-8, 2004. [PUBMED Abstract]
  41. Kollmannsberger C, Hartmann JT, Kanz L, et al.: Therapy-related malignancies following treatment of germ cell cancer. Int J Cancer 83 (6): 860-3, 1999. [PUBMED Abstract]
  42. Osanto S, Bukman A, Van Hoek F, et al.: Long-term effects of chemotherapy in patients with testicular cancer. J Clin Oncol 10 (4): 574-9, 1992. [PUBMED Abstract]
  43. Haugnes HS, Aass N, Fosså SD, et al.: Pulmonary function in long-term survivors of testicular cancer. J Clin Oncol 27 (17): 2779-86, 2009. [PUBMED Abstract]
  44. Fosså SD, Gilbert E, Dores GM, et al.: Noncancer causes of death in survivors of testicular cancer. J Natl Cancer Inst 99 (7): 533-44, 2007. [PUBMED Abstract]
  45. Travis LB, Fosså SD, Schonfeld SJ, et al.: Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst 97 (18): 1354-65, 2005. [PUBMED Abstract]
  46. van den Belt-Dusebout AW, de Wit R, Gietema JA, et al.: Treatment-specific risks of second malignancies and cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 25 (28): 4370-8, 2007. [PUBMED Abstract]
  47. Meinardi MT, Gietema JA, van der Graaf WT, et al.: Cardiovascular morbidity in long-term survivors of metastatic testicular cancer. J Clin Oncol 18 (8): 1725-32, 2000. [PUBMED Abstract]
  48. Huddart RA, Norman A, Shahidi M, et al.: Cardiovascular disease as a long-term complication of treatment for testicular cancer. J Clin Oncol 21 (8): 1513-23, 2003. [PUBMED Abstract]
  49. van den Belt-Dusebout AW, Nuver J, de Wit R, et al.: Long-term risk of cardiovascular disease in 5-year survivors of testicular cancer. J Clin Oncol 24 (3): 467-75, 2006. [PUBMED Abstract]
  50. Haugnes HS, Aass N, Fosså SD, et al.: Components of the metabolic syndrome in long-term survivors of testicular cancer. Ann Oncol 18 (2): 241-8, 2007. [PUBMED Abstract]
  51. Nuver J, Smit AJ, Wolffenbuttel BH, et al.: The metabolic syndrome and disturbances in hormone levels in long-term survivors of disseminated testicular cancer. J Clin Oncol 23 (16): 3718-25, 2005. [PUBMED Abstract]

Cellular Classification of Testicular Cancer

The following histological classification of malignant testicular germ cell tumors (testicular cancer) reflects the classification used by the World Health Organization (WHO).[1] Less than 50% of malignant testicular germ cell tumors have a single cell type, approximately 50% of which are seminomas. The remaining tumors have more than one cell type, and the relative proportions of each cell type should be specified. The cell type of these tumors is important for estimating the risk of metastases and the response to chemotherapy. Polyembryoma presents an unusual growth pattern and is sometimes listed as a single histological type, although it might better be regarded as a mixed tumor.[13]

  1. Intratubular germ cell neoplasia, unclassified.
  2. Malignant pure germ cell tumor (showing a single-cell type):
    1. Seminoma.
    2. Embryonal carcinoma.
    3. Teratoma.
    4. Choriocarcinoma.
    5. Yolk sac tumor.
  3. Malignant mixed germ cell tumor (showing more than one histological pattern):
    1. Embryonal carcinoma and teratoma with or without seminoma.
    2. Embryonal carcinoma and yolk sac tumor with or without seminoma.
    3. Embryonal carcinoma and seminoma.
    4. Yolk sac tumor and teratoma with or without seminoma.
    5. Choriocarcinoma and any other element.
  4. Polyembryoma.
References
  1. Woodward PJ, Heidenreich A, Looijenga LHJ, et al.: Germ cell tumours. In: Eble JN, Sauter G, Epstein JI, et al.: Pathology and Genetics of Tumours of the Urinary System and Male Genital Organs. IARC Press, 2004, pp 221-49.
  2. Ulbright TM, Berney DM: Testicular and paratesticular tumors. In: Mills SE, Carter D, Greenson JK, et al., eds.: Sternberg’s Diagnostic Surgical Pathology. Lippincott Williams & Wilkins, 2010, pp 1944-2004.
  3. Bosi GJ, Feldman DR, Bajorin DE, et al.: Cancer of the testis. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Lippincott Williams & Wilkins, 2011, pp 1280-1301.

Stage Information for Testicular Cancer

AJCC Stage Groupings and TNM Definitions

The American Joint Committee on Cancer (AJCC) has designated staging by TNM (tumor, node, metastasis) classification to define testicular cancer.[1]

AJCC Prognostic Stage Groups-Pathological (pTNM)

Table 1. Definition of pTNM Stage 0a
Stage TNM/S Description
T = primary tumor; N = regional lymph node; M = distant metastasis; cN = clinical regional lymph node; pN = pathological regional lymph node; pT = pathological tumor; S = serum marker.
aReprinted with permission from AJCC: Testis. In: Brimo F, Srigley J, Ryan C, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 727–35.
bExcept for Tis confirmed by biopsy and T4, the extent of the primary tumor is classified by radical orchiectomy, TX may be used for other categories for clinical staging.
0 pTisb, N0, M0, S0 pTis = Germ cell neoplasia in situ.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
Table 2. Definition of pTNM Stages I, IA, IB, and ISa
Stage TNM/S Description
T = primary tumor; N = regional lymph node; M = distant metastasis; AFP = alpha-fetoprotein; cN = clinical regional lymph node; beta-hCG = beta-human chorionic gonadotropin; LDH = lactate dehydrogenase; pT = pathological tumor; S = serum marker.
aReprinted with permission from AJCC: Testis. In: Brimo F, Srigley J, Ryan C, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 727–35.
bSubclassification of pT1 applies only to pure seminoma.
cN indicates the upper limit of normal for the LDH assay.
I pT1–4, N0, M0, SX pT1 = Tumor limited to testis (including rete testis invasion) without lymphovascular invasion.
–pT1ab = Tumor <3 cm in size.
–pT1bb = Tumor ≥3 cm in size.
pT2 = Tumor limited to testis (including rete testis invasion) with lymphovascular invasion OR tumor invading hilar soft tissue or epididymis or penetrating visceral mesothelial layer covering the external surface of tunica albuginea with or without lymphovascular invasion.
pT3 = Tumor directly invades spermatic cord soft tissue with or without lymphovascular invasion.
pT4 = Tumor invades scrotum with or without lymphovascular invasion.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
SX = Marker studies not available or not performed.
IA pT1, N0, M0, S0 pT1 = Tumor limited to testis (including rete testis invasion) without lymphovascular invasion.
–pT1aa = Tumor <3 cm in size.
–pT1bb = Tumor ≥3 cm in size.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
IB pT2, N0, M0, S0 pT2 = Tumor limited to testis (including rete testis invasion) with lymphovascular invasion OR tumor invading hilar soft tissue or epididymis or penetrating visceral mesothelial layer covering the external surface of tunica albuginea with or without lymphovascular invasion.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
pT3, N0, M0, S0 pT3 = Tumor directly invades spermatic cord soft tissue with or without lymphovascular invasion.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
pT4, N0, M0, S0 pT4 = Tumor invades scrotum with or without lymphovascular invasion.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
IS Any pT/TX, N0, M0, S1–3 pTX = Primary tumor cannot be assessed.
pT0 = No evidence of primary tumor.
pTis = Germ cell neoplasia in situ.
pT1 = Tumor limited to testis (including rete testis invasion) without lymphovascular invasion.
–pT1ab = Tumor 3 cm in size.
–pT1 bb = Tumor ≥3 cm in size.
pT2 = Tumor limited to testis (including rete testis invasion) with lymphovascular invasion OR tumor invading hilar soft tissue or epididymis or penetrating visceral mesothelial layer covering the external surface of tunica albuginea with or without lymphovascular invasion.
pT3 = Tumor directly invades spermatic cord soft tissue with or without lymphovascular invasion.
pT4 = Tumor invades scrotum with or without lymphovascular invasion.
cN0 = No regional lymph node metastasis.
pN0 = No regional lymph node metastasis.
M0 = No distant metastases.
S1 = LDH < 1.5 × Nc and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
S2 = LDH 1.5–10 × Nc or beta-hCG (mIU/mL) 5,000–50,000 or AFP (ng/mL) 1,000–10,000.
S3 = LDH > 10 × Nc or beta-hCG (mIU/mL) >50,000 or AFP (ng/mL) >10,000.
Table 3. Definition of pTNM Stages II, IIA, IIB, and IICa
Stage TNM/S Description
T = primary tumor; N = regional lymph node; M = distant metastasis; AFP = alpha-fetoprotein; cN = clinical regional lymph node; beta-hCG = beta-human chorionic gonadotropin; LDH = lactate dehydrogenase; pN = pathological regional lymph node; pT = pathological tumor; S = serum marker.
aReprinted with permission from AJCC: Testis. In: Brimo F, Srigley J, Ryan C, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 727–35.
bN indicates the upper limit of normal for the LDH assay.
II Any pT/TX, N1–3, M0, SX Any pT/TX = See descriptions in Table 2, Stage IS.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M0 = No distant metastases.
SX = Marker studies not available or not performed.
IIA Any pT/TX, N1, M0, S0 Any pT/TX = See descriptions in Table 2, Stage IS.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
Any pT/TX, N1, M0, S1 Any pT/TX = See descriptions in Table 2, Stage IS.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension
M0 = No distant metastases.
S1 = LDH < 1.5 × Nb and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
IIB Any pT/TX, N2, M0, S0 Any pT/TX = See descriptions in Table 2, Stage IS.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
Any pT/TX, N2, M0, S1 Any pT/TX = See descriptions in Table 2, Stage IS.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
M0 = No distant metastases.
S1 = LDH < 1.5 × Nb and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
IIC Any pT/TX, N3, M0, S0 Any pT/TX = See descriptions in Table 2, Stage IS.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M0 = No distant metastases.
S0 = Marker study levels within normal limits.
Any pT/TX, N3, M0, S1 Any pT/TX = See descriptions in Table 2, Stage IS.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M0 = No distant metastases.
S1 = LDH < 1.5 × Nb and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
Table 4. Definition of pTNM Stages III, IIIA, IIIB, and IIICa
Stage TNM/S Description
T = primary tumor; N = regional lymph node; M = distant metastasis; AFP = alpha-fetoprotein; cN = clinical regional lymph node; beta-hCG = beta-human chorionic gonadotropin; LDH = lactate dehydrogenase; pN = pathological regional lymph node; pT = pathological tumor; S = serum marker.
aReprinted with permission from AJCC: Testis. In: Brimo F, Srigley J, Ryan C, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 727–35.
bN indicates the upper limit of normal for the LDH assay.
III Any pT/TX, Any N, M1, SX Any pT/TX = See descriptions in Table 2, Stage IS.
cNX = Regional lymph nodes cannot be assessed.
cN0 = No regional lymph node metastasis.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pNX = Regional lymph nodes cannot be assessed.
pN0 = No regional lymph node metastasis.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M1 = Distant metastases.
–M1a = Nonretroperitoneal nodal or pulmonary metastases.
–M1b = Nonpulmonary visceral metastases.
SX = Marker studies not available or not performed.
IIIA Any pT/TX, Any N, M1a, S0 Any pT/TX = See descriptions in Table 2, Stage IS.
Any N = See descriptions in this table, Stage III.
M1a = Nonretroperitoneal nodal or pulmonary metastases.
S0 = Marker study levels within normal limits.
Any pT/TX, Any N, M1a, S1 Any pT/TX = See descriptions in Table 2, Stage IS.
Any N = See descriptions in this table, Stage III.
M1a = Nonretroperitoneal nodal or pulmonary metastases.
S1 = LDH < 1.5 × Nb and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
IIIB Any pT/TX, N1–3, M0, S2 Any pT/TX = See descriptions in Table 2, Stage IS.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M0 = Distant metastases.
S2 = LDH 1.5–10 × Nb or beta-hCG (mIU/mL) 5,000–50,000 or AFP (ng/mL) 1,000–10,000.
Any pT/TX, Any N, M1a, S2 Any pT/TX = See descriptions in Table 2, Stage IS.
Any N = See descriptions in this table, Stage III.
M1a = Nonretroperitoneal nodal or pulmonary metastases.
S2 = LDH 1.5–10 × Nb or beta-hCG (mIU/mL) 5,000–50,000 or AFP (ng/mL) 1,000–10,000.
IIIC Any pT/TX, N1–3, M0, S3 Any pT/TX = See descriptions in Table 2, Stage IS.
cN1 = Metastases with a lymph node mass ≤2 cm in greatest dimension OR multiple lymph nodes, none >2 cm in greatest dimension.
cN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension OR multiple lymph nodes, any one mass >2 cm but ≤5 cm in greatest dimension.
cN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
pN1 = Metastasis with a lymph node mass ≤2 cm in greatest dimension and ≤5 nodes positive, none >2 cm in greatest dimension.
pN2 = Metastasis with a lymph node mass >2 cm but ≤5 cm in greatest dimension; or >5 nodes positive, none >5 cm; or evidence of extranodal extension of tumor.
pN3 = Metastasis with a lymph node mass >5 cm in greatest dimension.
M0 = No distant metastases.
S3 = LDH > 10 × Nb or beta-hCG (mIU/mL) >50,000 or AFP (ng/mL) >10,000.
Any pT/TX, Any N, M1a, S3 Any pT/TX = See descriptions in Table 2, Stage IS.
Any N = See descriptions in this table, Stage III.
M1a = Nonretroperitoneal nodal or pulmonary metastases.
S3 = LDH > 10 × Nb or beta-hCG (mIU/mL) >50,000 or AFP (ng/mL) >10,000.
Any pT/TX, Any N, M1b, Any S Any pT/TX = See descriptions in Table 2, Stage IS.
Any N = See descriptions in this table, Stage III.
M1b = Nonpulmonary visceral metastases.
SX = Marker studies not available or not performed.
S0 = Marker study levels within normal limits.
S1 = LDH < 1.5 × Nb and beta-hCG (mIU/mL) <5,000 and AFP (ng/mL) <1,000.
S2 = LDH 1.5–10 × Nb or beta-hCG (mIU/mL) 5,000–50,000 or AFP (ng/mL) 1,000–10,000.
S3 = LDH > 10 × Nb or beta-hCG (mIU/mL) >50,000 or AFP (ng/mL) >10,000.

In addition to the clinical stage definitions, surgical stage may be designated based on the results of surgical removal and microscopic examination of tissue.

Stage 0

Stage 0 testicular cancer is testicular intraepithelial neoplasia (TIN), also referred to as intratubular germ cell neoplasia (ITGCN). TIN is analogous to carcinoma in situ. In most cases, TIN is diagnosed as a result of an orchiectomy that was performed to remove an invasive germ cell tumor (pT1–T4); generally, TIN has already been removed from the body at the time of diagnosis and requires no treatment. A more challenging situation arises if a biopsy is performed of the contralateral testis and TIN is discovered. Because of the low incidence and low mortality rates associated with contralateral germ cell tumors, such biopsies are performed rarely in the United States. Therefore, TIN is almost never diagnosed in testicles that do not also have an invasive tumor. Consequently, a treatment decision about TIN in stage 0 testicular cancer is rarely faced in the United States. Treatment options for ITGCN include radiation therapy, surveillance, and orchiectomy.

Stage I

Stage I testicular cancer is limited to the testis. Invasion of the scrotal wall by tumor or interruption of the scrotal wall by previous surgery does not change the stage but does increase the risk of spread to the inguinal lymph nodes, and this must be considered in treatment and follow-up. Invasion of the epididymis tunica albuginea and/or the rete testis does not change the stage. Invasion of the tunica vaginalis or lymphovascular invasion signifies a T2 tumor, while invasion of the spermatic cord signifies a T3 tumor, and invasion of the scrotum signifies a T4. Increases in T stage are associated with increased risk of occult metastatic disease and recurrence. Men with stage I disease who have persistently elevated serum tumor markers after orchiectomy are staged as IS, but stage IS nonseminomas are treated as stage III. Elevated serum tumor markers in stage I or II seminoma are of unclear significance except that a persistently elevated or rising beta-hCG usually indicates metastatic disease.

Stage II

Stage II testicular cancer involves the testis and the retroperitoneal or periaortic lymph nodes usually in the region of the kidney. Retroperitoneal involvement should be further characterized by the number of nodes involved and the size of involved nodes. The risk of recurrence is increased if more than five nodes are involved or if the size of one or more involved nodes is more than 2 cm. Bulky stage II disease (stage IIC) describes patients with extensive retroperitoneal nodes (>5 cm), which portends a less favorable prognosis.

Stage III

Stage III disease has spread beyond the retroperitoneal nodes based on physical examination, imaging studies, and/or blood tests (i.e., patients with retroperitoneal adenopathy and highly elevated serum tumor markers are stage III). Stage III can be further stratified based on the location of metastasis and the degree of elevation of serum tumor markers. In the favorable group (IIIA), metastases are limited to lymph nodes and lung, and serum tumor markers are no more than mildly elevated. Stage IIIB patients have moderately elevated tumor markers, while stage IIIC patients have highly elevated markers and/or metastases to liver, bone, brain, or some organ other than the lungs. These subclassifications of stage III correspond to the International Germ Cell Consensus Classification system for disseminated germ cell tumors.[2]

References
  1. Brimo F, Srigley J, Ryan C: Testis. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 727–35.
  2. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. International Germ Cell Cancer Collaborative Group. J Clin Oncol 15 (2): 594-603, 1997. [PUBMED Abstract]

Treatment Option Overview for Testicular Cancer

Testicular cancer is broadly divided into seminomas and nonseminomas for treatment planning. Seminomatous types of testicular cancer are more sensitive to radiation therapy and chemotherapy and are less prone to distant metastases than nonseminomatous types. Nonseminomas may include teratomatous elements, which tend to be resistant to chemotherapy and often require surgery for cure. By definition, pure seminomas do not contain elements of teratoma. Therefore, surgery plays a larger role in the management of nonseminomas than in the management of seminomas. Nonseminomatous testicular tumors include the following:

  • Embryonal carcinomas.
  • Yolk sac tumors.
  • Choriocarcinomas.
  • Teratomas.
  • Mixed germ cell tumors.

An international germ cell tumor prognostic classification has been developed based on a retrospective analysis of 5,202 patients with metastatic nonseminomatous and 660 patients with metastatic seminomatous germ cell tumors.[1] All patients received treatment with cisplatin- or carboplatin-containing therapy as their first chemotherapy course. The prognostic classification, shown below, was agreed on in 1997 by all major clinical trial groups worldwide. It is used for reporting clinical trial results of patients with germ cell tumors.

A meta-analysis of treatment outcomes for patients with advanced nonseminoma suggested that 5-year survival rates have improved for those patients with a poor prognosis during the period of 1989 to 2004.[2] In addition to improved therapy, the improvement in survival rates could be the result of publication bias, changes in patient selection in reported clinical trials, or more sensitive staging methods that could migrate less-advanced stages to more-advanced stage categories (i.e., stage migration).

Good Prognosis

Nonseminoma:

  • Testis/retroperitoneal primary, and
  • No nonpulmonary visceral metastases, and
  • Good markers–all of:
    • Alpha-fetoprotein (AFP) less than 1,000 ng/mL, and
    • Beta-human chorionic gonadotropin (beta-hCG) less than 5,000 IU/mL (1,000 ng/mL), and
    • Lactate dehydrogenase (LDH) less than 1.5 × the upper limit of normal
  • A total of 56% to 61% of nonseminomas are good prognosis. The 5-year progression-free survival (PFS) rate is 89%; the 5-year survival rate is 92%–94%.

Seminoma:

  • Any primary site, and
  • No nonpulmonary visceral metastases, and
  • Normal AFP, any beta-hCG, any LDH
  • A total of 90% of seminomas are good prognosis. The 5-year PFS rate is 82%; the 5-year survival rate is 86%.

Intermediate Prognosis

Nonseminoma:

  • Testis/retroperitoneal primary, and
  • No nonpulmonary visceral metastases, and
  • Intermediate markers–any of:
    • AFP 1,000 ng/mL or more and 10,000 ng/mL or less, or
    • Beta-hCG 5,000 IU/L or more and 50,000 IU/L or less, or
    • LDH 1.5 or more × N* and less than 10 × N*

    *[Note: N indicates the upper limit of normal for the LDH assay.]

  • A total of 13% to 28% of nonseminomas are intermediate prognosis. The 5-year PFS rate is 75%; the 5-year survival rate is 80%–83%.

Seminoma:

  • Any primary site, and
  • Nonpulmonary visceral metastases, and
  • Normal AFP, any beta-hCG, any LDH
  • A total of 10% of seminomas are intermediate prognosis. The 5-year PFS rate is 67%; the 5-year survival rate is 72%.

Poor Prognosis

Nonseminoma:

  • Mediastinal primary, or
  • Nonpulmonary visceral metastases, or
  • For markers–any of:
    • AFP more than 10,000 ng/mL, or
    • Beta-hCG more than 50,000 IU/mL (10,000 ng/mL), or
    • LDH more than 10 × the upper limit of normal
  • A total of 16% to 26% of nonseminomas are poor prognosis. The 5-year PFS rate is 41%; the 5-year survival rate is 71%.

Seminoma:

  • No patients are classified as poor prognosis.
References
  1. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. International Germ Cell Cancer Collaborative Group. J Clin Oncol 15 (2): 594-603, 1997. [PUBMED Abstract]
  2. van Dijk MR, Steyerberg EW, Habbema JD: Survival of non-seminomatous germ cell cancer patients according to the IGCC classification: An update based on meta-analysis. Eur J Cancer 42 (7): 820-6, 2006. [PUBMED Abstract]

Treatment of Stage 0 Testicular Cancer

Among men diagnosed with an invasive testicular germ cell tumor (stages I–III), 0.5% to 1.0% will present with tumors in both testes, and another 1% to 2% will develop a subsequent invasive germ cell tumor in the contralateral testis.[13] Death from metachronous contralateral germ cell tumors is rare. One study of 29,515 U.S. men with testicular germ cell tumors who were diagnosed between 1973 and 2001 reported that 287 men developed a metachronous contralateral testis cancer, one of whom died.[3] As a result, there is limited rationale for performing biopsies to search for testicular intraepithelial neoplasia (TIN) in men diagnosed with invasive testicular cancer.

If biopsies of the contralateral testis are performed in men with testicular cancer, 4% to 8% of men will be found to have contralateral TIN. The treatment is typically radiation therapy (18 Gy–20 Gy), surveillance, or orchiectomy. Men undergoing radiation therapy or orchiectomy will subsequently be sterile. Men undergoing orchiectomy will also be hypogonadal as will many men undergoing radiation therapy.[4]

Treatment options:

  1. Radiation therapy for TIN is associated with a low risk of relapse. One study of 122 patients with TIN treated with 18 Gy to 20 Gy of external-beam radiation therapy reported three relapses (2.5%).[4]
  2. Surveillance with annual transscrotal ultrasonography and monthly self-examinations are also options for men with TIN. Approximately one-half of the TIN cases will progress to invasive germ cell tumors with a median time to progression of roughly 3 years.[4]
  3. Chemotherapy does not appear to be very effective at preventing the development of invasive testicular germ cell tumors. One series reported progression to invasive cancers in 10 of 30 patients treated with two cycles of bleomycin, etoposide and cisplatin (BEP); the same progression was found in 7 of 51 patients treated with three or more cycles of BEP; 2 of 15 patients treated with carboplatin also showed a progression to invasive cancers.[4,5]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Schaapveld M, van den Belt-Dusebout AW, Gietema JA, et al.: Risk and prognostic significance of metachronous contralateral testicular germ cell tumours. Br J Cancer 107 (9): 1637-43, 2012. [PUBMED Abstract]
  2. Tabernero J, Paz-Ares L, Salazar R, et al.: Incidence of contralateral germ cell testicular tumors in South Europe: report of the experience at 2 Spanish university hospitals and review of the literature. J Urol 171 (1): 164-7, 2004. [PUBMED Abstract]
  3. Fosså SD, Chen J, Schonfeld SJ, et al.: Risk of contralateral testicular cancer: a population-based study of 29,515 U.S. men. J Natl Cancer Inst 97 (14): 1056-66, 2005. [PUBMED Abstract]
  4. Dieckmann KP, Wilken S, Loy V, et al.: Treatment of testicular intraepithelial neoplasia (intratubular germ cell neoplasia unspecified) with local radiotherapy or with platinum-based chemotherapy: a survey of the German Testicular Cancer Study Group. Ann Oncol 24 (5): 1332-7, 2013. [PUBMED Abstract]
  5. Kleinschmidt K, Dieckmann KP, Georgiew A, et al.: Chemotherapy is of limited efficacy in the control of contralateral testicular intraepithelial neoplasia in patients with testicular germ cell cancer. Oncology 77 (1): 33-9, 2009. [PUBMED Abstract]

Treatment of Stage I Testicular Cancer

Stage I Seminoma

Patients with stage I seminomas have a cure rate that approaches 100%, regardless of whether postorchiectomy adjuvant therapy is given.

Treatment options:

  • Radical inguinal orchiectomy with no retroperitoneal node radiation therapy followed by chest x-rays and computed tomography (CT) scans of the abdomen and pelvis (surveillance). These studies are typically performed every 4 months for the first 3 years, then every 6 months for 3 years, and then annually for an additional 4 years.[1]

    Results of multiple clinical series, including more than 1,200 patients with stage I seminoma managed by postorchiectomy surveillance, have been reported.[29] The overall 10-year tumor recurrence rate is 15% to 20%, and nearly all patients whose disease recurred were cured by radiation therapy or chemotherapy. Thus, the overall cure rate is indistinguishable from that achieved with adjuvant radiation therapy or carboplatin chemotherapy. Relapses after 5 years are unusual but can occur in as many as 4% of patients.[6] Independent risk factors for relapse include tumor size greater than 4 cm and invasion of the rete testis.[2] The 5-year risk of relapse is about 10% without either risk factor, 16% with one risk factor, and 32% with both risk factors.

Treatment options when surveillance is not chosen:

The surveillance-after-orchiectomy treatment option is associated with a cure rate that approaches 100%. Relapses requiring additional therapy occur in about 15% of patients who are treated with the surveillance treatment option. The surveillance strategy avoids the need for radiation or chemotherapy in most patients. However, some patients are uncomfortable with surveillance only and wish to minimize the risk of relapse. For such patients, one of the following options may be used; however, there is controversy about which strategy is preferred:[10]

  1. Removal of the testicle via radical inguinal orchiectomy followed by radiation therapy is an approach that is associated with a 5-year relapse-free survival (RFS) rate of 95% to 96% and a 5-year disease-specific survival rate over 99% in multiple large series and randomized controlled trials.[1117]

    One of the following two treatment fields is typically used: a para-aortic strip covering the retroperitoneal nodes or a dog-leg field that includes the ipsilateral iliac lymph nodes as well as the retroperitoneum. The dose ranges from 20 Gy to 26 Gy. Relapse rates and toxic effects were studied in a randomized comparison (MRC-TE10) of para-aortic radiation therapy alone versus para-aortic radiation therapy with an added ipsilateral iliac lymph node field.[13,18] The 5-year RFS rates were virtually identical (96.1% for patients who were treated with the para-aortic strip vs. 96.2% for patients who were treated by a dog-leg field) as were overall survival (OS) rates (one death from seminoma occurred in the para-aortic radiation therapy arm). Pelvic RFS rates were 98.2% versus 100%; the 95% confidence interval (CI) for the difference in pelvic RFS rates was 0% to 3.7%. A statistically significant increase was observed in leukopenia and diarrhea associated with the ipsilateral iliac radiation therapy.

    In a randomized trial (MRC-TE18), a radiation dose of 20 Gy over 10 daily fractions was clinically equivalent to 30 Gy over 15 fractions after a median follow-up of 7 years in both RFS and OS. Patients reported that lethargy and their ability to perform normal work were better in the lower-dose regimen.[14,18][Level of evidence A1]

    Radiation therapy for clinical stage I testicular seminoma is no longer favored because of evidence that this treatment is associated with an increased risk of secondary malignancies and an increased risk of death from secondary malignancies. An analysis of data from the population-based Surveillance, Epidemiology, and End Results (SEER) Program registries in the United States between the years 1973 and 2001 indicated that among 7,179 men receiving radiation therapy for stage I seminoma, 246 had an increased risk of death from secondary cancers compared with the general population (standardized mortality ratio, 1.89; 95% CI, 1.67–2.14).[19] An international study of more than 40,000 testicular cancer survivors reported that among the 7,885 survivors who had been followed for 20 to 29 years, radiation therapy was associated with a doubling of the risk of secondary cancers (relative risk, 2.0; 95% CI, 1.8–2.3).[20]

  2. Radical inguinal orchiectomy followed by either one or two doses of carboplatin adjuvant therapy.

    In a large, randomized, controlled, noninferiority trial (MRC-TE19 [NCT00003014]), 1,477 men with stage I seminomas were assigned to undergo para-aortic (or dog-leg field, if clinically indicated) radiation therapy or to receive a single dose of carboplatin (concentration-versus-time or area-under-the-curve [AUC] × 7) after radical inguinal orchiectomy study participants were followed up for a median of 6.5 years.[18,21] The RFS rate at 5 years was 94.7% in the carboplatin arm and 96.0% in the radiation therapy arm (1.3% difference; 90% CI, 0.7%–3.5%; hazard ratio [HR], 1.25 [nonsignificant trend in favor of radiation therapy]; 90% CI, 0.83–1.89). The one death from seminoma occurred in the radiation therapy arm. There was a reduced number of contralateral testicular germ cell tumors in the carboplatin arm: 2 versus 15 (HR, 0.22; 95% CI, 0.05–0.95; P = .03).[21][Level of evidence A1] In this trial, AUC dosing was based on radioisotope measurement of glomerular filtration rate; dosing based on calculations of creatinine clearance is not equivalent, has not been validated in this setting, and is discouraged.

    Phase II studies, including several with more than 4 years median follow-up, have consistently reported lower relapse rates (0%–3.3%) when two doses of carboplatin were administered either 3 or 4 weeks apart and dosed either at 400 mg/m2 or at an AUC of 7.[3,4,2226] Administration of two doses of carboplatin has never been compared with a single dose nor with radiation therapy in a randomized trial.

Stage I Nonseminoma

Stage I nonseminoma is highly curable (>99%). Orchiectomy alone will cure about 70% of patients, but the remaining 30% will relapse and require additional treatment. The relapses are highly curable, and postorchiectomy surveillance is a standard treatment option, but some physicians and patients prefer to reduce the risk of relapse by having the patient undergo either a retroperitoneal lymph node dissection (RPLND) or one or two cycles of chemotherapy. Each of these three approaches has unique advantages and disadvantages, and none has been shown to result in longer survival or superior quality of life.

Treatment options:

  1. Radical inguinal orchiectomy followed by a regular and frequent surveillance schedule.

    Typically, patients are seen monthly during the first year, every 2 months during the second year, every 3 months during the third year, every 4 months during the fourth year, every 6 months during the fifth year, and annually for the subsequent 5 years.[2729] At each visit, the history is reviewed, a physical examination is given, determination of serum markers are performed, and a chest x-ray is obtained (sometimes at alternating visits). An additional key aspect of surveillance involves abdominal or abdominopelvic CT scans, but the preferred frequency of such scans is controversial.

    A randomized controlled trial (MRC-TE08 [NCT00003420]) compared a schedule that used only two scans at 3 months and 12 months with a schedule that used five scans at 3, 6, 9, 12, and 24 months.[30] With over 400 randomly assigned patients and a median follow-up of 40 months, all relapsing patients had either good- or intermediate-risk disease, and there were no differences in the stage or extent of disease at relapse between the two arms. No deaths were reported. Nonetheless, some organizations recommend CT scans every 3 to 4 months during the first 3 years of follow-up and continuing but less-frequent CT scans thereafter. While this study would appear to indicate that scans at 3 and 12 months are adequate during the first year, longer follow-up will be needed to assess whether discontinuing scans after 12 months is safe.[30][Level of evidence A1] With regard to chest imaging, disease recurrence is rarely detected by chest x-ray alone, so chest x-ray may play little or no role in routine surveillance but is nonetheless included in the mainstream surveillance schedules.[27]

    The need for long-term follow-up has not been adequately investigated. Surveillance series with long follow-up times have reported that fewer than 1% of clinical stage I patients relapse after 5 years.[31,32] Late relapses often occur in the retroperitoneum when they do occur. Therefore, some schedules discontinue CT scans after 12 months, while others recommend at least annual scans for 10 years.

    The option of a radical inguinal orchiectomy followed by a regular and frequent surveillance schedule should be considered only if:

    • CT scan and serum markers are negative.
    • The patient accepts the need for and commits to frequent surveillance visits. Children are adequately followed by alpha-fetoprotein serum markers, chest x-rays, and clinical examination.[33]
    • The physician accepts responsibility for seeing that a follow-up schedule is maintained as noted.
  2. Removal of the testicle through the groin followed (in adults) by RPLND.

    A nerve-sparing RPLND that preserves ejaculation in virtually every patient has been described in clinical stage I patients and appears to be as effective as the standard RPLND.[3436] Surgery should be followed by monthly determination of serum markers and chest x-rays for the first year and every-other-month determinations for the second year.[27]

    Men undergoing RPLND, who are found to have pathological stage I disease, have a roughly 10% risk of relapsing subsequently, whereas men with pathological stage II disease (i.e., those who are found to have lymph node metastases at RPLND) have as much as a 50% risk of relapse without further treatment.[37] Two cycles of post-RPLND chemotherapy using either bleomycin, etoposide, and cisplatin (BEP) or etoposide plus cisplatin (EP) lowers the risk of relapse in men with pathological stage II disease to about 1%.[38,39] Most patients in studies of RPLND underwent the operation at a center of excellence with a urological surgeon who had performed hundreds of such operations. The ability of less-experienced urologists to achieve similar results is unknown.

    In patients with pathological stage I disease after RPLND, the presence of lymphatic or venous invasion or a predominance of embryonal carcinoma in the primary tumor appears to predict for relapse.[4042] In a large, Testicular Cancer Intergroup Study, the relapse rate among men with pathological stage I disease was 19% in those with vascular invasion versus 6% in those without vascular invasion. One study reported that the relapse rate for men with pathological stage I disease was 21.2% (18 of 85 men relapsed), if their tumors were predominantly embryonal carcinoma and 29% if there was a predominance of embryonal carcinoma plus lymphovascular invasion versus 3% (5 of 141 men relapsed), if there was not a predominance of embryonal carcinoma.[40,41]

    Among pathological stage II patients, the relapse rate was 32% among men with embryonal carcinoma-predominant tumors compared with 15.6% in the other stage II patients. The risk of metastatic disease (i.e., either pathological stage II disease or relapsed pathological stage I disease) in men with tumors showing a predominance of embryonal carcinoma plus lymphovascular invasion was 62% compared with 16% in men with neither risk factor.

    These data have shown that high-risk patients undergoing RPLND have a substantial risk of subsequently receiving chemotherapy. Data from one institution have shown that about one-half of men with stage I pure embryonal carcinoma undergoing RPLND will subsequently receive cisplatin-based chemotherapy.[43]

    Retroperitoneal dissection of lymph nodes is not helpful in the management of children, and potential morbidity of the surgery is not justified by the information obtained.[33] In men who have undergone RPLND, chemotherapy is employed immediately on first evidence of recurrence.

  3. Adjuvant therapy consisting of one or two courses of BEP chemotherapy in patients with clinical stage I disease.

    A randomized controlled trial compared a single cycle of BEP chemotherapy with RPLND in 382 patients. The 2-year recurrence-free survival rates were 99.5% with chemotherapy versus 91.9% with RPLND (absolute difference, 7.6%; 95% CI, 3.1%–12.1%). There were no treatment-related or cancer-specific deaths in either arm of the study.[44]

    A Swedish and Norwegian study reported results of a risk-adapted therapy protocol in which patients with nonseminomas with lymphovascular invasion underwent postorchiectomy chemotherapy with one or two cycles of BEP chemotherapy, while those without lymphovascular invasion underwent either surveillance or a single cycle of BEP.[45] The study included 745 patients and, with a median follow-up of 4.7 years and 2-year follow-up of 89% of patients, there were no deaths from testicular cancer, although one patient died of a stroke immediately after completing chemotherapy for relapsed disease. OS was 98.9% and cause-specific survival was 99.9%. Both of these studies were conducted at community-based hospitals and demonstrated that postorchiectomy chemotherapy could be delivered at a regional or national level without depending on centers of excellence.

    Several phase II studies and case series reporting results after two cycles of BEP in patients with intermediate- or high-risk disease have identified relapse rates ranging from 0% to 4% (average, 2.4%).[46] Less than 1% of patients in these series died of testicular cancer. When compared with RPLND or surveillance, chemotherapy produces the lower relapse rate and a comparable disease-specific survival rate. However, it is unknown whether a brief course of chemotherapy results in late toxic effects or an increased risk of late relapse. Longer follow-up is awaited.

There is no consensus about the optimal management of men with stage I nonseminomas, but each of the three strategies above produces a disease-specific survival rate of about 99%. Some clinicians have advocated a risk-adapted approach such that patients with low-risk disease undergo surveillance, while others undergo either RPLND or chemotherapy. The goal of this approach is to minimize the side effects of treatment, but risk-adapted therapy has never been demonstrated to result in better outcomes. Some experts prefer a surveillance strategy generally so as to minimize unnecessary treatment. Others prefer RPLND to obtain more accurate staging, to reduce the risk of needing chemotherapy (and, therefore, chemotherapy’s side effects and toxicity) and to, theoretically, reduce the risk of late relapse. At the same time, many experts reject RPLND as insufficiently effective at lowering relapse rates and prefer chemotherapy. Surveillance and chemotherapy have been tested at the regional and national level with excellent results, however, the limited data concerning RPLND in patients with regional disease have shown higher than expected in-field relapse rates but no deaths.[44,45]

With regard to risk stratification, data suggest that relapse rates are higher in patients with histological evidence of lymphatic or venous invasion or a predominance of embryonal carcinoma.[12,31,40,41,47] Tumors that consist of mature teratoma appear to have a lower relapse rate.[48]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Warde P, Gospodarowicz MK, Panzarella T, et al.: Long term outcome and cost in the management of stage I testicular seminoma. Can J Urol 7 (2): 967-72; discussion 973., 2000. [PUBMED Abstract]
  2. Warde P, Specht L, Horwich A, et al.: Prognostic factors for relapse in stage I seminoma managed by surveillance: a pooled analysis. J Clin Oncol 20 (22): 4448-52, 2002. [PUBMED Abstract]
  3. Aparicio J, García del Muro X, Maroto P, et al.: Multicenter study evaluating a dual policy of postorchiectomy surveillance and selective adjuvant single-agent carboplatin for patients with clinical stage I seminoma. Ann Oncol 14 (6): 867-72, 2003. [PUBMED Abstract]
  4. Aparicio J, Germà JR, García del Muro X, et al.: Risk-adapted management for patients with clinical stage I seminoma: the Second Spanish Germ Cell Cancer Cooperative Group study. J Clin Oncol 23 (34): 8717-23, 2005. [PUBMED Abstract]
  5. Choo R, Thomas G, Woo T, et al.: Long-term outcome of postorchiectomy surveillance for Stage I testicular seminoma. Int J Radiat Oncol Biol Phys 61 (3): 736-40, 2005. [PUBMED Abstract]
  6. Chung P, Parker C, Panzarella T, et al.: Surveillance in stage I testicular seminoma – risk of late relapse. Can J Urol 9 (5): 1637-40, 2002. [PUBMED Abstract]
  7. Daugaard G, Petersen PM, Rørth M: Surveillance in stage I testicular cancer. APMIS 111 (1): 76-83; discussion 83-5, 2003. [PUBMED Abstract]
  8. Horwich A, Alsanjari N, A’Hern R, et al.: Surveillance following orchidectomy for stage I testicular seminoma. Br J Cancer 65 (5): 775-8, 1992. [PUBMED Abstract]
  9. von der Maase H, Specht L, Jacobsen GK, et al.: Surveillance following orchidectomy for stage I seminoma of the testis. Eur J Cancer 29A (14): 1931-4, 1993. [PUBMED Abstract]
  10. Bosl GJ, Patil S: Carboplatin in clinical stage I seminoma: too much and too little at the same time. J Clin Oncol 29 (8): 949-52, 2011. [PUBMED Abstract]
  11. Bamberg M, Schmidberger H, Meisner C, et al.: Radiotherapy for stages I and IIA/B testicular seminoma. Int J Cancer 83 (6): 823-7, 1999. [PUBMED Abstract]
  12. Classen J, Schmidberger H, Meisner C, et al.: Para-aortic irradiation for stage I testicular seminoma: results of a prospective study in 675 patients. A trial of the German testicular cancer study group (GTCSG). Br J Cancer 90 (12): 2305-11, 2004. [PUBMED Abstract]
  13. Fosså SD, Horwich A, Russell JM, et al.: Optimal planning target volume for stage I testicular seminoma: A Medical Research Council randomized trial. Medical Research Council Testicular Tumor Working Group. J Clin Oncol 17 (4): 1146, 1999. [PUBMED Abstract]
  14. Jones WG, Fossa SD, Mead GM, et al.: Randomized trial of 30 versus 20 Gy in the adjuvant treatment of stage I Testicular Seminoma: a report on Medical Research Council Trial TE18, European Organisation for the Research and Treatment of Cancer Trial 30942 (ISRCTN18525328). J Clin Oncol 23 (6): 1200-8, 2005. [PUBMED Abstract]
  15. Logue JP, Harris MA, Livsey JE, et al.: Short course para-aortic radiation for stage I seminoma of the testis. Int J Radiat Oncol Biol Phys 57 (5): 1304-9, 2003. [PUBMED Abstract]
  16. Oliver RT, Mason M, Von der Masse H, et al.: A randomised comparison of single agent carboplatin with radiotherapy in the adjuvant treatment of stage I seminoma of the testis, following orchidectomy: MRC TE19/EORTC 30982. [Abstract] J Clin Oncol 22 (Suppl 14): A-4517, 386, 2004.
  17. Santoni R, Barbera F, Bertoni F, et al.: Stage I seminoma of the testis: a bi-institutional retrospective analysis of patients treated with radiation therapy only. BJU Int 92 (1): 47-52; discussion 52, 2003. [PUBMED Abstract]
  18. Mead GM, Fossa SD, Oliver RT, et al.: Randomized trials in 2466 patients with stage I seminoma: patterns of relapse and follow-up. J Natl Cancer Inst 103 (3): 241-9, 2011. [PUBMED Abstract]
  19. Beard CJ, Travis LB, Chen MH, et al.: Outcomes in stage I testicular seminoma: a population-based study of 9193 patients. Cancer 119 (15): 2771-7, 2013. [PUBMED Abstract]
  20. Travis LB, Fosså SD, Schonfeld SJ, et al.: Second cancers among 40,576 testicular cancer patients: focus on long-term survivors. J Natl Cancer Inst 97 (18): 1354-65, 2005. [PUBMED Abstract]
  21. Oliver RT, Mead GM, Rustin GJ, et al.: Randomized trial of carboplatin versus radiotherapy for stage I seminoma: mature results on relapse and contralateral testis cancer rates in MRC TE19/EORTC 30982 study (ISRCTN27163214). J Clin Oncol 29 (8): 957-62, 2011. [PUBMED Abstract]
  22. Dieckmann KP, Brüggeboes B, Pichlmeier U, et al.: Adjuvant treatment of clinical stage I seminoma: is a single course of carboplatin sufficient? Urology 55 (1): 102-6, 2000. [PUBMED Abstract]
  23. Krege S, Kalund G, Otto T, et al.: Phase II study: adjuvant single-agent carboplatin therapy for clinical stage I seminoma. Eur Urol 31 (4): 405-7, 1997. [PUBMED Abstract]
  24. Oliver RT, Boublikova L, Ong J, et al.: Fifteen year follow up of the Anglian Germ Cell Cancer Group adjuvant studies of carboplatin as an alternative to radiation or surveillance for stage I seminoma. [Abstract] Proceedings of the American Society of Clinical Oncology 20: A-780, 196a, 2001.
  25. Reiter WJ, Brodowicz T, Alavi S, et al.: Twelve-year experience with two courses of adjuvant single-agent carboplatin therapy for clinical stage I seminoma. J Clin Oncol 19 (1): 101-4, 2001. [PUBMED Abstract]
  26. Steiner H, Höltl L, Wirtenberger W, et al.: Long-term experience with carboplatin monotherapy for clinical stage I seminoma: a retrospective single-center study. Urology 60 (2): 324-8, 2002. [PUBMED Abstract]
  27. van As NJ, Gilbert DC, Money-Kyrle J, et al.: Evidence-based pragmatic guidelines for the follow-up of testicular cancer: optimising the detection of relapse. Br J Cancer 98 (12): 1894-902, 2008. [PUBMED Abstract]
  28. Krege S, Beyer J, Souchon R, et al.: European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus group (EGCCCG): part I. Eur Urol 53 (3): 478-96, 2008. [PUBMED Abstract]
  29. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Testicular Cancer. Version 1.2019. Plymouth Meeting, PA: National Comprehensive Cancer Network, 2019. Available Online. Last accessed October 25, 2018.
  30. Rustin GJ, Mead GM, Stenning SP, et al.: Randomized trial of two or five computed tomography scans in the surveillance of patients with stage I nonseminomatous germ cell tumors of the testis: Medical Research Council Trial TE08, ISRCTN56475197–the National Cancer Research Institute Testis Cancer Clinical Studies Group. J Clin Oncol 25 (11): 1310-5, 2007. [PUBMED Abstract]
  31. Colls BM, Harvey VJ, Skelton L, et al.: Late results of surveillance of clinical stage I nonseminoma germ cell testicular tumours: 17 years’ experience in a national study in New Zealand. BJU Int 83 (1): 76-82, 1999. [PUBMED Abstract]
  32. Shahidi M, Norman AR, Dearnaley DP, et al.: Late recurrence in 1263 men with testicular germ cell tumors. Multivariate analysis of risk factors and implications for management. Cancer 95 (3): 520-30, 2002. [PUBMED Abstract]
  33. Huddart SN, Mann JR, Gornall P, et al.: The UK Children’s Cancer Study Group: testicular malignant germ cell tumours 1979-1988. J Pediatr Surg 25 (4): 406-10, 1990. [PUBMED Abstract]
  34. Foster RS, McNulty A, Rubin LR, et al.: The fertility of patients with clinical stage I testis cancer managed by nerve sparing retroperitoneal lymph node dissection. J Urol 152 (4): 1139-42; discussion 1142-3, 1994. [PUBMED Abstract]
  35. Donohue JP: Evolution of retroperitoneal lymphadenectomy (RPLND) in the management of non-seminomatous testicular cancer (NSGCT). Urol Oncol 21 (2): 129-32, 2003 Mar-Apr. [PUBMED Abstract]
  36. Heidenreich A, Albers P, Hartmann M, et al.: Complications of primary nerve sparing retroperitoneal lymph node dissection for clinical stage I nonseminomatous germ cell tumors of the testis: experience of the German Testicular Cancer Study Group. J Urol 169 (5): 1710-4, 2003. [PUBMED Abstract]
  37. Williams SD, Stablein DM, Einhorn LH, et al.: Immediate adjuvant chemotherapy versus observation with treatment at relapse in pathological stage II testicular cancer. N Engl J Med 317 (23): 1433-8, 1987. [PUBMED Abstract]
  38. Behnia M, Foster R, Einhorn LH, et al.: Adjuvant bleomycin, etoposide and cisplatin in pathological stage II non-seminomatous testicular cancer. the Indiana University experience. Eur J Cancer 36 (4): 472-5, 2000. [PUBMED Abstract]
  39. Kondagunta GV, Sheinfeld J, Mazumdar M, et al.: Relapse-free and overall survival in patients with pathologic stage II nonseminomatous germ cell cancer treated with etoposide and cisplatin adjuvant chemotherapy. J Clin Oncol 22 (3): 464-7, 2004. [PUBMED Abstract]
  40. Hermans BP, Sweeney CJ, Foster RS, et al.: Risk of systemic metastases in clinical stage I nonseminoma germ cell testis tumor managed by retroperitoneal lymph node dissection. J Urol 163 (6): 1721-4, 2000. [PUBMED Abstract]
  41. Sweeney CJ, Hermans BP, Heilman DK, et al.: Results and outcome of retroperitoneal lymph node dissection for clinical stage I embryonal carcinoma–predominant testis cancer. J Clin Oncol 18 (2): 358-62, 2000. [PUBMED Abstract]
  42. Sesterhenn IA, Weiss RB, Mostofi FK, et al.: Prognosis and other clinical correlates of pathologic review in stage I and II testicular carcinoma: a report from the Testicular Cancer Intergroup Study. J Clin Oncol 10 (1): 69-78, 1992. [PUBMED Abstract]
  43. Stephenson AJ, Bosl GJ, Bajorin DF, et al.: Retroperitoneal lymph node dissection in patients with low stage testicular cancer with embryonal carcinoma predominance and/or lymphovascular invasion. J Urol 174 (2): 557-60; discussion 560, 2005. [PUBMED Abstract]
  44. Albers P, Siener R, Krege S, et al.: Randomized phase III trial comparing retroperitoneal lymph node dissection with one course of bleomycin and etoposide plus cisplatin chemotherapy in the adjuvant treatment of clinical stage I Nonseminomatous testicular germ cell tumors: AUO trial AH 01/94 by the German Testicular Cancer Study Group. J Clin Oncol 26 (18): 2966-72, 2008. [PUBMED Abstract]
  45. Tandstad T, Dahl O, Cohn-Cedermark G, et al.: Risk-adapted treatment in clinical stage I nonseminomatous germ cell testicular cancer: the SWENOTECA management program. J Clin Oncol 27 (13): 2122-8, 2009. [PUBMED Abstract]
  46. Choueiri TK, Stephenson AJ, Gilligan T, et al.: Management of clinical stage I nonseminomatous germ cell testicular cancer. Urol Clin North Am 34 (2): 137-48; abstract viii, 2007. [PUBMED Abstract]
  47. Heidenreich A, Sesterhenn IA, Mostofi FK, et al.: Prognostic risk factors that identify patients with clinical stage I nonseminomatous germ cell tumors at low risk and high risk for metastasis. Cancer 83 (5): 1002-11, 1998. [PUBMED Abstract]
  48. Alexandre J, Fizazi K, Mahé C, et al.: Stage I non-seminomatous germ-cell tumours of the testis: identification of a subgroup of patients with a very low risk of relapse. Eur J Cancer 37 (5): 576-82, 2001. [PUBMED Abstract]

Treatment of Stage II Testicular Cancer

Stage II Seminoma

Stage II seminoma is divided into bulky and nonbulky disease for treatment planning and expression of prognosis. Bulky disease is generally defined as tumors larger than 5 cm on a computed tomography (CT) scan (i.e., stage IIC disease). Nonbulky disease can be further subdivided into stage IIA, meaning no lymph node mass larger than 2 cm, and stage IIB, meaning a lymph node mass between 2 cm and 5 cm.

Nonbulky stage II disease has a cure rate of about 90% to 95% with radiation therapy alone at doses of 30 Gy to 36 Gy.[14] Most patients with relapsed disease can be cured with chemotherapy. Cure rates are slightly higher for patients with stage IIA disease than for those with IIB disease, but the figures are within the range given above. Risk factors for relapse include multiple enlarged nodes.

Results for patients with stage IIC disease have been less favorable. For example, one institution reported that among patients with stage IIC disease, 9 of 16 (56%) had a relapse following radiation therapy, compared with only 1 of 23 patients (4%) treated with chemotherapy.[3] A pooled analysis of earlier studies reported a 65% relapse-free survival (RFS) rate for men receiving radiation therapy for bulky stage II seminoma.[5] Unfortunately, only sparse contemporary data are available on the use of radiation therapy to treat bulky stage II seminomas, and there are no randomized trials comparing radiation therapy with chemotherapy in this population. Combination chemotherapy with cisplatin is effective therapy in patients with bulky stage II seminomas and has become the most widely accepted treatment option.[6,7]

Residual radiological abnormalities are common at the completion of chemotherapy. Many abnormalities gradually regress during a period of months. Some clinicians advocate empiric attempts to resect residual masses 3 cm or larger, while others advocate close surveillance, with intervention only if the residual mass increases in size. Postchemotherapy radiation therapy is no longer favored, in part because of a retrospective study of a consecutive series of 174 patients with seminoma and postchemotherapy residual disease seen at ten treatment centers. The study reported that empiric radiation was not associated with any medically significant improvement in progression-free survival after completion of platinum-based combination chemotherapy.[4][Level of evidence C2]

In some series, surgical resection of specific masses has yielded a significant number of patients with residual seminoma who require additional therapy.[5] Nevertheless, other reports indicate that the size of the residual mass does not correlate well with active residual disease, most residual masses do not grow, and frequent marker and CT scan evaluation is a viable option even when the residual mass is 3 cm or larger.[6]

A more recent approach has been to obtain a fluorine F 18-fludeoxyglucose positron emission tomography–computed tomography (18F-FDG PET-CT) scan following chemotherapy. A study of 56 patients reported that positron emission tomography (PET) scans correctly identified eight of ten patients with residual seminoma with no false positives among the 46 patients with benign masses.[8] In this study, PET scans were 100% accurate in patients with residual masses greater than 3 cm in greatest diameter whereas residual malignant masses less than 3 cm were only detected in one of three men. This study provides support for observing men with residual 18F-FDG PET-negative masses greater than 3 cm and for performing a biopsy or resection of any 18F-FDG PET-positive mass.

Treatment options for patients with nonbulky tumors:

  1. Radical inguinal orchiectomy followed by radiation therapy to the retroperitoneal and ipsilateral pelvic lymph nodes. Prophylactic radiation therapy to the mediastinum is contraindicated because of cardiovascular toxic effects, and prophylactic radiation to the supraclavicular fossa is not standard. Radiation therapy to inguinal nodes is not standard unless there has been some damage to the scrotum to put inguinal lymph nodes at risk.
  2. Systemic chemotherapy using three cycles of bleomycin, etoposide, and cisplatin (BEP) or four cycles of etoposide and cisplatin. This approach is generally reserved for stage IIA and IIB patients who have multiple areas of adenopathy in the retroperitoneum or a contraindication to radiation therapy such as a horseshoe or pelvic kidney, or inflammatory bowel disease.[7,911]
  3. Retroperitoneal lymph node dissection (RPLND) may be performed in those rare men who have contraindications to radiation therapy and chemotherapy.

Treatment options for patients with bulky tumors:

  1. Radical inguinal orchiectomy followed by combination chemotherapy (with a cisplatin-based regimen) using three cycles of BEP or four cycles of etoposide and cisplatin.[7,911]
  2. Radical inguinal orchiectomy followed by radiation therapy to the abdominal and pelvic lymph nodes. The recurrence rate is higher after radiation therapy for men with bulky stage II tumors than radiation therapy for nonbulky tumors, leading some authors to recommend primary chemotherapy for patients with bulky disease (≥5 cm–10 cm).[3,12]

Stage II Nonseminoma

Stage II nonseminoma is highly curable (>95%). Men with stage II disease and persistently elevated serum tumor markers are generally treated as having stage III disease and receive chemotherapy. For men with normal markers after orchiectomy, nonseminomas are divided into stages IIA, IIB, and IIC for treatment purposes. In general, stage IIA patients undergo RPLND to confirm the staging. As many as 40% of clinical stage IIA patients will have benign findings at RPLND and will be restaged as having pathological stage I disease.[13] RPLND can thus prevent a significant number of patients with clinical stage IIA disease from receiving unnecessary chemotherapy.

In contrast, patients with stage IIB and IIC nonseminoma are usually treated with systemic chemotherapy for disseminated disease because these patients have a higher relapse rate after RPLND. One study reported that by limiting RPLND to patients with earlier stage II disease and normal serum tumor markers, 5-year RFS rates increased from 78% to 100% after RPLND, while RFS did not change significantly among stage II patients receiving chemotherapy (100% vs. 98%).[14] However, the question of whether to treat patients with stage II nonseminoma germ cell tumors with RPLND or chemotherapy has never been subjected to a randomized trial.

Treatment options:

  1. For patients with clinical stage II disease and normal postorchiectomy serum tumor markers, radical inguinal orchiectomy followed by removal of retroperitoneal lymph nodes with or without fertility-preserving RPLND followed by monthly checkups, which include physical examination, chest x-ray, and serum marker tests (e.g., alpha-fetoprotein, human chorionic gonadotropin, and lactate dehydrogenase).

    This option of surgery and careful follow-up, reserving chemotherapy for relapse, is particularly attractive for patients who have pathological stage I or IIA disease (fewer than six positive nodes at RPLND, none of which are larger than 2 cm in diameter). Such patients appear to have a relapse rate of about 10% if followed without chemotherapy, and most are curable with standard chemotherapy if their disease relapses.[13,15] Presence of lymphatic or venous invasion and the proportion of the primary tumor that is embryonal carcinoma also help to predict which patients may have disease relapse.[1618] In one study, the relapse rate in men with pathological stage I disease was 3% in men with nonembryonal carcinoma-predominant tumors, 21% in men with embryonal carcinoma-predominant tumors, and 31% in those with embryonal carcinoma-predominant tumors and lymphovascular invasion.[17,18] In children, surgical resection of retroperitoneal nodes is generally not performed. Patients with clinical stage II disease are given chemotherapy.[19]

  2. For patients with clinical and pathological stage II disease and normal postorchiectomy serum tumor markers, radical inguinal orchiectomy followed by removal of retroperitoneal lymph nodes followed by two cycles of chemotherapy (i.e., etoposide and cisplatin either with or without bleomycin) and then monthly checkups.

    This option of RPLND plus adjuvant chemotherapy applies to patients who have pathologically confirmed lymph node metastases as a result of RPLND and is most attractive for patients with pathological stage IIB or IIC disease. The results of a large study comparing the first treatment option with the second treatment option were published.[20] Two courses of cisplatin-based chemotherapy (either cisplatin, vinblastine, bleomycin [PVB] or vinblastine, dactinomycin, bleomycin, cyclophosphamide, cisplatin [VAB VI]) prevented a relapse in more than 95% of patients. A 49% relapse rate was seen in patients assigned to observation; however, most of these patients could be effectively treated, and no significant differences were found in overall survival. The study concluded that adjuvant therapy will most often prevent relapse in patients treated with optimal surgery, follow-up, and chemotherapy. However, observation with chemotherapy only for relapse will lead to a similar cure rate.

  3. Radical inguinal orchiectomy followed by chemotherapy with subsequent surgery to remove any residual masses (if present) followed by monthly checkups.[13]

    This option is useful for patients with elevated serum tumor markers and/or clinical stage IIB or IIC disease. The combination of chemotherapy plus resection of residual masses in these patients results in cure in more than 95% of patients.[14,21]

    Chemotherapy regimens include:

    • BEP: Bleomycin plus etoposide plus cisplatin for three courses.[22,23] A modified regimen has been used in children.[19]
    • EP: Etoposide plus cisplatin for four courses in patients with a good prognosis.[24]

    A randomized study has shown that bleomycin is an essential component of the BEP regimen when only three courses are administered.[25]

    Other regimens that appear to produce similar survival outcomes but are no longer considered standard include:

    • PVB: Cisplatin plus vinblastine plus bleomycin.
    • VAB VI: Vinblastine plus dactinomycin plus bleomycin plus cyclophosphamide plus cisplatin.[26]
    • VPV: Vinblastine plus cisplatin plus etoposide.[27]

In a randomized comparison of PVB versus BEP, equivalent anticancer activity was seen but with less toxic effects with the use of BEP.[20,28]

If these patients do not achieve a complete response with chemotherapy, surgical removal of residual masses should be performed. The timing of such surgery requires clinical judgment but would occur most often after three or four cycles of combination chemotherapy and normalization or stabilization of serum markers. The presence of persistently elevated markers is not a contraindication to resection of residual masses, but patients with rising markers at the end of chemotherapy are generally treated with salvage chemotherapy. Despite numerous studies, no sufficiently accurate predictors of the histology of residual masses have been validated. Therefore, the standard of care is to resect all residual masses apparent on scans in patients who have normal or stable markers after responding to chemotherapy. The presence of persistent nonseminomatous germ-cell malignant elements in the resected specimen is a poor prognostic sign and is often a trigger for additional chemotherapy. However, men with only microscopic residual cancer have a much more favorable prognosis than men with more substantial residual disease.[29,30] Identifying the patients who benefit from additional chemotherapy is not possible from existing data.

In some cases, chemotherapy is initiated before orchiectomy because of life-threatening metastatic disease. When this is done, orchiectomy after initiation or completion of chemotherapy is advisable to remove the primary tumor. There is a higher incidence (approximately 50%) of residual cancer in the testicle than in remaining radiographically detectable retroperitoneal masses after platinum-based chemotherapy.[31]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Bamberg M, Schmidberger H, Meisner C, et al.: Radiotherapy for stages I and IIA/B testicular seminoma. Int J Cancer 83 (6): 823-7, 1999. [PUBMED Abstract]
  2. Bauman GS, Venkatesan VM, Ago CT, et al.: Postoperative radiotherapy for Stage I/II seminoma: results for 212 patients. Int J Radiat Oncol Biol Phys 42 (2): 313-7, 1998. [PUBMED Abstract]
  3. Chung PW, Gospodarowicz MK, Panzarella T, et al.: Stage II testicular seminoma: patterns of recurrence and outcome of treatment. Eur Urol 45 (6): 754-59; discussion 759-60, 2004. [PUBMED Abstract]
  4. Classen J, Schmidberger H, Meisner C, et al.: Radiotherapy for stages IIA/B testicular seminoma: final report of a prospective multicenter clinical trial. J Clin Oncol 21 (6): 1101-6, 2003. [PUBMED Abstract]
  5. Thomas GM: Over 20 Years of Progress in Radiation Oncology: Seminoma. Semin Radiat Oncol 7 (2): 135-145, 1997. [PUBMED Abstract]
  6. Krege S, Beyer J, Souchon R, et al.: European consensus conference on diagnosis and treatment of germ cell cancer: a report of the second meeting of the European Germ Cell Cancer Consensus Group (EGCCCG): part II. Eur Urol 53 (3): 497-513, 2008. [PUBMED Abstract]
  7. Warde P, Gospodarowicz M, Panzarella T, et al.: Management of stage II seminoma. J Clin Oncol 16 (1): 290-4, 1998. [PUBMED Abstract]
  8. De Santis M, Becherer A, Bokemeyer C, et al.: 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22 (6): 1034-9, 2004. [PUBMED Abstract]
  9. Mencel PJ, Motzer RJ, Mazumdar M, et al.: Advanced seminoma: treatment results, survival, and prognostic factors in 142 patients. J Clin Oncol 12 (1): 120-6, 1994. [PUBMED Abstract]
  10. Gholam D, Fizazi K, Terrier-Lacombe MJ, et al.: Advanced seminoma–treatment results and prognostic factors for survival after first-line, cisplatin-based chemotherapy and for patients with recurrent disease: a single-institution experience in 145 patients. Cancer 98 (4): 745-52, 2003. [PUBMED Abstract]
  11. Culine S, Abs L, Terrier-Lacombe MJ, et al.: Cisplatin-based chemotherapy in advanced seminoma: the Institut Gustave Roussy experience. Eur J Cancer 34 (3): 353-8, 1998. [PUBMED Abstract]
  12. Zagars GK, Pollack A: Radiotherapy for stage II testicular seminoma. Int J Radiat Oncol Biol Phys 51 (3): 643-9, 2001. [PUBMED Abstract]
  13. Stephenson AJ, Bosl GJ, Motzer RJ, et al.: Retroperitoneal lymph node dissection for nonseminomatous germ cell testicular cancer: impact of patient selection factors on outcome. J Clin Oncol 23 (12): 2781-8, 2005. [PUBMED Abstract]
  14. Stephenson AJ, Bosl GJ, Motzer RJ, et al.: Nonrandomized comparison of primary chemotherapy and retroperitoneal lymph node dissection for clinical stage IIA and IIB nonseminomatous germ cell testicular cancer. J Clin Oncol 25 (35): 5597-602, 2007. [PUBMED Abstract]
  15. Richie JP, Kantoff PW: Is adjuvant chemotherapy necessary for patients with stage B1 testicular cancer? J Clin Oncol 9 (8): 1393-6, 1991. [PUBMED Abstract]
  16. Heidenreich A, Sesterhenn IA, Mostofi FK, et al.: Prognostic risk factors that identify patients with clinical stage I nonseminomatous germ cell tumors at low risk and high risk for metastasis. Cancer 83 (5): 1002-11, 1998. [PUBMED Abstract]
  17. Hermans BP, Sweeney CJ, Foster RS, et al.: Risk of systemic metastases in clinical stage I nonseminoma germ cell testis tumor managed by retroperitoneal lymph node dissection. J Urol 163 (6): 1721-4, 2000. [PUBMED Abstract]
  18. Sweeney CJ, Hermans BP, Heilman DK, et al.: Results and outcome of retroperitoneal lymph node dissection for clinical stage I embryonal carcinoma–predominant testis cancer. J Clin Oncol 18 (2): 358-62, 2000. [PUBMED Abstract]
  19. Huddart SN, Mann JR, Gornall P, et al.: The UK Children’s Cancer Study Group: testicular malignant germ cell tumours 1979-1988. J Pediatr Surg 25 (4): 406-10, 1990. [PUBMED Abstract]
  20. Williams SD, Birch R, Einhorn LH, et al.: Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med 316 (23): 1435-40, 1987. [PUBMED Abstract]
  21. Horwich A, Norman A, Fisher C, et al.: Primary chemotherapy for stage II nonseminomatous germ cell tumors of the testis. J Urol 151 (1): 72-7; discussion 77-8, 1994. [PUBMED Abstract]
  22. de Wit R, Roberts JT, Wilkinson PM, et al.: Equivalence of three or four cycles of bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5-day schedule in good-prognosis germ cell cancer: a randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research Council. J Clin Oncol 19 (6): 1629-40, 2001. [PUBMED Abstract]
  23. Einhorn LH, Williams SD, Loehrer PJ, et al.: Evaluation of optimal duration of chemotherapy in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group protocol. J Clin Oncol 7 (3): 387-91, 1989. [PUBMED Abstract]
  24. Xiao H, Mazumdar M, Bajorin DF, et al.: Long-term follow-up of patients with good-risk germ cell tumors treated with etoposide and cisplatin. J Clin Oncol 15 (7): 2553-8, 1997. [PUBMED Abstract]
  25. Loehrer PJ, Johnson D, Elson P, et al.: Importance of bleomycin in favorable-prognosis disseminated germ cell tumors: an Eastern Cooperative Oncology Group trial. J Clin Oncol 13 (2): 470-6, 1995. [PUBMED Abstract]
  26. Bosl GJ, Gluckman R, Geller NL, et al.: VAB-6: an effective chemotherapy regimen for patients with germ-cell tumors. J Clin Oncol 4 (10): 1493-9, 1986. [PUBMED Abstract]
  27. Wozniak AJ, Samson MK, Shah NT, et al.: A randomized trial of cisplatin, vinblastine, and bleomycin versus vinblastine, cisplatin, and etoposide in the treatment of advanced germ cell tumors of the testis: a Southwest Oncology Group study. J Clin Oncol 9 (1): 70-6, 1991. [PUBMED Abstract]
  28. Stoter G, Koopman A, Vendrik CP, et al.: Ten-year survival and late sequelae in testicular cancer patients treated with cisplatin, vinblastine, and bleomycin. J Clin Oncol 7 (8): 1099-104, 1989. [PUBMED Abstract]
  29. Fizazi K, Oldenburg J, Dunant A, et al.: Assessing prognosis and optimizing treatment in patients with postchemotherapy viable nonseminomatous germ-cell tumors (NSGCT): results of the sCR2 international study. Ann Oncol 19 (2): 259-64, 2008. [PUBMED Abstract]
  30. Spiess PE, Tannir NM, Tu SM, et al.: Viable germ cell tumor at postchemotherapy retroperitoneal lymph node dissection: can we predict patients at risk of disease progression? Cancer 110 (12): 2700-8, 2007. [PUBMED Abstract]
  31. Leibovitch I, Little JS, Foster RS, et al.: Delayed orchiectomy after chemotherapy for metastatic nonseminomatous germ cell tumors. J Urol 155 (3): 952-4, 1996. [PUBMED Abstract]

Treatment of Stage III Testicular Cancer

Stage III seminoma and nonseminomas are usually curable but have different criteria for estimating prognosis.

Patients with disseminated seminomas can be divided into good-risk and intermediate-risk groups based on whether nonpulmonary visceral metastases are present. Patients with good-risk disease (i.e., those with metastases only to lymph nodes and/or lungs) have 5-year progression-free survival (PFS) and overall survival (OS) rates of 82% and 86%, respectively. Patients with intermediate-risk seminoma have 5-year PFS and OS rates of 67% and 72%, respectively.[1]

Patients with disseminated nonseminomas can be divided into good-, intermediate-, and poor-risk groups based on whether nonpulmonary visceral metastases are present, the site of the primary tumor (i.e., mediastinal vs. either gonadal or retroperitoneal), and the level of serum tumor markers.[1]

  • Poor-risk: Men with mediastinal primary tumors, nonpulmonary visceral metastases, or very highly elevated serum tumor markers are considered to be at poor risk. For more information, see the Stage Information for Testicular Cancer section.
  • Intermediate-risk: Men with intermediate tumor markers levels are considered to be at intermediate risk.
  • Good-risk: Men with good-risk disease have a testis or retroperitoneal primary tumor, metastases limited to lymph nodes and/or lungs, and tumor markers that are in the good-risk range.

In the 1997 analysis that established these risk groups, the 5-year OS rates were 92%, 80% and 48% in the good-, intermediate-, and poor-risk groups, respectively. The PFS rates were 89%, 75% and 41% in the good-, intermediate-, and poor-risk groups, respectively. However, a 2006 pooled analysis of chemotherapy trials reported improved outcomes compared with the 1997 paper: survival rates in the good-, intermediate-, and poor-risk groups were 94%, 83%, and 71%, respectively.[2]

Clinical Trials of Chemotherapy for Disseminated Testis and Extragonadal Germ Cell Tumors

Four cycles of bleomycin, etoposide, and cisplatin (BEP) chemotherapy as a standard-of-care treatment option for patients with metastatic testicular germ cell tumors was established by a randomized trial showing that it produced similar outcomes with fewer toxic effects in comparison with cisplatin, vinblastine, and bleomycin (PVB).[3] Two randomized trials comparing four courses of BEP with four courses of etoposide plus ifosfamide plus cisplatin (VIP) showed similar OS and time-to-treatment failure for the two regimens in patients with intermediate- and poor-risk advanced disseminated germ cell tumors who had not received prior chemotherapy.[46][Level of evidence A1] Hematologic toxic effects were substantially worse with the VIP regimen. For good-risk patients, two randomized trials compared three versus four cycles of BEP and reported no significant benefit from longer treatment in that population.[79]

Numerous attempts have been made to develop a regimen superior to BEP for men with poor-prognosis germ cell tumors but none have been successful. Most recently, four cycles of BEP was compared with two cycles of BEP followed by two cycles of high-dose cyclophosphamide, etoposide, and carboplatin, but there was no difference in survival between the two arms.[10] Earlier trials of higher dose cisplatin or long-term maintenance chemotherapy were similarly disappointing.

For patients with good-risk disease, the goal of clinical trials has been to minimize the toxic effects of treatment without sacrificing the therapeutic effectiveness. As noted above, no difference in outcome was seen when comparing three versus four cycles of BEP chemotherapy. However, attempts to eliminate bleomycin produced more ambiguous and usually disappointing results. A randomized controlled trial comparing three cycles of BEP with three cycles of etoposide and cisplatin (EP) reported lower OS rates (95% vs. 86%, P = .01) in the EP arm.[11] Similarly, when three cycles of BEP was compared with four cycles of EP in a randomized trial in more than 260 patients, there were 6 relapses and 5 deaths in the bleomycin arm compared with 14 relapses and 12 deaths in the EP arm, but these differences were not statistically significant.[12] Several other studies have compared bleomycin-containing regimens to etoposide and cisplatin and in every trial, the trend in survival has favored the bleomycin arm, but the differences have not usually been statistically significant.[1315] These results have led to some controversy as to whether three cycles of BEP is superior to four cycles of EP.

Special Considerations During Chemotherapy

In most patients, an orchiectomy is performed before starting chemotherapy. If the diagnosis has been made by biopsy of a metastatic site (or on the basis of highly elevated serum tumor markers and radiological imaging consistent with an advanced-stage germ cell tumor) and chemotherapy has been initiated, subsequent orchiectomy is generally performed because chemotherapy may not eradicate the primary tumor. Case reports illustrate that viable tumor has been found on postchemotherapy orchiectomy despite complete response of metastatic lesions.[16]

Some retrospective data suggest that the experience of the treating institution may impact the outcome of patients with stage III nonseminoma. Data from 380 patients treated from 1990 to 1994 on the same study protocol at 49 institutions in the European Organisation for Research and Treatment of Cancer and the Medical Research Council were analyzed.[17] Overall, the 2-year survival rate for the 55 patients treated at institutions that entered fewer than five patients onto the protocol was 62% (95% confidence interval [CI], 48%–75%) versus 77% (95% CI, 72%–81%) in the institutions that entered five or more patients onto the protocol.

Similarly, a population-based study of testis cancer in Japan in the 1990s reported a significant association between survival and the number of testis cancer patients treated. The relative 5-year survival rate was 98.8% at high-volume hospitals compared with 79.7% at low-volume hospitals. After adjusting for stage and age, the hazard ratio for death in a high-volume hospital was 0.11 (95% CI, 0.025–0.495).[18] Several other studies have reported similar findings.[1921] As in any nonrandomized study design, patient selection factors and factors leading patients to choose treatment at one center versus another can make interpretation of these results difficult.

Many patients with poor-risk, nonseminomatous testicular germ cell tumors who have a serum beta-human chorionic gonadotropin (beta-hCG) level higher than 50,000 IU/mL at the initiation of cisplatin-based therapy (BEP or PVB) will still have an elevated beta-hCG level at the completion of therapy, showing an initial rapid decrease in beta-hCG followed by a plateau.[22] In the absence of other signs of progressing disease, monthly evaluation with initiation of salvage therapy, if and when there is serologic progression, may be appropriate. Many patients, however, will remain disease free without further therapy.[22][Level of evidence C3]

Residual Masses After Chemotherapy in Men With Seminomas

Residual radiological abnormalities are common at the completion of chemotherapy. Such masses are not treated unless they grow or are histopathologically shown to contain viable cancer. In a combined retrospective consecutive series of 174 seminoma patients with postchemotherapy residual disease seen at ten treatment centers, empiric radiation was not associated with any medically significant improvement in PFS after completion of platinum-based combination chemotherapy.[23][Level of evidence C2] In some series, surgical resection of specific masses has yielded a significant number of patients with residual seminoma that require additional therapy.[24] Larger masses are more likely to harbor viable cancer, but there is no size criteria with high sensitivity and specificity. Fluorine F 18-fludeoxyglucose-positron emission tomography (18F-FDG PET) scans have been shown to be helpful in identifying patients who harbor viable cancers, but the false-positive rate is substantial in some series.[2527] The strength of positron emission tomography (PET) scans in residual seminoma masses is that they have a very high sensitivity and a low false-negative rate. Thus, for men with residual masses for whom resection is being planned, a negative PET scan provides evidence that surgery is not necessary.

Although larger residual masses are more likely to harbor viable seminoma, the size of the residual mass is of limited prognostic value.[2426] Most residual masses do not grow, and regular marker and computed tomography (CT) scan evaluation is a viable management option for large or small masses.[28] An alternative approach is to operate on larger masses, to resect them when possible, and to perform biopsies of unresectable masses. Postchemotherapy masses are often difficult or impossible to resect because of a dense desmoplastic reaction. Historically, such surgery has been characterized by a high rate of complications or additional procedures such as nephrectomy or arterial or venous grafting.[29]

Residual Masses After Chemotherapy in Men With Nonseminomas

Residual masses following chemotherapy in men with nonseminomatous germ cell tumors often contain viable cancer or teratoma, and the standard of care is to resect all such masses when possible. However, there are no randomized controlled trials evaluating this issue. Instead, the practice is based on the fact that viable neoplasm is often found at surgery in these patients, and the presumption is that such tumors would progress if not resected. If serum tumor markers are rising, salvage chemotherapy is usually given, but stable or slowly declining tumor markers are not a contraindication to resection of residual masses.

Case series of men undergoing postchemotherapy resections have reported that roughly 10% will have viable germ cell cancer, 45% will have teratomas, and 45% will have no viable tumors.[30] Numerous attempts have been made to identify the patients who need surgery and the patients who can be safely observed. Variables predictive of finding only necrosis or fibrosis at surgery include the following:[31]

  • Absence of any teratoma in the primary tumor.
  • Normal prechemotherapy serum alpha-fetoprotein, beta-hCG, and lactase dehydrogenase.
  • A small, residual mass.
  • A large diminishment in mass size during chemotherapy.

However, only a small proportion of men have favorable enough features to have less than a 10% chance of having viable neoplasm in their residual masses, and thus the utility of current models has been questioned.[24,32]

When multiple sites of residual disease are present, all residual masses are generally resected. If it is not surgically feasible, resection is generally not performed. Some patients may have discordant pathological findings (e.g., fibrosis/necrosis, teratoma, or carcinoma) in residual masses in the abdomen versus the chest. Some medical centers perform simultaneous retroperitoneal and thoracic operations to remove residual masses,[28,33] but most do not. Although the agreement among the histologies of residual masses found after chemotherapy above the diaphragm versus those found below the diaphragm is only moderate (kappa statistic, 0.42), some evidence exists that if retroperitoneal resection is performed first, results can be used to guide decisions about whether to perform a thoracotomy.[34]

In a multi-institutional case series of surgery to remove postchemotherapy residual masses in 159 patients, necrosis only was found at thoracotomy in about 90% of patients who had necrosis only in their retroperitoneal masses. The figure was about 95% if the original testicular primary tumor had contained no teratomatous elements. Conversely, the histology of residual masses at thoracotomy did not predict nearly as well the histology of retroperitoneal masses.[34] Nonetheless, some centers continue to support resection of all residual masses, even if necrosis is found in the retroperitoneum.[35]

The presence of persistent malignant elements in the resected specimen is considered by some clinicians to be an indication for additional chemotherapy.[36] However, there are no prospective trials investigating the benefit of such treatment. In some cases, chemotherapy is initiated before the orchiectomy because of life-threatening metastatic disease. When this is done, orchiectomy after initiation or completion of chemotherapy is advisable to remove the primary tumor. A physiological blood-testis barrier seems to appear, and there is a higher incidence (approximately 50%) of residual cancer in the testicle than in remaining radiographically detectable retroperitoneal masses after platinum-based chemotherapy.[16] Some investigators have suggested that in children, 90% of whom have yolk sac tumors, radiation therapy should be given to residual masses after chemotherapy rather than surgery.[37]

Treatment options for initial treatment for nonseminoma patients with good-risk disease:

  • Radical inguinal orchiectomy followed by multidrug chemotherapy.[38]

    Chemotherapy combinations include:

    • BEP: Bleomycin plus etoposide plus cisplatin for three 21-day cycles.[79,11]
    • EP: Etoposide plus cisplatin for four 21-day cycles.[13,39,40] Four cycles of EP should be considered for men with good-risk metastatic seminoma who have a contraindication to receiving bleomycin.

Treatment options for initial treatment for nonseminoma patients with intermediate- and poor-risk disease:

  • Radical inguinal orchiectomy followed by multidrug chemotherapy.[38]

    Chemotherapy combinations include:

    • BEP: Bleomycin plus etoposide plus cisplatin.[3,4,41,42]
    • VIP: Etoposide plus ifosfamide plus cisplatin.[5,41] Four cycles of VIP should be considered for patients with intermediate-risk metastatic seminoma who have a contraindication to receiving bleomycin.

Management of residual masses following chemotherapy for patients with seminoma

  • In patients with seminoma, the residual masses after chemotherapy are usually fibrotic but may contain residual seminoma that requires additional therapy.[43,44] There are three standard management strategies:
    • Observation with no additional treatment or biopsies unless the residual mass(es) increase(s) in size.
    • Observation of masses smaller than 3 cm and surgical resection of masses larger than 3 cm.
    • 18F-FDG PET scan 2 months after chemotherapy is completed with observation of PET-negative masses and resection of PET-positive masses.

Management of residual masses following chemotherapy for patients with nonseminoma

  • Patients with residual masses following chemotherapy should have all such masses resected if technically feasible. If some, but not all, residual masses can be resected, surgery is not usually performed. The rationale for surgery in this setting is that about half of the masses will contain viable tumor, either teratoma or cancer.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. International Germ Cell Consensus Classification: a prognostic factor-based staging system for metastatic germ cell cancers. International Germ Cell Cancer Collaborative Group. J Clin Oncol 15 (2): 594-603, 1997. [PUBMED Abstract]
  2. van Dijk MR, Steyerberg EW, Habbema JD: Survival of non-seminomatous germ cell cancer patients according to the IGCC classification: An update based on meta-analysis. Eur J Cancer 42 (7): 820-6, 2006. [PUBMED Abstract]
  3. Williams SD, Birch R, Einhorn LH, et al.: Treatment of disseminated germ-cell tumors with cisplatin, bleomycin, and either vinblastine or etoposide. N Engl J Med 316 (23): 1435-40, 1987. [PUBMED Abstract]
  4. Nichols CR, Catalano PJ, Crawford ED, et al.: Randomized comparison of cisplatin and etoposide and either bleomycin or ifosfamide in treatment of advanced disseminated germ cell tumors: an Eastern Cooperative Oncology Group, Southwest Oncology Group, and Cancer and Leukemia Group B Study. J Clin Oncol 16 (4): 1287-93, 1998. [PUBMED Abstract]
  5. Hinton S, Catalano PJ, Einhorn LH, et al.: Cisplatin, etoposide and either bleomycin or ifosfamide in the treatment of disseminated germ cell tumors: final analysis of an intergroup trial. Cancer 97 (8): 1869-75, 2003. [PUBMED Abstract]
  6. de Wit R, Louwerens M, de Mulder PH, et al.: Management of intermediate-prognosis germ-cell cancer: results of a phase I/II study of Taxol-BEP. Int J Cancer 83 (6): 831-3, 1999. [PUBMED Abstract]
  7. Einhorn LH, Williams SD, Loehrer PJ, et al.: Evaluation of optimal duration of chemotherapy in favorable-prognosis disseminated germ cell tumors: a Southeastern Cancer Study Group protocol. J Clin Oncol 7 (3): 387-91, 1989. [PUBMED Abstract]
  8. Saxman SB, Finch D, Gonin R, et al.: Long-term follow-up of a phase III study of three versus four cycles of bleomycin, etoposide, and cisplatin in favorable-prognosis germ-cell tumors: the Indiana University experience. J Clin Oncol 16 (2): 702-6, 1998. [PUBMED Abstract]
  9. de Wit R, Roberts JT, Wilkinson PM, et al.: Equivalence of three or four cycles of bleomycin, etoposide, and cisplatin chemotherapy and of a 3- or 5-day schedule in good-prognosis germ cell cancer: a randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group and the Medical Research Council. J Clin Oncol 19 (6): 1629-40, 2001. [PUBMED Abstract]
  10. Motzer RJ, Nichols CJ, Margolin KA, et al.: Phase III randomized trial of conventional-dose chemotherapy with or without high-dose chemotherapy and autologous hematopoietic stem-cell rescue as first-line treatment for patients with poor-prognosis metastatic germ cell tumors. J Clin Oncol 25 (3): 247-56, 2007. [PUBMED Abstract]
  11. Loehrer PJ, Johnson D, Elson P, et al.: Importance of bleomycin in favorable-prognosis disseminated germ cell tumors: an Eastern Cooperative Oncology Group trial. J Clin Oncol 13 (2): 470-6, 1995. [PUBMED Abstract]
  12. Culine S, Kerbrat P, Kramar A, et al.: Refining the optimal chemotherapy regimen for good-risk metastatic nonseminomatous germ-cell tumors: a randomized trial of the Genito-Urinary Group of the French Federation of Cancer Centers (GETUG T93BP). Ann Oncol 18 (5): 917-24, 2007. [PUBMED Abstract]
  13. Bosl GJ, Geller NL, Bajorin D, et al.: A randomized trial of etoposide + cisplatin versus vinblastine + bleomycin + cisplatin + cyclophosphamide + dactinomycin in patients with good-prognosis germ cell tumors. J Clin Oncol 6 (8): 1231-8, 1988. [PUBMED Abstract]
  14. Levi JA, Raghavan D, Harvey V, et al.: The importance of bleomycin in combination chemotherapy for good-prognosis germ cell carcinoma. Australasian Germ Cell Trial Group. J Clin Oncol 11 (7): 1300-5, 1993. [PUBMED Abstract]
  15. de Wit R, Stoter G, Kaye SB, et al.: Importance of bleomycin in combination chemotherapy for good-prognosis testicular nonseminoma: a randomized study of the European Organization for Research and Treatment of Cancer Genitourinary Tract Cancer Cooperative Group. J Clin Oncol 15 (5): 1837-43, 1997. [PUBMED Abstract]
  16. Leibovitch I, Little JS, Foster RS, et al.: Delayed orchiectomy after chemotherapy for metastatic nonseminomatous germ cell tumors. J Urol 155 (3): 952-4, 1996. [PUBMED Abstract]
  17. Collette L, Sylvester RJ, Stenning SP, et al.: Impact of the treating institution on survival of patients with “poor-prognosis” metastatic nonseminoma. European Organization for Research and Treatment of Cancer Genito-Urinary Tract Cancer Collaborative Group and the Medical Research Council Testicular Cancer Working Party. J Natl Cancer Inst 91 (10): 839-46, 1999. [PUBMED Abstract]
  18. Suzumura S, Ioka A, Nakayama T, et al.: Hospital procedure volume and prognosis with respect to testicular cancer patients: a population-based study in Osaka, Japan. Cancer Sci 99 (11): 2260-3, 2008. [PUBMED Abstract]
  19. Aass N, Klepp O, Cavallin-Stahl E, et al.: Prognostic factors in unselected patients with nonseminomatous metastatic testicular cancer: a multicenter experience. J Clin Oncol 9 (5): 818-26, 1991. [PUBMED Abstract]
  20. Feuer EJ, Frey CM, Brawley OW, et al.: After a treatment breakthrough: a comparison of trial and population-based data for advanced testicular cancer. J Clin Oncol 12 (2): 368-77, 1994. [PUBMED Abstract]
  21. Harding MJ, Paul J, Gillis CR, et al.: Management of malignant teratoma: does referral to a specialist unit matter? Lancet 341 (8851): 999-1002, 1993. [PUBMED Abstract]
  22. Zon RT, Nichols C, Einhorn LH: Management strategies and outcomes of germ cell tumor patients with very high human chorionic gonadotropin levels. J Clin Oncol 16 (4): 1294-7, 1998. [PUBMED Abstract]
  23. Duchesne GM, Stenning SP, Aass N, et al.: Radiotherapy after chemotherapy for metastatic seminoma–a diminishing role. MRC Testicular Tumour Working Party. Eur J Cancer 33 (6): 829-35, 1997. [PUBMED Abstract]
  24. Heidenreich A, Thüer D, Polyakov S: Postchemotherapy retroperitoneal lymph node dissection in advanced germ cell tumours of the testis. Eur Urol 53 (2): 260-72, 2008. [PUBMED Abstract]
  25. De Santis M, Becherer A, Bokemeyer C, et al.: 2-18fluoro-deoxy-D-glucose positron emission tomography is a reliable predictor for viable tumor in postchemotherapy seminoma: an update of the prospective multicentric SEMPET trial. J Clin Oncol 22 (6): 1034-9, 2004. [PUBMED Abstract]
  26. Hinz S, Schrader M, Kempkensteffen C, et al.: The role of positron emission tomography in the evaluation of residual masses after chemotherapy for advanced stage seminoma. J Urol 179 (3): 936-40; discussion 940, 2008. [PUBMED Abstract]
  27. Lewis DA, Tann M, Kesler K, et al.: Positron emission tomography scans in postchemotherapy seminoma patients with residual masses: a retrospective review from Indiana University Hospital. J Clin Oncol 24 (34): e54-5, 2006. [PUBMED Abstract]
  28. Schultz SM, Einhorn LH, Conces DJ, et al.: Management of postchemotherapy residual mass in patients with advanced seminoma: Indiana University experience. J Clin Oncol 7 (10): 1497-503, 1989. [PUBMED Abstract]
  29. Mosharafa AA, Foster RS, Leibovich BC, et al.: Is post-chemotherapy resection of seminomatous elements associated with higher acute morbidity? J Urol 169 (6): 2126-8, 2003. [PUBMED Abstract]
  30. Steyerberg EW, Keizer HJ, Fosså SD, et al.: Prediction of residual retroperitoneal mass histology after chemotherapy for metastatic nonseminomatous germ cell tumor: multivariate analysis of individual patient data from six study groups. J Clin Oncol 13 (5): 1177-87, 1995. [PUBMED Abstract]
  31. Vergouwe Y, Steyerberg EW, Foster RS, et al.: Predicting retroperitoneal histology in postchemotherapy testicular germ cell cancer: a model update and multicentre validation with more than 1000 patients. Eur Urol 51 (2): 424-32, 2007. [PUBMED Abstract]
  32. Vergouwe Y, Steyerberg EW, de Wit R, et al.: External validity of a prediction rule for residual mass histology in testicular cancer: an evaluation for good prognosis patients. Br J Cancer 88 (6): 843-7, 2003. [PUBMED Abstract]
  33. Brenner PC, Herr HW, Morse MJ, et al.: Simultaneous retroperitoneal, thoracic, and cervical resection of postchemotherapy residual masses in patients with metastatic nonseminomatous germ cell tumors of the testis. J Clin Oncol 14 (6): 1765-9, 1996. [PUBMED Abstract]
  34. Steyerberg EW, Donohue JP, Gerl A, et al.: Residual masses after chemotherapy for metastatic testicular cancer: the clinical implications of the association between retroperitoneal and pulmonary histology. Re-analysis of Histology in Testicular Cancer (ReHiT) Study Group. J Urol 158 (2): 474-8, 1997. [PUBMED Abstract]
  35. Katz MH, McKiernan JM: Management of non-retroperitoneal residual germ cell tumor masses. Urol Clin North Am 34 (2): 235-43; abstract x, 2007. [PUBMED Abstract]
  36. Fox EP, Weathers TD, Williams SD, et al.: Outcome analysis for patients with persistent nonteratomatous germ cell tumor in postchemotherapy retroperitoneal lymph node dissections. J Clin Oncol 11 (7): 1294-9, 1993. [PUBMED Abstract]
  37. Huddart SN, Mann JR, Gornall P, et al.: The UK Children’s Cancer Study Group: testicular malignant germ cell tumours 1979-1988. J Pediatr Surg 25 (4): 406-10, 1990. [PUBMED Abstract]
  38. Gholam D, Fizazi K, Terrier-Lacombe MJ, et al.: Advanced seminoma–treatment results and prognostic factors for survival after first-line, cisplatin-based chemotherapy and for patients with recurrent disease: a single-institution experience in 145 patients. Cancer 98 (4): 745-52, 2003. [PUBMED Abstract]
  39. Bajorin DF, Geller NL, Weisen SF, et al.: Two-drug therapy in patients with metastatic germ cell tumors. Cancer 67 (1): 28-32, 1991. [PUBMED Abstract]
  40. Mencel PJ, Motzer RJ, Mazumdar M, et al.: Advanced seminoma: treatment results, survival, and prognostic factors in 142 patients. J Clin Oncol 12 (1): 120-6, 1994. [PUBMED Abstract]
  41. de Wit R, Stoter G, Sleijfer DT, et al.: Four cycles of BEP vs four cycles of VIP in patients with intermediate-prognosis metastatic testicular non-seminoma: a randomized study of the EORTC Genitourinary Tract Cancer Cooperative Group. European Organization for Research and Treatment of Cancer. Br J Cancer 78 (6): 828-32, 1998. [PUBMED Abstract]
  42. Culine S, Abs L, Terrier-Lacombe MJ, et al.: Cisplatin-based chemotherapy in advanced seminoma: the Institut Gustave Roussy experience. Eur J Cancer 34 (3): 353-8, 1998. [PUBMED Abstract]
  43. Quek ML, Simma-Chiang V, Stein JP, et al.: Postchemotherapy residual masses in advanced seminoma: current management and outcomes. Expert Rev Anticancer Ther 5 (5): 869-74, 2005. [PUBMED Abstract]
  44. Herr HW, Sheinfeld J, Puc HS, et al.: Surgery for a post-chemotherapy residual mass in seminoma. J Urol 157 (3): 860-2, 1997. [PUBMED Abstract]

Treatment of Recurrent Testicular Cancer

Deciding on further treatment depends on many factors, including the specific cancer, previous treatment, site of recurrence, and individual patient considerations. Salvage regimens consisting of ifosfamide, cisplatin, and either etoposide or vinblastine can induce long-term complete responses in about 25% of patients with disease that has persisted or recurred following other cisplatin-based regimens. Patients who have had an initial complete response to first-line chemotherapy and those without extensive disease have the most favorable outcomes.[1,2] This regimen is now the standard initial salvage regimen.[2,3] Few, if any, patients with recurrent nonseminomatous germ cell tumors of extragonadal origin, however, achieve long-term disease-free survival (DFS) using vinblastine, ifosfamide, and cisplatin if their disease recurred after they received an initial regimen containing etoposide and cisplatin.[2][Level of evidence C2]

High-dose chemotherapy with autologous marrow transplant has also been used in uncontrolled case series in patients with recurrent disease.[411] However, a randomized controlled trial comparing conventional doses of salvage chemotherapy with high-dose chemotherapy with autologous marrow rescue showed more toxic effects and treatment-related deaths in the high-dose arm without any improvement in response rate or overall survival.[12][Level of evidence A1] In some highly selected patients with chemorefractory disease confined to a single site, surgical resection may yield long-term DFS.[13,14] One case series suggested that a maintenance regimen of daily oral etoposide (taken 21 days out of 28 days) may benefit patients who achieve a complete remission after salvage therapy.[15]

A special case of late relapse may include patients who relapse more than 2 years after achieving complete remission; this population represents less than 5% of patients who are in complete remission after 2 years. Results with chemotherapy are poor in this patient subset, and surgical treatment appears to be superior, if technically feasible.[16] Teratoma may be amenable to surgery at relapse, and teratoma also has a better prognosis than carcinoma after late relapse. Teratoma is a relatively resistant histological subtype, so chemotherapy may not be appropriate.

Clinical trials are appropriate and should be considered whenever possible, including phase I and phase II studies for those patients who do not achieve a complete remission with induction therapy, or for those who do not achieve a complete remission following etoposide and cisplatin for their initial relapse, or for patients who have a second relapse.[17]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Loehrer PJ, Lauer R, Roth BJ, et al.: Salvage therapy in recurrent germ cell cancer: ifosfamide and cisplatin plus either vinblastine or etoposide. Ann Intern Med 109 (7): 540-6, 1988. [PUBMED Abstract]
  2. Loehrer PJ, Gonin R, Nichols CR, et al.: Vinblastine plus ifosfamide plus cisplatin as initial salvage therapy in recurrent germ cell tumor. J Clin Oncol 16 (7): 2500-4, 1998. [PUBMED Abstract]
  3. Motzer RJ, Cooper K, Geller NL, et al.: The role of ifosfamide plus cisplatin-based chemotherapy as salvage therapy for patients with refractory germ cell tumors. Cancer 66 (12): 2476-81, 1990. [PUBMED Abstract]
  4. Broun ER, Nichols CR, Kneebone P, et al.: Long-term outcome of patients with relapsed and refractory germ cell tumors treated with high-dose chemotherapy and autologous bone marrow rescue. Ann Intern Med 117 (2): 124-8, 1992. [PUBMED Abstract]
  5. Droz JP, Pico JL, Ghosn M, et al.: Long-term survivors after salvage high dose chemotherapy with bone marrow rescue in refractory germ cell cancer. Eur J Cancer 27 (7): 831-5, 1991. [PUBMED Abstract]
  6. Cullen MH: Dose-response relationships in testicular cancer. Eur J Cancer 27 (7): 817-8, 1991. [PUBMED Abstract]
  7. Motzer RJ, Mazumdar M, Bosl GJ, et al.: High-dose carboplatin, etoposide, and cyclophosphamide for patients with refractory germ cell tumors: treatment results and prognostic factors for survival and toxicity. J Clin Oncol 14 (4): 1098-105, 1996. [PUBMED Abstract]
  8. Motzer RJ, Bosl GJ: High-dose chemotherapy for resistant germ cell tumors: recent advances and future directions. J Natl Cancer Inst 84 (22): 1703-9, 1992. [PUBMED Abstract]
  9. Bhatia S, Abonour R, Porcu P, et al.: High-dose chemotherapy as initial salvage chemotherapy in patients with relapsed testicular cancer. J Clin Oncol 18 (19): 3346-51, 2000. [PUBMED Abstract]
  10. Beyer J, Kramar A, Mandanas R, et al.: High-dose chemotherapy as salvage treatment in germ cell tumors: a multivariate analysis of prognostic variables. J Clin Oncol 14 (10): 2638-45, 1996. [PUBMED Abstract]
  11. Einhorn LH, Williams SD, Chamness A, et al.: High-dose chemotherapy and stem-cell rescue for metastatic germ-cell tumors. N Engl J Med 357 (4): 340-8, 2007. [PUBMED Abstract]
  12. Pico JL, Rosti G, Kramar A, et al.: A randomised trial of high-dose chemotherapy in the salvage treatment of patients failing first-line platinum chemotherapy for advanced germ cell tumours. Ann Oncol 16 (7): 1152-9, 2005. [PUBMED Abstract]
  13. Murphy BR, Breeden ES, Donohue JP, et al.: Surgical salvage of chemorefractory germ cell tumors. J Clin Oncol 11 (2): 324-9, 1993. [PUBMED Abstract]
  14. Fox EP, Weathers TD, Williams SD, et al.: Outcome analysis for patients with persistent nonteratomatous germ cell tumor in postchemotherapy retroperitoneal lymph node dissections. J Clin Oncol 11 (7): 1294-9, 1993. [PUBMED Abstract]
  15. Cooper MA, Einhorn LH: Maintenance chemotherapy with daily oral etoposide following salvage therapy in patients with germ cell tumors. J Clin Oncol 13 (5): 1167-9, 1995. [PUBMED Abstract]
  16. Baniel J, Foster RS, Gonin R, et al.: Late relapse of testicular cancer. J Clin Oncol 13 (5): 1170-6, 1995. [PUBMED Abstract]
  17. Motzer RJ, Geller NL, Tan CC, et al.: Salvage chemotherapy for patients with germ cell tumors. The Memorial Sloan-Kettering Cancer Center experience (1979-1989). Cancer 67 (5): 1305-10, 1991. [PUBMED Abstract]

Latest Updates to This Summary (05/16/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Editorial changes were made to this summary.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of testicular cancer. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Testicular Cancer Treatment are:

  • Juskaran S. Chadha, DO (Moffitt Cancer Center)
  • Jad Chahoud, MD, MPH (Moffitt Cancer Center)
  • Timothy Gilligan, MD (Cleveland Clinic Taussig Cancer Institute)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Testicular Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/testicular/hp/testicular-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389220]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Prostate Cancer Screening (PDQ®)–Health Professional Version

Prostate Cancer Screening (PDQ®)–Health Professional Version

Overview

Note: The Overview section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.

Other PDQ summaries on Prostate Cancer Prevention; Prostate Cancer Treatment; and Levels of Evidence for Cancer Screening and Prevention Studies are also available.

Inadequate Evidence of Benefit Associated With Screening for Prostate Cancer Using Prostate-Specific Antigen (PSA) or Digital Rectal Exam (DRE)

The evidence is insufficient to determine whether screening for prostate cancer with prostate-specific antigen (PSA) or digital rectal exam (DRE) reduces mortality from prostate cancer. Screening tests can detect prostate cancer at an early stage, but it is not clear whether earlier detection and consequent earlier treatment leads to any change in the natural history and outcome of the disease. Observational evidence shows a trend toward lower mortality for prostate cancer in some countries, but the relationship between these trends and intensity of screening is not clear, and associations with screening patterns are inconsistent. The observed trends may be due to screening or to other factors such as improved treatment.[1] Results from randomized trials are inconsistent.

Magnitude of Effect: Uncertain.

  • Study Design: Evidence obtained from randomized trials and from observational and descriptive studies (e.g., international patterns studies, time series).
  • Internal Validity: Fair.
  • Consistency: Poor.
  • External Validity: Poor.

Harms

Based on solid evidence, screening with PSA and/or DRE results in overdiagnosis of prostate cancers and detection of some prostate cancers that would never have caused significant clinical problems. Thus, screening leads to some degree of overtreatment. Based on solid evidence, current prostate cancer treatments, including radical prostatectomy and radiation therapy, result in permanent side effects in many men. The most common of these side effects are erectile dysfunction and urinary incontinence.[14] Screening also leads to false-positive findings, with sequelae involving unnecessary diagnostic procedures. In addition, the screening process itself can lead to adverse psychological effects in men who have a prostate biopsy but do not have identified prostate cancer.[5] Prostatic biopsies are associated with complications, including fever, pain, hematospermia/hematuria, positive urine cultures, and, rarely, sepsis.[6]

Magnitude of Effect: 20% to 70% of men who had no problems before radical prostatectomy or external-beam radiation therapy will have reduced sexual function and/or urinary problems.[1]

  • Study Design: Evidence obtained from cohort studies, case-control studies, and randomized controlled trials.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.
References
  1. Moyer VA; U.S. Preventive Services Task Force: Screening for prostate cancer: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med 157 (2): 120-34, 2012. [PUBMED Abstract]
  2. Chou R, Croswell JM, Dana T, et al.: Screening for prostate cancer: a review of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 155 (11): 762-71, 2011. [PUBMED Abstract]
  3. Resnick MJ, Koyama T, Fan KH, et al.: Long-term functional outcomes after treatment for localized prostate cancer. N Engl J Med 368 (5): 436-45, 2013. [PUBMED Abstract]
  4. Johansson E, Steineck G, Holmberg L, et al.: Long-term quality-of-life outcomes after radical prostatectomy or watchful waiting: the Scandinavian Prostate Cancer Group-4 randomised trial. Lancet Oncol 12 (9): 891-9, 2011. [PUBMED Abstract]
  5. Fowler FJ, Barry MJ, Walker-Corkery B, et al.: The impact of a suspicious prostate biopsy on patients’ psychological, socio-behavioral, and medical care outcomes. J Gen Intern Med 21 (7): 715-21, 2006. [PUBMED Abstract]
  6. Loeb S, Vellekoop A, Ahmed HU, et al.: Systematic review of complications of prostate biopsy. Eur Urol 64 (6): 876-92, 2013. [PUBMED Abstract]

Incidence and Mortality of Prostate Cancer

Prostate cancer is the most common cancer diagnosed in North American men, excluding skin cancers. It is estimated that in 2025, approximately 313,780 new cases and 35,770 prostate cancer–related deaths will occur in the United States. Prostate cancer is now the second-leading cause of cancer death in men, after lung cancer. In males, it accounts for 30% of all cancers and 11% of cancer-related deaths.[1] For 2022, age-adjusted prostate cancer mortality rates per 100,000 were 18.7 overall, 17.9 for White men, and 36.4 for Black men.[2] Age-adjusted incidence rates increased steadily from 1975 through 1992, with particularly dramatic increases associated with the inception of widespread use of prostate-specific antigen (PSA) screening in the late 1980s and early 1990s, followed by a fall in incidence. A decline in early-stage prostate cancer incidence rates from 2011 to 2012 (19%) in men aged 50 years and older persisted through 2013 (6%) in Surveillance, Epidemiology, and End Results (SEER) Program registries following the 2012 U.S. Preventive Services Task Force recommendations against routine PSA testing of all men. Whether this pattern will lead to an increase in diagnosis of distant-stage disease and prostate cancer mortality is not yet known and will require long-term follow-up.[3] Between 1993 and 2022, mortality rates declined by about 50%. However, between 1993 and 2012, mortality rates decreased from 3.6% per year to 0.5% per year, respectively. This trend may reflect an increase in advanced-stage diagnoses.[1] It has been suggested that declines in mortality rates in certain jurisdictions reflect the benefit of PSA screening,[4] but others have noted that these observations may be explained by independent phenomena such as improved treatments.[5] The estimated lifetime risk of a prostate cancer diagnosis is between 12% and 13%,[1] and the lifetime risk of dying from this disease is 2.0%.[2]

Cancer statistics from the National Cancer Institute indicated that between 2014 and 2020, the proportion of disease diagnosed at a locoregional stage was 82%, and the proportion of disease diagnosed as distant disease was 8%.[6] Stage distribution of prostate cancer is affected substantially by the intensity of early detection efforts.

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed December 30, 2024.
  3. Jemal A, Ma J, Siegel R, et al.: Prostate Cancer Incidence Rates 2 Years After the US Preventive Services Task Force Recommendations Against Screening. JAMA Oncol 2 (12): 1657-1660, 2016. [PUBMED Abstract]
  4. Bartsch G, Horninger W, Klocker H, et al.: Prostate cancer mortality after introduction of prostate-specific antigen mass screening in the Federal State of Tyrol, Austria. Urology 58 (3): 417-24, 2001. [PUBMED Abstract]
  5. Etzioni R, Gulati R, Cooperberg MR, et al.: Limitations of basing screening policies on screening trials: The US Preventive Services Task Force and Prostate Cancer Screening. Med Care 51 (4): 295-300, 2013. [PUBMED Abstract]
  6. National Cancer Institute: SEER Stat Fact Sheets: Prostate. Bethesda, Md: National Cancer Institute. Available online. Last accessed April 8, 2025.

Biology and Natural History of Prostate Cancer

The biology and natural history of prostate cancer is not completely understood. Rigorous evaluation of any prostate cancer screening modality is desirable because the natural history of the disease is variable, and appropriate treatment is not clearly defined. Although the prevalence of prostate cancer and preneoplastic lesions found at autopsy steadily increases for each decade of age, most of these lesions remain clinically undetected.[1] An autopsy study of White and Asian men also found an increase in occult prostate cancer with age, reaching nearly 60% in men older than 80 years. More than 50% of cancers in Asian men and 25% of cancers in White men had a Gleason score of 7 or greater, suggesting that Gleason score may be an imprecise indicator of clinically insignificant prostate cancer.[2,3]

There is an association between primary tumor volume and local extent of disease, progression, and survival.[4] A review of a large number of prostate cancers in radical prostatectomy, cystectomy, and autopsy specimens showed that capsular penetration, seminal vesicle invasion, and lymph node metastases were usually found only with tumors larger than 1.4 mL.[5] Furthermore, the semiquantitative histopathological grading scheme proposed by Gleason is reasonably reproducible among pathologists and correlates with the incidence of nodal metastases and with patient survival in a number of reported studies.[6]

Pathological stage does not always reflect clinical stage and upstaging (owing to extracapsular extension, positive margins, seminal vesicle invasion, or lymph node involvement) occurs frequently. Of the prostate cancers detected by digital rectal exam (DRE) in the pre–prostate-specific antigen screening era, 67% to 88% were at a clinically localized stage (T1–2, NX, M0 [T = tumor size, N = lymph node involvement, and M = metastasis]).[7,8] However, in one series of 2,002 patients undergoing annual screening DRE, only one-third of men proved to have pathologically organ-confined disease.[8]

References
  1. Sakr WA, Haas GP, Cassin BF, et al.: The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150 (2 Pt 1): 379-85, 1993. [PUBMED Abstract]
  2. Zlotta AR, Egawa S, Pushkar D, et al.: Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst 105 (14): 1050-8, 2013. [PUBMED Abstract]
  3. Bell KJ, Del Mar C, Wright G, et al.: Prevalence of incidental prostate cancer: A systematic review of autopsy studies. Int J Cancer 137 (7): 1749-57, 2015. [PUBMED Abstract]
  4. Freedland SJ, Humphreys EB, Mangold LA, et al.: Risk of prostate cancer-specific mortality following biochemical recurrence after radical prostatectomy. JAMA 294 (4): 433-9, 2005. [PUBMED Abstract]
  5. McNeal JE, Bostwick DG, Kindrachuk RA, et al.: Patterns of progression in prostate cancer. Lancet 1 (8472): 60-3, 1986. [PUBMED Abstract]
  6. Resnick MI: Background for screening–epidemiology and cost effectiveness. Prog Clin Biol Res 269: 111-22, 1988. [PUBMED Abstract]
  7. Chodak GW, Keller P, Schoenberg HW: Assessment of screening for prostate cancer using the digital rectal examination. J Urol 141 (5): 1136-8, 1989. [PUBMED Abstract]
  8. Thompson IM, Ernst JJ, Gangai MP, et al.: Adenocarcinoma of the prostate: results of routine urological screening. J Urol 132 (4): 690-2, 1984. [PUBMED Abstract]

Risk Factors for Prostate Cancer

Prostate cancer is not commonly seen in men younger than 50 years; the incidence rises rapidly each decade thereafter. The incidence rate is higher in Black men than in White men. From 2017 to 2021, the overall age-adjusted incidence rate was 188.7 per 100,000 for Black men and 114.9 per 100,000 for White men.[1] Black men have a higher mortality from prostate cancer, even after attempts to adjust for access-to-care factors.[2] Men with a family history of prostate cancer are at an increased risk of the disease compared with men without this history.[3,4]

Other potential risk factors besides age, race, and family history of prostate cancer include alcohol consumption, vitamin or mineral interactions, and other dietary habits.[59] A significant body of evidence suggests that a diet high in fat, especially saturated fats and fats of animal origin, is associated with a higher risk of prostate cancer.[10,11] Other possible dietary influences include selenium, vitamin E, vitamin D, lycopene, and isoflavones. For more information, see Prostate Cancer Prevention.

Evidence from a nested case-control study within the Physicians’ Health Study,[12] in addition to a case-control study [13] and a retrospective review of screened prostate cancer patients,[14] suggests that higher plasma insulin-like growth factor-I levels may be associated with a higher prostate cancer risk.[15] However, not all studies have confirmed this association.[16]

References
  1. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed December 30, 2024.
  2. Robbins AS, Whittemore AS, Van Den Eeden SK: Race, prostate cancer survival, and membership in a large health maintenance organization. J Natl Cancer Inst 90 (13): 986-90, 1998. [PUBMED Abstract]
  3. Steinberg GD, Carter BS, Beaty TH, et al.: Family history and the risk of prostate cancer. Prostate 17 (4): 337-47, 1990. [PUBMED Abstract]
  4. Matikainen MP, Schleutker J, Mörsky P, et al.: Detection of subclinical cancers by prostate-specific antigen screening in asymptomatic men from high-risk prostate cancer families. Clin Cancer Res 5 (6): 1275-9, 1999. [PUBMED Abstract]
  5. Hayes RB, Brown LM, Schoenberg JB, et al.: Alcohol use and prostate cancer risk in US blacks and whites. Am J Epidemiol 143 (7): 692-7, 1996. [PUBMED Abstract]
  6. Platz EA, Leitzmann MF, Rimm EB, et al.: Alcohol intake, drinking patterns, and risk of prostate cancer in a large prospective cohort study. Am J Epidemiol 159 (5): 444-53, 2004. [PUBMED Abstract]
  7. Eichholzer M, Stähelin HB, Gey KF, et al.: Prediction of male cancer mortality by plasma levels of interacting vitamins: 17-year follow-up of the prospective Basel study. Int J Cancer 66 (2): 145-50, 1996. [PUBMED Abstract]
  8. Gann PH, Hennekens CH, Sacks FM, et al.: Prospective study of plasma fatty acids and risk of prostate cancer. J Natl Cancer Inst 86 (4): 281-6, 1994. [PUBMED Abstract]
  9. Morton MS, Griffiths K, Blacklock N: The preventive role of diet in prostatic disease. Br J Urol 77 (4): 481-93, 1996. [PUBMED Abstract]
  10. Fleshner NE, Klotz LH: Diet, androgens, oxidative stress and prostate cancer susceptibility. Cancer Metastasis Rev 17 (4): 325-30, 1998-99. [PUBMED Abstract]
  11. Clinton SK, Giovannucci E: Diet, nutrition, and prostate cancer. Annu Rev Nutr 18: 413-40, 1998. [PUBMED Abstract]
  12. Chan JM, Stampfer MJ, Giovannucci E, et al.: Plasma insulin-like growth factor-I and prostate cancer risk: a prospective study. Science 279 (5350): 563-6, 1998. [PUBMED Abstract]
  13. Oliver SE, Barrass B, Gunnell DJ, et al.: Serum insulin-like growth factor-I is positively associated with serum prostate-specific antigen in middle-aged men without evidence of prostate cancer. Cancer Epidemiol Biomarkers Prev 13 (1): 163-5, 2004. [PUBMED Abstract]
  14. Turkes A, Peeling WB, Griffiths K: Serum IGF-1 determination in relation to prostate cancer screening: possible differential diagnosis in relation to PSA assays. Prostate Cancer Prostatic Dis 3 (3): 173-175, 2000. [PUBMED Abstract]
  15. Stattin P, Rinaldi S, Biessy C, et al.: High levels of circulating insulin-like growth factor-I increase prostate cancer risk: a prospective study in a population-based nonscreened cohort. J Clin Oncol 22 (15): 3104-12, 2004. [PUBMED Abstract]
  16. Chen C, Lewis SK, Voigt L, et al.: Prostate carcinoma incidence in relation to prediagnostic circulating levels of insulin-like growth factor I, insulin-like growth factor binding protein 3, and insulin. Cancer 103 (1): 76-84, 2005. [PUBMED Abstract]

Screening by Serum PSA

The prostate-specific antigen (PSA) test has been examined in several observational settings for initial diagnosis of disease, as a tool in monitoring for recurrence after initial therapy, and for prognosis of outcomes after therapy. Numerous studies have also assessed its value as a screening intervention for the early detection of prostate cancer. The potential value of the test appears to be its simplicity, objectivity, reproducibility, relative lack of invasiveness, and relatively low cost. PSA testing has increased the detection rate of early-stage cancers, some of which may be curable by local-modality therapies, and others that do not require treatment.[14] The possibility of identifying an excessive number of false-positive results in the form of benign prostatic lesions requires that the test be evaluated carefully. Furthermore, there is a risk of overdiagnosis and overtreatment (i.e., the detection of a histological malignancy that, if left untreated, would have had a benign or indolent natural history and would have been of no clinical significance). Randomized trials have therefore been conducted.

Randomized Trials of PSA Screening

The Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial

The PLCO Cancer Screening Trial is a multicenter, randomized, two-armed trial designed to evaluate the effect of screening for prostate, lung, colorectal, and ovarian cancers on disease-specific mortality. From 1993 through 2001, 76,693 men at ten U.S. study centers were randomly assigned to receive annual screening (38,343 subjects) or usual care (38,350 control subjects). Men in the screening group were offered annual PSA testing for 6 years and digital rectal exam (DRE) for 4 years. The subjects and health care providers received the results and decided on the type of follow-up evaluation. Usual care sometimes included screening, as some organizations have recommended. [5]

In the screening group, rates of compliance were 85% for PSA testing and 86% for DRE. Self-reported rates of screening in the control group increased from 40% in the first year to 52% in the sixth year for PSA testing and ranged from 41% to 46% for DRE.[6]

After 7 years of follow-up, with vital status known for 98% of men, the incidence of prostate cancer per 10,000 person-years was 116 (2,820 cancers) in the screening group and 95 (2,322 cancers) in the control group (rate ratio, 1.22; 95% confidence interval [CI], 1.16–1.29). The incidence of death per 10,000 person-years was 2.0 (50 deaths) in the screening group and 1.7 (44 deaths) in the control group (ratio rate, 1.13; 95% CI, 0.75–1.70). The data at 10 years were 67% complete and consistent with these overall findings (incidence ratio rate, 1.17; 95% CI, 1.11–1.22 and mortality ratio rate, 1.11; 95% CI, 0.83–1.50). Thus, after 7 to 10 years of follow-up, the rate of death from prostate cancer was very low and did not differ significantly between the two study groups.[6]

Prostate cancer mortality data after 13 years of follow-up continued to show no reduction in mortality resulting from prostate cancer screening with PSA and DRE.[5] Organized screening in the intervention group of the trial did not produce a mortality reduction compared with opportunistic screening in the usual care group. There were 4,250 men diagnosed with prostate cancer in the intervention group and 3,815 men in the usual care group. Cumulative incidence rates were 108.4 per 10,000 person-years in the intervention group and 97.1 per 10,000 person-years in the usual care group (relative risk [RR], 1.12; 95% CI, 1.07–1.17). The cumulative prostate cancer mortality rates were 3.7 (158 deaths) per 10,000 person-years in the intervention group and 3.4 (145 deaths) per 10,000 person-years in the usual care group (RR, 1.09; 95% CI, 0.87–1.36).

There were no apparent associations with age, baseline comorbidity, or PSA testing before the trial, as hypothesized in an intervening analysis by a subgroup analysis. These results are consistent with the previous report at 7 to 10 years of follow-up described above.[6] All prostate cancer incidents and deaths through 13 years of follow-up or through December 31, 2009, were ascertained.[5]

The 13-year follow-up analysis reported 45% of men in the PLCO trial had at least one PSA test in the 3 years before randomization. Annual PSA screening in the usual care arm was estimated to be as high as 52% by the end of the screening period. The intensity of PSA screening in the usual care group was estimated to be one-half of that in the intervention group. Stage-specific treatment between the two arms was similar.[5]

An extended follow-up analysis for mortality, with median follow-up of almost 17 years (intervention group, 16.9 years; usual-care group, 16.7 years), showed prostate cancer mortality rates of 5.5 (333 deaths) per 10,000 person-years in the intervention group and 5.9 (352 deaths) per 10,000 person-years in the usual-care group, producing a rate ratio of 0.93 (95% CI, 0.81–1.08).[7] An analysis of nonprotocol screening during the postscreening phase of the trial showed that 78.7% of men in the usual-care group and 80.3% of men in the intervention group had received a PSA test within the past 3 years, and that 85.9% of men in the usual-care group and 98.9% of men in the intervention group had ever had a PSA test.[8]

Possible explanations for the lack of a significant reduction in mortality in this trial include the following:[6,9]

  • Annual screening with the PSA test using the standard U.S. threshold of 4 ng/L and DRE to trigger diagnostic evaluation may not be effective.
  • The substantial level of screening in the control group could have diluted any modest effect of annual screening in the intervention group.
  • Approximately 44% of the men in each study group had undergone one or more PSA tests at baseline, which would have eliminated some cancers detectable on screening from the randomly assigned population. Thus, the cumulative death rate from prostate cancer at 10 years in the two groups combined was 25% lower in those who had undergone two or more PSA tests at baseline than in those who had not been tested.
  • Improvement in therapy for prostate cancer during the trial may have resulted in fewer prostate-cancer deaths in the two study groups, which blunted any potential benefits of screening.
  • After a PSA finding greater than 4 ng/mL, within 1 year only 41% of men underwent prostate biopsy; within 3 years of this finding, only 64% of men underwent prostate biopsy. Such lower biopsy rates, associated with lower prostate cancer detection rates, may have blunted the impact of screening on mortality.

The European Randomized Study of Screening for Prostate Cancer (ERSPC)

The ERSPC was initiated in the early 1990s to evaluate the effect of screening with PSA testing on death rates from prostate cancer. Through registries in seven European countries, investigators identified 182,000 men between the ages of 50 and 74 years for inclusion in the study. Although the protocols differed considerably among countries, generally the men were randomly assigned to either a group that offered PSA screening at an average of once every 4 years or to a control group that did not receive screening. The predefined core age group for this study included 162,243 men between the ages of 55 years and 69 years. The primary outcome was the rate of death from prostate cancer. Mortality follow-up was identical for the two study groups and has been reported through 2010.[10]

The protocol, including recruitment, randomization procedures, and treatment definition and schedule, differed among countries and was developed in accordance with national regulations and standards. In Finland, Sweden, and Italy, the men in the trial were identified from population registries and were randomly assigned to the centers before written informed consent was provided. In the Netherlands, Belgium, Switzerland, and Spain, the target population was also identified from population lists, but when the men were invited to participate in the trial, only those who provided consent were randomly assigned. Randomization was 1:1 in all countries except Finland, in which it was 1:1.5. The definition of a positive test and the testing schedule also varied by country.

In the screening group, 82% of men accepted at least one offer of screening. At a median follow-up of 9 years, there were 5,990 prostate cancers diagnosed in the screening group (a cumulative incidence of 8.2%) and 4,307 prostate cancers in the control group (a cumulative incidence of 4.8%). There were 214 prostate-cancer deaths in the screening group and 326 prostate-cancer deaths in the control group in the core age group (RR, 0.80; 95% CI, 0.67–0.95). The rates of death in the two study groups began to diverge after 7 to 8 years and continued to diverge further over time.[11] With follow-up through 13 years, there were 7,408 prostate cancers in the intervention group during 775,527 person-years of follow-up and 6,107 cancers in the control group with 980,474 person-years of follow-up (RR, 1.57; 95% CI, 1.51–1.62). There were also 355 prostate cancer deaths over 825,018 person-years of follow-up in the intervention group and 545 deaths over 1,011,192 person-years of follow-up in the control group (RR, 0.79; 95% CI, 0.69–0.91). Consequently, 781 men needed to be invited for screening to avert one prostate cancer death, and 48 men needed to be biopsied.[10] At 16 years of follow-up, the prostate cancer mortality rate ratio was 0.80 (95% CI, 0.72–0.89), and the prostate cancer incidence rate ratio was 1.41 (95% CI, 1.36–1.45). Therefore, 570 men needed to be invited to prevent one prostate cancer death, and 18 men needed to be diagnosed to prevent one prostate cancer death.[12]

Overall, PSA-based screening was reported to reduce the rate of death from prostate cancer by about 20% but was associated with a high risk of overdiagnosis.[10]

Of the seven centers included in the study, two individually reported a significant mortality benefit associated with prostate cancer screening (the Netherlands and Sweden). It is not readily apparent which factors at these two centers (PSA thresholds or intervals between testing used, mean age of patients, sample size) might explain the observed difference. It is important to note that the trial was not designed for individual countries to have adequate statistical power to find a significant mortality reduction.

Important information that was not reported included the contamination rate in the entire control group. Further, there was some evidence that the treatment administered to the prostate cancer patients differed by stage and by randomly assigned group, with the screening group receiving radical prostatectomy (40.3%) more often than the control group (30.3%). Such a difference in treatment could have contributed to any mortality difference between the trial arms. To address this issue, an analysis was conducted for each treatment, separately in each trial arm, in which logistic regression models were fitted for treatment allocation and risk of prostate cancer death, then combined to estimate prostate cancer deaths. The differences in prostate cancer deaths when the screened arm model was applied to the control arm, and vice versa, were very small, leading the authors to conclude that differential treatment explains only a trivial proportion of the main trial findings.[13]

However, concerns with this analysis include the following:

  1. Data from only four of the trial countries were used.
  2. There was a considerable amount of missing data on clinical M and clinical N stage.
  3. The risk of prostate cancer death model from the screened arm was used in both comparisons, so that any enhanced survival bias caused by possibly better treatment quality in the screened arm was not accounted for.
  4. All prostate cancer cases were included in the analysis, with results averaged over all cases.

Most of these cases were early stage, including overdiagnosed cases, for which treatment differences would likely make little difference, and from which only a limited fraction of the prostate cancer deaths arise. Thus, any treatment difference effect on the advanced cases, and deaths, would likely be diluted by using this approach.

Possible harms included overdiagnosis, which was estimated at 30% in the Finnish center on the basis of excess cases in the screening arm if the cumulative risk of prostate cancer had been the same as the control arm.[14] The Spanish center also reported an excess of prostate cancers in the intervention arm (7.8%) versus the control arm (5.2%) after a median 21 years of follow-up.[15]

The Goteborg (Sweden) trial

In December 1994, 20,000 men born between 1930 and 1944 (aged 50–64 years) and living in Goteborg, Sweden, were randomly assigned in a 1:1 allocation to either a control group or a screened group and offered PSA testing every 2 years. The PSA threshold for biopsy was 2.5 ng/mL. Seventy-seven percent of men in the screened group attended at least one screen. At 18 years of follow-up, 1,396 men in the screened group and 962 in the control group had been diagnosed with prostate cancer (hazard ratio, 1.51; 95% CI, 1.39–1.64). There was an absolute reduction in prostate cancer mortality of 0.52% (95% CI, 0.17%–0.87%), with an RR of 0.65 (95% CI, 0.49–0.87).[16]

A concern with this trial is double reporting of information, because most participants were included in the ERSPC trial, but results have been reported separately for each trial. An initial publication indicated that in 1996 this study became associated with the ERSPC trial, and results from men born between 1930 and 1939 were published in a previous ERSPC report.[17] A later publication states that since 1996 the Goteborg trial has constituted the Swedish arm of ERSPC;[16] however, an ERSPC publication included about 12,000 participants from Sweden, or about 60% of the Goteborg trial population.[12]

Unlike the other ERSPC centers, not all the participants from the Goteborg center were included in the ERSPC study. Some have argued that the ERSPC trial should be treated as a meta-analysis.[18]

The Cluster Randomized Trial of PSA Testing for Prostate Cancer (CAP)

The CAP trial of PSA screening was conducted in the United Kingdom.[19] This was a primary care–based cluster randomized trial of an invitation to a single PSA test, followed by standardized prostate biopsy in men with PSA levels of 3 ng/mL or higher. The trial was designed to determine the effect of the intervention on prostate cancer mortality. The primary end point was definite, probable, or intervention-related prostate cancer mortality at a median follow-up of 10 years. Participants were aged 50 to 69 years at entry and were enrolled between 2001 and 2009, with passive follow-up through national database linkage completed on March 31, 2016. Randomization was stratified within geographical groups and block sizes of 10 to 12 neighboring practices using a computerized random number generator. Men with a positive PSA test diagnosed with clinically localized prostate cancer were recruited to the Prostate Testing for Cancer and Treatment (ProtecT) study for treatment. All other cancers received standard National Health Service management. The design called for 209,000 men in each group to provide sufficient events to allow a prostate cancer mortality RR of 0.87 to be detected with 80% power at a significance level of 0.05, assuming an uptake of PSA testing between 35% and 50%.

Nine hundred-eleven primary care practices were randomly assigned within 99 geographical areas in the United Kingdom; 466 practices were assigned to the intervention group, and 445 were assigned to the control group. After various exclusions among both practices and potential participants, the analyses were conducted using data from 189,386 men in 271 practices in the intervention group and 219,439 men in 302 practices in the control group. In the intervention group, 75,707 (40%) men attended a PSA testing clinic, and 67,313 (36%) men had a PSA blood sample taken. Among these men, 11% of men had a PSA level between 3 ng/mL and 19.9 ng/mL (eligible for the ProtecT trial); of whom, 85% of men had a prostate biopsy. Cumulative contamination in the control group was estimated to be 10% to 15% over 10 years.

After a median 10-year follow-up, there was no significant difference between the two groups in prostate cancer mortality. The prostate cancer death rates were 0.30 per 1,000 person-years (549 deaths) in the intervention group and 0.31 per 1,000 person-years (647 deaths) in the control group (rate difference, -0.013 per 1,000 person years [95% CI, -0.047 to 0.022]; RR, 0.96 [95% CI, 0.85–1.08]). Secondary analyses indicated no effect on all-cause mortality (RR, 0.99; 95% CI, 0.94–1.03), but there was a higher prostate cancer incidence rate in the intervention group (4.45 per 1,000 person-years) compared with the control group (3.80 per 1,000 person-years). There was no reduction in advanced prostate cancers (Gleason 8–10 or T4, N1, or M1). The increased detection was confined to lower Gleason grade or lower-stage cancers, emerged at the beginning of screening, and persisted throughout the duration of follow-up, suggesting overdiagnosis.

An update to the initial 10-year outcomes reported on four prespecified, secondary, 15-year outcomes (prostate cancer-specific mortality, all-cause mortality, prostate cancer stage, and prostate cancer grade at diagnosis).[20] The 15-year analysis included 98% of men from the initial 10-year report. At a median follow-up of 15 years, 0.69% (95% CI, 0.65%–0.73%) of men in the intervention group and 0.78% (95% CI, 0.73%–0.82%; P = .03) of men in the control group died of prostate cancer. There was no difference in all-cause mortality between the intervention group (76.8%; 95% CI, 76.6%–77%) and the control group (76.7%; 95% CI, 76.5%–76.9%; P = .11). The single PSA screening intervention increased detection of low-grade disease (Gleason score ≤6: 2.2% vs. 1.6%; P < .001) but not intermediate- or high-grade disease. Furthermore, PSA screening increased detection of localized disease (T1/T2: 3.6% vs. 3.1%; P < .001) but not locally advanced (T3) or distally advanced (T4, N1, M1) disease. While a relative difference in prostate cancer mortality favoring a single PSA screening test was observed, the absolute magnitude of this difference was small (0.09%). This finding did not translate into a difference in all-cause mortality. Furthermore, achieving this small difference in prostate cancer mortality came at the cost of overdiagnosis of low-grade localized disease, leading to additional medical interventions that did not impact all-cause mortality at a population level.

Limitations of the CAP trial include the following:[19]

  1. The intervention was only a single round of PSA testing, a different screening strategy than that typically used in the United States.
  2. There were many postrandomization exclusions that could lead to bias; however, there was little evidence of bias in comparing the characteristics of the groups.
  3. There were fewer prostate cancer deaths at the 10-year median follow-up than stipulated in the design.
  4. Compliance with screening was low.
  5. There is the possibility of a treatment difference by group because of the imbedded ProtecT trial; however, if a treatment difference exists, it is likely small because the results of the ProtecT trial were negative.
The Norrkoping (Sweden) study

The Norrkoping study is a population-based nonrandomized trial of prostate cancer screening. All men aged 50 to 69 years living in Norrkoping, Sweden, in 1987 were allocated to either an invited group (every sixth man allocated to invited group) or a not-invited group. The 1,494 men in the invited group were offered screening every 3 years from 1987 to 1996. The first two rounds were by DRE; the last two rounds were by both DRE and PSA. About 85% of men in the invited group attended at least one screening; contamination by screening in the not-invited group (n = 7,532) was thought to be low. After 20 years of follow-up, the invited group had a 46% relative increase in prostate cancer diagnosis. Over the period of the study, 30 men (2%) in the invited group died of prostate cancer, compared with 130 (1.7%) men in the not-invited group. The RR of prostate cancer mortality was 1.16 (95% CI, 0.78–1.73).[21]

The Quebec (Canada) trial

In the randomized prospective Quebec study, 46,486 men identified from the electoral rolls of Quebec City, Canada, and its metropolitan area were randomly assigned to be either approached or not approached for PSA and DRE screening. A total of 31,133 men were randomly assigned to screening, while a total of 15,353 men were randomly assigned to observation. Using an intention-to-treat analysis based on the study arm to which an individual was originally assigned, no difference in mortality was seen. There were 75 (0.49%) deaths among the 15,353 men who were randomly assigned to the observation group, compared with 153 (0.49%) deaths among the 31,133 men randomly assigned to the screening group (RR, 1.085).[22]

The Stockholm (Sweden) trial

In 1988, from a population of 27,464 men in the southern part of Stockholm, 2,400 men aged 55 to 70 years were randomly selected to undergo screening with DRE, transrectal ultrasound, and PSA (cutoff >10 ng/mL). Seventy-four percent of the men accepted the screening invitation. After 20 years of follow-up, there was no indication of a reduction in prostate cancer mortality (RR,1.05; 95% CI, 0.83–1.27) or in overall mortality (RR, 1.01; 95% CI, 0.95–1.06), but screening was limited to a single episode. There was an indication of excess prostate cancer incidence in the invited population (RR, 1.12; 95% CI, 0.99–1.25), suggesting overdiagnosis.[23]

The authors of a large, randomized, Swedish-based noninferiority trial that was designed to study the performance of magnetic resonance imaging (MRI) in prostate cancer screenings of general populations reported that MRI-targeted biopsy was noninferior to standard biopsy in detecting clinically significant cancers in men with elevated PSA levels. The authors also reported that MRI-targeted biopsy decreased unnecessary biopsies and diagnosis of clinically insignificant cancers. In this prospective, population-based, noninferiority trial, 1,532 men with a PSA level more than 3 ng/mL were randomly assigned in a 2:3 ratio; 603 underwent standard biopsy, and 929 underwent targeted and standard biopsy if MRI findings were concerning for prostate cancer. The primary outcome was the probability of detecting clinically significant cancer (Gleason score of >3+4). The key secondary outcome was the detection of clinically insignificant cancers (Gleason score of <6) and the number of biopsies.[24]

Key findings of the intention-to-treat analysis included the following:

  • Clinically significant cancer was diagnosed in 192 (21%) of 929 men in the MRI-targeted biopsy group versus 106 (18%) of 603 men in the standard-biopsy group (difference, 3%; 95% CI, −1% to 7%; P < .001 for noninferiority).
  • Clinically insignificant prostate cancer was diagnosed in 41 men in the MRI-targeted group versus 73 (12%) men in the standard-biopsy group (difference, −8%; 95% CI, −11% to 5%).
  • Biopsies were benign in 105 (11%) men in the MRI-targeted group versus 259 (43%) men in the standard-biopsy group (difference, −32%; 95% CI, −36% to −27%).
  • Antibiotic-treated postbiopsy infections occurred in 2% of the MRI-targeted group versus 4% of the standard-biopsy group (difference, −2%, 95% CI, −4% to 0.1%).
  • When normalized to 10,000 men, MRI-targeted biopsies resulted in 409 fewer men undergoing biopsy (48% lower incidence), 366 fewer men with benign biopsies (78% lower incidence), and 88 fewer men with clinically insignificant cancers (62% lower incidence).
  • The authors calculated that a detection of 1.7 clinically significant cancers would be delayed for each clinically insignificant cancer avoided and recommended use of standard biopsy, in addition to targeted biopsy, for men with positive MRI results.

In summary, initial results of this large randomized trial suggest that men older than 50 years with elevated PSA levels and negative MRI-targeted biopsy may be able to reduce overdiagnosis and overtreatment of low-risk cancer while maintaining the ability to detect clinically significant cancer. Study limitations included low uptake (26% of invited men participated in the trial). Additionally, some participants did not undergo the assigned intervention, and the true disease status of participants was unknown. Another challenge was implementing high-quality MRI screening because of variability of skill and experience among participating radiologists.

Post hoc analysis of randomized screening trials

The problems associated with drawing valid inferences from observational studies also apply to post hoc analyses of randomized trials. For example, analyzing randomized trial results in various ways is subject to the problem association caused by multiplicities. Statistical conclusions maintain their standard interpretations only when analyzing the trial’s primary end point according to the trial’s protocol or statistical analysis plan. In some settings, statistical adjustments are possible to account for multiplicities. But quite beyond problems of multiplicities, some analyses are so prone to bias that they are of limited value.

Randomization eliminates or at least minimizes many systematic biases. However, randomization shields an analysis from bias only if it considers a group randomly assigned to one intervention compared with a second group randomly assigned to another intervention. If an analysis mixes the two groups, then the virtue of randomization is lost.

Patients can deviate from the intervention to which they were assigned. This is sometimes called contamination. But to preserve the protection of randomization, they are counted within the group to which they were assigned: termed an intention-to-treat or intention-to-screen analysis. An alternative that is sometimes used is an as-treated or as-screened analysis, which is prone to important biases. In such analyses, participants who are screened are compared with those who were not screened, regardless of their assigned group. This is attractive to some investigators because it seems to address the right question. In addition, it seems to correct for contamination in both directions, and thereby, increases statistical power; but such an approach is flawed.

There are powerful biases associated with as-screened analyses; some are easily recognized, and some are not. A participant who chooses to be screened despite randomization to the control group differs from one who accepts an assignment to be screened. For example, such a person may be generally in better health or may have been screened previously, and so is less likely to be diagnosed with cancer. There are similar differences for participants who eschew invitations to be screened versus those who accept assignment to the control group.

In addition to preserving randomization, an intention-to-screen analysis is most relevant for informing a decision about instituting a screening program or recommendation in some populations. The following section considers two analyses that are subject to the as-screened flaw.

The Quebec study

As indicated above, the intention-to-screen analysis of this trial showed no detectable difference in prostate cancer mortality between the two groups. However, the investigators focused on as-screened analyses. They observed that there were 4 prostate cancer deaths (0.056%) among the 7,155 men who were screened and 44 prostate cancer deaths (0.31%) among the 14,255 men who were not screened, an RR of 5.5. Based on exposure times, the investigators attributed the 67.1% reduction in prostate cancer death rate to screening.[22] This conclusion is flawed, as pointed out by other investigators.[25] (see above)

Modeling the ERSPC combined with the PLCO Cancer Screening Trial

The PLCO cancer screening trial evinced greater contamination than did the ERSPC trials, especially in the control group. Three modeling groups attempted to account for the effect of differential contamination using a novel derived measure called mean lead time (MLT), which reflected the average intensity of screening in each arm in the two trials. The investigators found substantial reductions in prostate cancer mortality caused by screening. Moreover, they found very similar reductions per MLT in PLCO and ERSPC.[26] Both methods and conclusions are prone to biased conclusions and have been criticized by several groups of scientists.[27,28] This analysis also ignored the other potential shortcomings identified above (see above).

References
  1. Catalona WJ, Smith DS, Ratliff TL, et al.: Detection of organ-confined prostate cancer is increased through prostate-specific antigen-based screening. JAMA 270 (8): 948-54, 1993. [PUBMED Abstract]
  2. Babaian RJ, Mettlin C, Kane R, et al.: The relationship of prostate-specific antigen to digital rectal examination and transrectal ultrasonography. Findings of the American Cancer Society National Prostate Cancer Detection Project. Cancer 69 (5): 1195-200, 1992. [PUBMED Abstract]
  3. Brawer MK, Chetner MP, Beatie J, et al.: Screening for prostatic carcinoma with prostate specific antigen. J Urol 147 (3 Pt 2): 841-5, 1992. [PUBMED Abstract]
  4. Mettlin C, Murphy GP, Lee F, et al.: Characteristics of prostate cancers detected in a multimodality early detection program. The Investigators of the American Cancer Society-National Prostate Cancer Detection Project. Cancer 72 (5): 1701-8, 1993. [PUBMED Abstract]
  5. Andriole GL, Crawford ED, Grubb RL, et al.: Prostate cancer screening in the randomized Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial: mortality results after 13 years of follow-up. J Natl Cancer Inst 104 (2): 125-32, 2012. [PUBMED Abstract]
  6. Andriole GL, Grubb RL, Buys SS, et al.: Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360 (13): 1310-9, 2009. [PUBMED Abstract]
  7. Pinsky PF, Miller E, Prorok P, et al.: Extended follow-up for prostate cancer incidence and mortality among participants in the Prostate, Lung, Colorectal and Ovarian randomized cancer screening trial. BJU Int 123 (5): 854-860, 2019. [PUBMED Abstract]
  8. Pinsky PF, Prorok PC, Yu K, et al.: Extended mortality results for prostate cancer screening in the PLCO trial with median follow-up of 15 years. Cancer 123 (4): 592-599, 2017. [PUBMED Abstract]
  9. Pinsky PF, Andriole GL, Kramer BS, et al.: Prostate biopsy following a positive screen in the prostate, lung, colorectal and ovarian cancer screening trial. J Urol 173 (3): 746-50; discussion 750-1, 2005. [PUBMED Abstract]
  10. Schröder FH, Hugosson J, Roobol MJ, et al.: Screening and prostate cancer mortality: results of the European Randomised Study of Screening for Prostate Cancer (ERSPC) at 13 years of follow-up. Lancet 384 (9959): 2027-35, 2014. [PUBMED Abstract]
  11. Schröder FH, Hugosson J, Roobol MJ, et al.: Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360 (13): 1320-8, 2009. [PUBMED Abstract]
  12. Hugosson J, Roobol MJ, Månsson M, et al.: A 16-yr Follow-up of the European Randomized study of Screening for Prostate Cancer. Eur Urol 76 (1): 43-51, 2019. [PUBMED Abstract]
  13. Carlsson SV, Månsson M, Moss S, et al.: Could Differences in Treatment Between Trial Arms Explain the Reduction in Prostate Cancer Mortality in the European Randomized Study of Screening for Prostate Cancer? Eur Urol 75 (6): 1015-1022, 2019. [PUBMED Abstract]
  14. Kilpeläinen TP, Tammela TL, Malila N, et al.: Prostate cancer mortality in the Finnish randomized screening trial. J Natl Cancer Inst 105 (10): 719-25, 2013. [PUBMED Abstract]
  15. Luján Galán M, Páez Borda Á, Llanes González L, et al.: Results of the spanish section of the European Randomized Study of Screening for Prostate Cancer (ERSPC). Update after 21 years of follow-up. Actas Urol Esp (Engl Ed) 44 (6): 430-436, 2020 Jul – Aug. [PUBMED Abstract]
  16. Hugosson J, Godtman RA, Carlsson SV, et al.: Eighteen-year follow-up of the Göteborg Randomized Population-based Prostate Cancer Screening Trial: effect of sociodemographic variables on participation, prostate cancer incidence and mortality. Scand J Urol 52 (1): 27-37, 2018. [PUBMED Abstract]
  17. Hugosson J, Carlsson S, Aus G, et al.: Mortality results from the Göteborg randomised population-based prostate-cancer screening trial. Lancet Oncol 11 (8): 725-32, 2010. [PUBMED Abstract]
  18. Auvinen A, Moss SM, Tammela TL, et al.: Absolute Effect of Prostate Cancer Screening: Balance of Benefits and Harms by Center within the European Randomized Study of Prostate Cancer Screening. Clin Cancer Res 22 (1): 243-9, 2016. [PUBMED Abstract]
  19. Martin RM, Donovan JL, Turner EL, et al.: Effect of a Low-Intensity PSA-Based Screening Intervention on Prostate Cancer Mortality: The CAP Randomized Clinical Trial. JAMA 319 (9): 883-895, 2018. [PUBMED Abstract]
  20. Martin RM, Turner EL, Young GJ, et al.: Prostate-Specific Antigen Screening and 15-Year Prostate Cancer Mortality: A Secondary Analysis of the CAP Randomized Clinical Trial. JAMA 331 (17): 1460-1470, 2024. [PUBMED Abstract]
  21. Sandblom G, Varenhorst E, Rosell J, et al.: Randomised prostate cancer screening trial: 20 year follow-up. BMJ 342: d1539, 2011. [PUBMED Abstract]
  22. Labrie F, Candas B, Cusan L, et al.: Screening decreases prostate cancer mortality: 11-year follow-up of the 1988 Quebec prospective randomized controlled trial. Prostate 59 (3): 311-8, 2004. [PUBMED Abstract]
  23. Lundgren PO, Kjellman A, Norming U, et al.: Long-Term Outcome of a Single Intervention Population Based Prostate Cancer Screening Study. J Urol 200 (1): 82-88, 2018. [PUBMED Abstract]
  24. Nordström T, Discacciati A, Bergman M, et al.: Prostate cancer screening using a combination of risk-prediction, MRI, and targeted prostate biopsies (STHLM3-MRI): a prospective, population-based, randomised, open-label, non-inferiority trial. Lancet Oncol 22 (9): 1240-1249, 2021. [PUBMED Abstract]
  25. Pinsky PF: Results of a randomized controlled trail of prostate cancer screening. Prostate 61 (4): 371, 2004. [PUBMED Abstract]
  26. Tsodikov A, Gulati R, Heijnsdijk EAM, et al.: Reconciling the Effects of Screening on Prostate Cancer Mortality in the ERSPC and PLCO Trials. Ann Intern Med 167 (7): 449-455, 2017. [PUBMED Abstract]
  27. Prorok PC, Andriole GL, Bresalier RS, et al.: Design of the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. Control Clin Trials 21 (6 Suppl): 273S-309S, 2000. [PUBMED Abstract]
  28. Boniol M, Autier P, Perrin P, et al.: Variation of Prostate-specific Antigen Value in Men and Risk of High-grade Prostate Cancer: Analysis of the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial Study. Urology 85 (5): 1117-22, 2015. [PUBMED Abstract]

Prostate Cancer Diagnosis

Needle biopsy is the most common method used to diagnose prostate cancer. Most urologists perform a transrectal biopsy using a bioptic gun with ultrasound guidance. Less frequently, a transperineal ultrasound-guided approach can be used for patients who may be at increased risk of complications from a transrectal approach.[1] Over the years, there has been a trend toward taking eight to ten or more biopsy samples from several areas of the prostate with a consequent increased yield of cancer detection after an elevated prostate-specific antigen (PSA) blood test, with a 12-core biopsy now standard practice.[2]

Whether and how magnetic resonance imaging (MRI)−directed biopsy should be incorporated into the diagnostic evaluation of prostate cancer is also under evaluation, either as a replacement of, or in addition to, standard systematic prostate needle biopsies. A multiparametric MRI is performed initially to identify and localize abnormalities that are likely to represent clinically significant prostate cancer. The MRI results are summarized using the 5-point Prostate Imaging–Reporting and Data System (PI-RADS) classification scheme, with 1 being very low likelihood and 5 being very high likelihood of clinically significant prostate cancer.[3] Generally, men with a PI-RADS score of 3 or higher for any area of the prostate gland are recommended for MRI-guided biopsy, with the biopsy targeting those areas, and typically, systematic biopsy. Men without any area with a PI-RADS score of 3 or higher may undergo systematic biopsy alone or be followed up without immediate biopsy.

The data on MRI-guided biopsy have been reported primarily by experienced MRI radiologists and urologists in referral centers, and generalizability of results is uncertain. A multicenter trial randomly assigned 500 men with clinical suspicion of prostate cancer to either a systematic biopsy or MRI-guided biopsy. For the latter, men received MRI and then subsequent MRI-guided biopsy if the MRI was suggestive of prostate cancer. There were more men with a Gleason score of 7 or less (95 vs. 64) and fewer men with a Gleason score of less than 7 (23 vs. 55) in the MRI group compared with the systematic biopsy group, with fewer biopsies overall in the MRI group.[4] In this study, most of the participating investigators had modest experience with MRI-targeted biopsy. Since men received only systematic or MRI-guided biopsy (and not both), it is unknown how many of the men with Gleason scores less than 7 in the systematic biopsy group would have been upgraded to a Gleason score of 7+ if they had undergone an MRI-guided biopsy.

A large, single-arm, single-center study of 2,103 men with MRI-visible lesions who underwent both MRI-directed biopsies and standard systematic prostate needle biopsies under ultrasound visualization showed that MRI-directed biopsy alone detected more clinically significant (Gleason score of 4+3 or higher) disease than did systematic biopsy alone.[5] Of 466 men with clinically significant disease that was detected on either type of biopsy modality, MRI-guided biopsy correctly classified 91% of them as clinically significant, while systematic biopsy correctly classified 62% of them as clinically significant. Of all the men studied, 1.9% of men would have had clinically significant disease missed (or misclassified as clinically insignificant disease) if they underwent MRI-guided biopsy alone, compared with 8.3% of men if they underwent systematic biopsy alone. Both studies reported only on histology end points at the time of diagnosis, rather than health outcomes on follow-up.

A Swedish noninferiority trial randomly assigned 1,532 men with PSA levels more than 3 ng/mL to a standard-biopsy group (n = 603) versus experimental-biopsy group (n = 929).[6] In the experimental group, men received MRI and then standard biopsy plus targeted biopsy, if the MRI findings were suggestive of prostate cancer. The primary outcome was detection of clinically significant cancer (Gleason score ≥7). Detection rates of clinically significant cancer were 18% in the standard group versus 21% in the experimental group, with the experimental group meeting the noninferiority criterion. Biopsy rates were 73% in the standard-treatment group versus 36% in the experimental group.

A meta-analysis examined the efficacy of integrating MRI into the diagnostic pathway for prostate cancer screening when compared with standard PSA-based screening only.[7] The study analyzed data from 12 randomized clinical trials and prospective cohort studies involving 80,114 men and found that MRI-based screening reduced unnecessary biopsies and decreased the detection of clinically insignificant prostate cancer, while maintaining the detection of clinically significant cases. Compared with standard PSA-based screening, the MRI pathway (sequential screening, PI-RADS score ≥3 cutoff for biopsy) was associated with a greater likelihood of confirming clinically significant prostate cancer when tests results were positive (odds ratio [OR], 4.15; 95% confidence interval [CI], 2.93–5.88; P ≤ .001). The MRI pathway also decreased the chance of biopsies (OR, 0.28; 95% CI, 0.22–0.36; P ≤ .001) and the detection of clinically insignificant prostate cancers (OR, 0.34; 95% CI, 0.23–0.49; P = .002), without significant differences in the detection of clinically significant prostate cancer (OR, 1.02; 95% CI, 0.75–1.37; P = .86). Elevating the PI-RADS cutoff to a score of 4 or higher further reduced biopsy rates and the detection of clinically insignificant prostate cancers compared with PSA-based screening, with no significant difference in clinically significant prostate cancer detection. The study concluded that prostate MRI with targeted biopsies may enhance the accuracy of prostate cancer detection and reduce the risk of overdiagnosis, but further assessment of the type and timing of MRI and biopsy is needed.

Several blood- or urine-based markers have been developed to triage men with elevated PSA, especially those with PSA levels ranging from 4 ng/mL to 10 ng/mL. These men should receive biopsy or MRI. Some of these markers have been combined into predictive scores, including the 4K Score, the Prostate Health Index Score, and the Mi Prostate Score.[8]

Prophylactic antibiotics, especially fluoroquinolones, are often used before transrectal needle biopsies. There are reports of increasing rates of sepsis, particularly with fluoroquinolone-resistant Escherichia coli, and hospitalization after the procedure.[9,10] Therefore, men who undergo transrectal biopsy should be told to seek medical attention immediately if they experience fever after biopsy.

References
  1. Webb JA, Shanmuganathan K, McLean A: Complications of ultrasound-guided transperineal prostate biopsy. A prospective study. Br J Urol 72 (5 Pt 2): 775-7, 1993. [PUBMED Abstract]
  2. Bjurlin MA, Wysock JS, Taneja SS: Optimization of prostate biopsy: review of technique and complications. Urol Clin North Am 41 (2): 299-313, 2014. [PUBMED Abstract]
  3. Barentsz JO, Weinreb JC, Verma S, et al.: Synopsis of the PI-RADS v2 Guidelines for Multiparametric Prostate Magnetic Resonance Imaging and Recommendations for Use. Eur Urol 69 (1): 41-9, 2016. [PUBMED Abstract]
  4. Kasivisvanathan V, Rannikko AS, Borghi M, et al.: MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med 378 (19): 1767-1777, 2018. [PUBMED Abstract]
  5. Ahdoot M, Wilbur AR, Reese SE, et al.: MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N Engl J Med 382 (10): 917-928, 2020. [PUBMED Abstract]
  6. Eklund M, Jäderling F, Discacciati A, et al.: MRI-Targeted or Standard Biopsy in Prostate Cancer Screening. N Engl J Med 385 (10): 908-920, 2021. [PUBMED Abstract]
  7. Fazekas T, Shim SR, Basile G, et al.: Magnetic Resonance Imaging in Prostate Cancer Screening: A Systematic Review and Meta-Analysis. JAMA Oncol 10 (6): 745-754, 2024. [PUBMED Abstract]
  8. Saltman A, Zegar J, Haj-Hamed M, et al.: Prostate cancer biomarkers and multiparametric MRI: is there a role for both in prostate cancer management? Ther Adv Urol 13: 1756287221997186, 2021 Jan-Dec. [PUBMED Abstract]
  9. Nam RK, Saskin R, Lee Y, et al.: Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol 183 (3): 963-8, 2010. [PUBMED Abstract]
  10. Liss MA, Chang A, Santos R, et al.: Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J Urol 185 (4): 1283-8, 2011. [PUBMED Abstract]

Treatment of Prostate Cancer

Because the efficacy of screening depends on the effectiveness of management of screen-detected lesions, studies of treatment efficacy in early-stage disease are relevant to the issue of screening. Treatment options for early-stage disease include radical prostatectomy, definitive radiation therapy, and active surveillance (no immediate treatment until indications of progression are present, but treatment is not designed with curative intent). Multiple series from various years and institutions have reported the outcomes of patients with localized prostate cancer who received no treatment but were followed with surveillance alone. Outcomes have also been reported for active treatments, but valid comparisons of efficacy between surgery, radiation therapy, and watchful waiting are seldom possible because of differences in reporting and selection factors in the various reported series.

A randomized trial in Scandinavian men published in 2002 explored the benefit of radical prostatectomy over watchful waiting in men with newly diagnosed, well-differentiated, or moderately well-differentiated prostate cancers of clinical stages T1b, T1c, or T2.[1] In this trial, 698 men younger than 75 years, most with clinically detected rather than screen-detected cancers (unlike most newly diagnosed patients in North America) were randomly assigned to the two-arm trial. After 5 years of follow-up, the difference in prostate cancer-specific mortality between radical prostatectomy and watchful waiting groups was 2%; after 10 years of follow-up, the difference was 5.3% (relative risk [RR], 0.56; 95% confidence interval [CI], 0.36–0.88). There was also a difference of about 5% in all-cause mortality that was apparent only after 10 years of follow-up (RR, 0.74; 95% CI, 0.56–0.99). Thus, to extend one life, 20 men with palpable, clinically localized prostate cancer would need to undergo radical prostatectomy rather than watchful waiting. Because most prostate cancers that are detected today with prostate-specific antigen (PSA) screening are not palpable, this study may not be directly generalizable to the average newly diagnosed patient in the United States.[2]

A Swedish retrospective study of a nationwide cohort of patients with localized prostate cancer aged 70 years or younger reported that 10-year prostate cancer-specific mortality was 2.4% among men diagnosed with clinically local stage T1a, T1b, or T1c, with a serum PSA of less than 10 ng/mL, and with a Gleason score of 2 to 6, referred to as low-risk cases, of which there were 2,686.[3] This subgroup analysis was derived from a cohort study of 6,849 men diagnosed between January 1, 1997 and December 31, 2002, aged 70 years or younger, who had local stage T1 to T2 with no signs of lymph node metastases or bone metastases, and a PSA serum level of less than 20 ng/mL, as was abstracted from the Swedish Cancer Registry, which captured 98% of solid tumors among men aged 75 years or younger. Cohort treatment options were surveillance (n = 2,021) or curative intent by radical prostatectomy (n = 3,399) or radiation therapy (n = 1,429), which were to be determined at the discretion of treating physicians. Surveillance or expectancy treatment was either active surveillance with curative treatment if progression occurred or watchful waiting—a strategy for administering hormonal treatment upon symptomatic progression.

Using all-cause mortality as the benchmark, the study calculated cumulative incidence mortality for the three treatment groups of the entire cohort and the low-risk subgroup. Surveillance was more common among men with high comorbidity and among men with low-risk tumors. The 10-year cumulative risk of death from prostate cancer for the entire 6,849-person cohort was 3.6% in the surveillance group and 2.7% in the curative-intent group, compared with the low-risk surveillance group (2.4%) and the low-risk curative-intent group (0.7%). Biases inherent in treatment assignment could not be accounted for adequately in the analysis, which prevented conclusions about the relative effectiveness of alternative treatments. However, a 10-year prostate cancer-specific mortality of 2.4% among patients with low-risk prostate cancer in the surveillance group suggested that surveillance may be a suitable treatment for many patients with low-risk disease compared, with the 19.2% 10-year risk of death from competing causes observed in the surveillance group and 10.2% in the curative-intent group of the total 6,849 person cohort.[3,4]

The Prostate Intervention Versus Observation Trial (PIVOT) was the first trial conducted in the PSA screening era that directly compared radical prostatectomy with watchful waiting.[5] From November 1994 through January 2002, 731 men aged 75 years or younger with localized prostate cancer were randomly assigned to one of the two management strategies. About 50% of the men had nonpalpable, screen-detected disease. After a median follow-up of 10 years (maximum up to about 15 years), there was no statistically significant difference in overall or prostate-specific mortality. For a more detailed description of the study and results, see the Treatment Option Overview for Prostate Cancer section in Prostate Cancer Treatment.

A second trial done in the PSA screening era, the Prostate Testing for Cancer and Treatment (ProtecT) study,[6] randomly assigned 1,643 men with localized prostate cancer equally to active monitoring, surgery, or radiation therapy. The primary end point was death from prostate cancer, and secondary outcomes were clinical (local) progression, metastases, and death from all causes. Active monitoring in this study, unlike the PIVOT and Scandinavian Prostate Cancer Group Trial 4 (SPCG-4) trials, used PSA levels to determine when more aggressive treatment would be administered. Within 9 months of randomization, compliance rates for the three groups were 88% for the monitoring group, 71% for the surgery group, and 74% for the radiation therapy group. By 10 years, 55% of men in the active monitoring group had undergone radical prostatectomy. Seventeen deaths occurred during the median 10 years of follow-up, and no significant differences were seen between the groups in prostate cancer-specific or all-cause mortality. More metastases (P = .004) and more disease progression (P < .001) were seen in the monitoring group. There were 62 cases of metastases and 204 cases of disease progression.

The results suggest that radical treatment has no effect on mortality, although the power to see cause-specific mortality effects was low. Avoidance of metastases or progression could be a rationale for more aggressive treatment, although another study [7] showed that active monitoring eliminated much of the pain and suffering caused by aggressive treatments.

In a substudy of ProtecT that examined patient-reported outcomes, the response rate was over 85% for most of the questionnaires used to examine quality of life. The study addressed urinary, bowel, and sexual function, and specific effects of treatment on quality of life, anxiety and depression, and general health. No methods were employed to deal with nonresponse or missing responses. In a quality-of-life study, nonresponse tends to be informative, so this is unusual.[7]

Results showed that men who had undergone prostatectomy reported more impotence and incontinence; men who received radiation therapy reported more bowel dysfunction; and men who received active monitoring reported the lowest levels of these adverse effects. In general, differences decreased over the 6 years that data were collected. Overall, mental and physical health did not differ by treatment.[7]

References
  1. Holmberg L, Bill-Axelson A, Helgesen F, et al.: A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N Engl J Med 347 (11): 781-9, 2002. [PUBMED Abstract]
  2. Bill-Axelson A, Holmberg L, Ruutu M, et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352 (19): 1977-84, 2005. [PUBMED Abstract]
  3. Stattin P, Holmberg E, Johansson JE, et al.: Outcomes in localized prostate cancer: National Prostate Cancer Register of Sweden follow-up study. J Natl Cancer Inst 102 (13): 950-8, 2010. [PUBMED Abstract]
  4. Bokhorst LP, Kranse R, Venderbos LD, et al.: Differences in Treatment and Outcome After Treatment with Curative Intent in the Screening and Control Arms of the ERSPC Rotterdam. Eur Urol 68 (2): 179-82, 2015. [PUBMED Abstract]
  5. Wilt TJ, Brawer MK, Jones KM, et al.: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367 (3): 203-13, 2012. [PUBMED Abstract]
  6. Hamdy FC, Donovan JL, Lane JA, et al.: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 375 (15): 1415-1424, 2016. [PUBMED Abstract]
  7. Donovan JL, Hamdy FC, Lane JA, et al.: Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 375 (15): 1425-1437, 2016. [PUBMED Abstract]

Methods to Improve the Performance of Serum PSA Measurement for the Early Detection of Prostate Cancer

Various methods to improve prostate-specific antigen (PSA) testing in early cancer detection have been developed (see below). The proportion of men who have abnormal PSA test results that revert to normal after 1 year is high (65%–83%, depending on the method).[1] This is likely because of a substantial biological or other variability in PSA levels in individual men. Several variables can affect PSA levels. Besides normal biological fluctuations that appear to occur,[1,2] pharmaceuticals such as finasteride (which reduces PSA by approximately 50%) and over-the-counter agents such as PC-SPES (an herbal agent that appears to have estrogenic effects) can affect PSA levels.[3,4] Some authors have suggested that ejaculation and digital rectal exam (DRE) can also affect PSA levels, but subsequent examination of these variables has found that they do not have a clinically important effect on PSA.[5]

Complexed PSA and Percent-Free PSA

Serum PSA exists in both free form and complexed to several protease inhibitors, especially alpha-1-antichymotrypsin. Assays for total PSA measure both free and complexed forms. Assays for free PSA are available. Complexed PSA can be found by subtracting free PSA from the total PSA. Several studies have addressed whether complexed PSA or percent-free PSA (ratio of free to total) are more sensitive and specific than total PSA. One retrospective study evaluated total PSA, free/total, and complexed PSA in a group of 300 men, 75 of whom had prostate cancer. Large values of total, small values of free/total, and large values of complexed PSA were associated with the presence of cancer; the authors chose the cutoff of each measure to yield 95% sensitivity and found estimated specificities of 21.8% in total PSA, 15.6% in free/total PSA, and 26.7% in complexed PSA.[6] The preponderance of evidence concerning the utility of complexed and percent-free PSA is not clear; however, total PSA remains the standard.

Several authors have considered whether complexed PSA or percent-free PSA in conjunction with total PSA can improve total PSA sensitivity. Of special interest is the gray zone of total PSA, the range from 2.5 ng/mL to 4.0 ng/mL. A meta-analysis of 18 studies addressed the added diagnostic benefit of percent-free PSA. There was no uniformity of cutoff among these studies. For cutoffs ranging from 8% to 25% (free/total), results ranged from about 45% sensitivity/95% specificity to 95% sensitivity/15% specificity.[7]

Percent-free PSA may be related to biological activity of the tumor. One study compared the percent-free PSA with the pathological features of prostate cancer among 108 men with clinically localized disease who ultimately underwent radical prostatectomy. Lower percent-free PSA values were associated with higher risk of extracapsular disease and greater capsular volume.[8] Similar findings were reported in another large series.[9]

Third-Generation PSA

The third-generation (ultrasensitive) PSA test is an enzyme immunometric assay intended strictly (or solely) as an aid in the management of patients with prostate cancer. The clinical usefulness of this assay as a diagnostic or screening test is unproven.[10,11]

Age-Adjusted PSA

Many series have noted that PSA levels increase with age, such that men without prostate cancer will have higher PSA values as they grow older. One study examined the impact of the use of age-adjusted PSA values during screening and estimated that it would reduce the false-positive screenings by 27% and overdiagnosis by more than 33%, while retaining 95% of any survival advantage gained by early diagnosis.[12] While age adjustment tends to improve sensitivity for younger men and specificity for older men, the trade-off in terms of more biopsies in younger men and potentially missed cancers in older men has prevented uniform acceptance of this approach.

PSA Velocity

Several studies have examined the potential added value of PSA velocity (change over time) for the detection of prostate cancer with mixed results. In a definitive analysis of the Prostate Cancer Prevention Trial (PCPT) data, in which full ascertainment was attempted, regardless of PSA value, PSA velocity added no independent value to the prediction of prostate cancer after adjustment for family history, age, race and ethnicity, PSA, and history of prostate biopsy. For this reason, in the PCPT risk calculator, PSA velocity is not an included variable.[13,14]

Alteration of PSA Cutoff Level

Several authors have explored the possibility of using PSA levels lower than 4.0 ng/mL as the upper limit of normal for screening examinations. One study screened 14,209 White men and 1,004 Black men for prostate cancer using an upper limit of normal of 2.5 ng/mL for PSA. A major confounding factor of this study was that only 40% of those men in whom a prostate biopsy was recommended underwent biopsy. Nevertheless, 27% of all men undergoing biopsy were found to have prostate cancer.[15] Several collaborating European jurisdictions, including Rotterdam (the Netherlands) and Finland, are conducting prostate cancer screening trials. In Rotterdam, data for 7,943 screened men between the ages of 55 and 74 years have been reported. Of the 534 men who had PSA levels between 3.0 ng/mL and 3.9 ng/mL, 446 (83.5%) had biopsies and 96 (18%) of these had prostate cancer. In all, 4.7% of the screened population had prostate cancer.[16] In Finland, 15,685 men were screened and 14% of screened men had PSA levels of at least 3.0 ng/mL. All men with PSAs higher than 4.0 ng/mL were recommended for diagnostic follow-up by DRE, ultrasound, and biopsy; 92% complied, and 2.6% of the 15,685 men screened were diagnosed with prostate cancer. Of the 801 men with screening PSAs between 3.0 ng/mL and 3.9 ng/mL (all biopsied), 22 (3%) had cancer. Of the 1,116 men with screening PSAs between 4.0 ng/mL and 9.9 ng/mL, 247 (22%) had cancer. Of the 226 men with screening PSAs of at least 10 ng/mL, 139 (62%) had cancer.[17] Several factors could have contributed to these differences, including background prostate cancer prevalence, background screening levels, and details regarding diagnostic follow-up practices; the necessary comparative data are not available.

Another study adopted a change in the PSA cutoff to a level of 3.0 ng/mL to study the impact of this change in 243 men with PSA levels between 3.0 ng/mL and 4.0 ng/mL. Thirty-two of the men (13.2%) were ultimately found to have prostate cancer. An analysis of radical prostatectomy specimens from this series found a mean tumor volume of 1.8 mL (range, 0.6–4.4). The extent of disease was significant in a number of cases, with positive margins in five cases and pathological pT3 disease in six cases.[18]

References
  1. Eastham JA, Riedel E, Scardino PT, et al.: Variation of serum prostate-specific antigen levels: an evaluation of year-to-year fluctuations. JAMA 289 (20): 2695-700, 2003. [PUBMED Abstract]
  2. Carter HB, Pearson JD, Waclawiw Z, et al.: Prostate-specific antigen variability in men without prostate cancer: effect of sampling interval on prostate-specific antigen velocity. Urology 45 (4): 591-6, 1995. [PUBMED Abstract]
  3. Andriole GL, Guess HA, Epstein JI, et al.: Treatment with finasteride preserves usefulness of prostate-specific antigen in the detection of prostate cancer: results of a randomized, double-blind, placebo-controlled clinical trial. PLESS Study Group. Proscar Long-term Efficacy and Safety Study. Urology 52 (2): 195-201; discussion 201-2, 1998. [PUBMED Abstract]
  4. DiPaola RS, Zhang H, Lambert GH, et al.: Clinical and biologic activity of an estrogenic herbal combination (PC-SPES) in prostate cancer. N Engl J Med 339 (12): 785-91, 1998. [PUBMED Abstract]
  5. Stenner J, Holthaus K, Mackenzie SH, et al.: The effect of ejaculation on prostate-specific antigen in a prostate cancer-screening population. Urology 51 (3): 455-9, 1998. [PUBMED Abstract]
  6. Brawer MK, Meyer GE, Letran JL, et al.: Measurement of complexed PSA improves specificity for early detection of prostate cancer. Urology 52 (3): 372-8, 1998. [PUBMED Abstract]
  7. Hoffman RM, Clanon DL, Littenberg B, et al.: Using the free-to-total prostate-specific antigen ratio to detect prostate cancer in men with nonspecific elevations of prostate-specific antigen levels. J Gen Intern Med 15 (10): 739-48, 2000. [PUBMED Abstract]
  8. Arcangeli CG, Humphrey PA, Smith DS, et al.: Percentage of free serum prostate-specific antigen as a predictor of pathologic features of prostate cancer in a screening population. Urology 51 (4): 558-64; discussion 564-5, 1998. [PUBMED Abstract]
  9. Pannek J, Rittenhouse HG, Chan DW, et al.: The use of percent free prostate specific antigen for staging clinically localized prostate cancer. J Urol 159 (4): 1238-42, 1998. [PUBMED Abstract]
  10. Taylor JA, Koff SG, Dauser DA, et al.: The relationship of ultrasensitive measurements of prostate-specific antigen levels to prostate cancer recurrence after radical prostatectomy. BJU Int 98 (3): 540-3, 2006. [PUBMED Abstract]
  11. Sakai I, Harada K, Kurahashi T, et al.: Usefulness of the nadir value of serum prostate-specific antigen measured by an ultrasensitive assay as a predictor of biochemical recurrence after radical prostatectomy for clinically localized prostate cancer. Urol Int 76 (3): 227-31, 2006. [PUBMED Abstract]
  12. Etzioni R, Cha R, Cowen ME: Serial prostate specific antigen screening for prostate cancer: a computer model evaluates competing strategies. J Urol 162 (3 Pt 1): 741-8, 1999. [PUBMED Abstract]
  13. Thompson IM, Ankerst DP, Chi C, et al.: Assessing prostate cancer risk: results from the Prostate Cancer Prevention Trial. J Natl Cancer Inst 98 (8): 529-34, 2006. [PUBMED Abstract]
  14. Vickers AJ, Savage C, O’Brien MF, et al.: Systematic review of pretreatment prostate-specific antigen velocity and doubling time as predictors for prostate cancer. J Clin Oncol 27 (3): 398-403, 2009. [PUBMED Abstract]
  15. Smith DS, Carvalhal GF, Mager DE, et al.: Use of lower prostate specific antigen cutoffs for prostate cancer screening in black and white men. J Urol 160 (5): 1734-8, 1998. [PUBMED Abstract]
  16. Schröder FH, Roobol-Bouts M, Vis AN, et al.: Prostate-specific antigen-based early detection of prostate cancer–validation of screening without rectal examination. Urology 57 (1): 83-90, 2001. [PUBMED Abstract]
  17. Määttänen L, Auvinen A, Stenman UH, et al.: Three-year results of the Finnish prostate cancer screening trial. J Natl Cancer Inst 93 (7): 552-3, 2001. [PUBMED Abstract]
  18. Lodding P, Aus G, Bergdahl S, et al.: Characteristics of screening detected prostate cancer in men 50 to 66 years old with 3 to 4 ng./ml. Prostate specific antigen. J Urol 159 (3): 899-903, 1998. [PUBMED Abstract]

Population Observations of Early Detection, Incidence, and Prostate Cancer Mortality

While digital rectal exam has been a staple of medical practice for many decades, prostate-specific antigen (PSA) did not come into common use until the late 1980s for the early diagnosis of prostate cancer. Following widespread dissemination of PSA testing, incidence rates rose abruptly. In a study of Medicare beneficiaries, a first-time PSA test was associated with a 4.7% likelihood of a prostate cancer diagnosis within 3 months. Subsequent tests were associated with statistically significant lower rates of prostate cancer diagnosis.[1]

A study examined trends in prostate cancer detection and diagnosis among 140,936 White men and 15,662 African American men diagnosed with prostate cancer between 1973 and 1994 by analyzing data from the National Cancer Institute’s Surveillance, Epidemiology, and End Results (SEER) database.[2] Substantial changes were found beginning in the late 1980s as use of PSA spread throughout the United States. Age at diagnosis fell, stage of disease at diagnosis decreased, and most tumors were noted to be moderately differentiated. For African American men, however, a larger proportion of tumors were poorly differentiated.

Because the outset of PSA screening beginning around 1988, incidence rates initially rose dramatically and fell, presumably as the fraction of the population undergoing their first PSA screening initially rose and subsequently fell. There has also been an observed decrease in mortality rates. In Olmsted County, Minnesota, age-adjusted prostate cancer mortality rates increased from 25.8 per 100,000 men from 1980 to 1984 to a peak of 34 per 100,000 from 1989 to 1992; rates subsequently decreased to 19.4 per 100,000 from 1993 to 1997.[3] Similar observations have been made elsewhere in the world,[4,5] leading some to hypothesize that the mortality decline is related to PSA testing. In Quebec, Canada, however, examinations of the association between the size of the increase in incidence rates (1989–1993) and the size of the decrease in mortality rates (1995–1999), by birth cohort and residential grouping, showed no correlation between these two variables.[5] This study suggests that, at least during this time frame, the decline in mortality was not related to widespread PSA testing.

Cause-of-death misclassification has also been studied as a possible explanation for changes in prostate cancer mortality. A relatively fixed rate was found at which individuals who had been diagnosed with prostate cancer were mislabeled as having died from prostate cancer. As such, the substantial increase in prostate cancer diagnoses in the late 1980s and early 1990s would then explain the increased rate of prostate cancer death during those years. As the rate of prostate cancer diagnosis fell in the early 1990s, this reduced rate of mislabeling death due to prostate cancer would fall, as would the overall rate of prostate cancer death.[6] Because the evidence in this respect is inconsistent, it remains unclear whether the causes of these mortality trends are chance, misclassification, early detection, improved treatments, or a combination of effects.

The incidence of distant-stage prostate carcinoma was relatively flat until 1991 and then started declining rapidly. This decline probably was caused by the shift to earlier stage disease associated with the rapid dissemination of PSA screening. This stage shift can have a fairly sizable and rapid impact on population mortality, but it is possible that other factors such as hormonal therapy are responsible for much of the decline in mortality. Ongoing randomized clinical trials in the United States and Europe are designed to determine whether a mortality benefit is associated with PSA screening.[7]

The Gleason score is an important prognostic measure relying on the pathological assessment of the architectural growth patterns of prostate biopsy. The Gleason grading system assigns a grade to each of the two largest areas of prostate cancer in the tissue samples. A sampling of eight or more biopsy cores improves the pathological grading accuracy.[8] Grades range from 1 to 5, with 1 being the most differentiated and 5 the least differentiated. Grade 3 tumors seldom have associated metastases, but metastases are common with grade 4 or grade 5 tumors. The two grades are added together to produce a Gleason score. A score of 2 to 4 is rarely given, 5 to 6 is low grade, 7 is intermediate grade, and 8 to 10 is high grade. The overall rate of concordance between original interpretations and review of the needle biopsy specimens has been reported to be 60%, with accuracy improving with increased tumor grade and percentage of tumor involvement in the biopsy specimen.[9]

As of 2005, approximately 90% of prostate cancers detected were clinically localized and had more favorable tumor characteristics or grades than in the pre-PSA screening era.[10] A retrospective population-cohort study using the Connecticut Tumor registry reviewed the mortality probability from prostate cancer given the patient’s age at diagnosis and tumor grade.[11] Patients were treated with either observation or immediate or delayed androgen withdrawal therapy, with a median observation of 24 years. This study was initiated before the PSA screening era. Transurethral resection or open surgery for benign prostatic hyperplasia identified 71% of the tumors incidentally. The prostate cancer mortality rate was 33 per 1,000 person-years during the first 15 years of follow-up (95% confidence interval [CI], 28–38) and 18 per 1,000 person-years after 15 years of follow-up (95% CI, 10–29). Men with low-grade prostate cancers had a minimal risk of dying from prostate cancer during 20 years of follow-up (Gleason score of 2 to 4; six deaths per 1,000 person-years; 95% CI, 2–11). Men with high-grade prostate cancers had an increased probability of dying from prostate cancer within 10 years of diagnosis (Gleason score of 8 to 10, 121 deaths per 1,000 person-years; 95% CI, 90–156). Men with tumors that had a Gleason score of 5 or 6 had an intermediate risk of prostate cancer death. The annual mortality rate from prostate cancer appears to remain stable after 15 years from diagnosis.[11]

References
  1. Legler JM, Feuer EJ, Potosky AL, et al.: The role of prostate-specific antigen (PSA) testing patterns in the recent prostate cancer incidence decline in the United States. Cancer Causes Control 9 (5): 519-27, 1998. [PUBMED Abstract]
  2. Farkas A, Schneider D, Perrotti M, et al.: National trends in the epidemiology of prostate cancer, 1973 to 1994: evidence for the effectiveness of prostate-specific antigen screening. Urology 52 (3): 444-8; discussion 448-9, 1998. [PUBMED Abstract]
  3. Roberts RO, Bergstralh EJ, Katusic SK, et al.: Decline in prostate cancer mortality from 1980 to 1997, and an update on incidence trends in Olmsted County, Minnesota. J Urol 161 (2): 529-33, 1999. [PUBMED Abstract]
  4. Bartsch G, Horninger W, Klocker H, et al.: Prostate cancer mortality after introduction of prostate-specific antigen mass screening in the Federal State of Tyrol, Austria. Urology 58 (3): 417-24, 2001. [PUBMED Abstract]
  5. Perron L, Moore L, Bairati I, et al.: PSA screening and prostate cancer mortality. CMAJ 166 (5): 586-91, 2002. [PUBMED Abstract]
  6. Feuer EJ, Merrill RM, Hankey BF: Cancer surveillance series: interpreting trends in prostate cancer–part II: Cause of death misclassification and the recent rise and fall in prostate cancer mortality. J Natl Cancer Inst 91 (12): 1025-32, 1999. [PUBMED Abstract]
  7. Feuer EJ, Mariotto A, Merrill R: Modeling the impact of the decline in distant stage disease on prostate carcinoma mortality rates. Cancer 95 (4): 870-80, 2002. [PUBMED Abstract]
  8. Makhlouf AA, Krupski TL, Kunkle D, et al.: The effect of sampling more cores on the predictive accuracy of pathological grade and tumour distribution in the prostate biopsy. BJU Int 93 (3): 271-4, 2004. [PUBMED Abstract]
  9. Coard KC, Freeman VL: Gleason grading of prostate cancer: level of concordance between pathologists at the University Hospital of the West Indies. Am J Clin Pathol 122 (3): 373-6, 2004. [PUBMED Abstract]
  10. Carroll PR: Early stage prostate cancer–do we have a problem with over-detection, overtreatment or both? J Urol 173 (4): 1061-2, 2005. [PUBMED Abstract]
  11. Albertsen PC, Hanley JA, Fine J: 20-year outcomes following conservative management of clinically localized prostate cancer. JAMA 293 (17): 2095-101, 2005. [PUBMED Abstract]

Digital Rectal Exam

Although digital rectal exam (DRE) has been used for many years, careful evaluation of this modality has yet to take place. The examination is inexpensive, relatively noninvasive, and nonmorbid and can be taught to nonprofessional health workers; however, its effectiveness depends on the skill and experience of the examiner. The possible contribution of routine annual screening by rectal examination in reducing prostate cancer mortality remains to be determined.

Several observational studies have examined process measures such as sensitivity and case-survival data, but without appropriate controls and with no adjustment for lead-time and length biases.[1,2]

In 1984, one study reported on 811 unselected patients aged 50 to 80 years who underwent rectal examination and follow-up.[3] Of 43 patients with a palpable abnormality in the prostate, 38 agreed to undergo biopsy. The positive predictive value (PPV) of a palpable nodule, i.e., prostate cancer on biopsy, was 29% (11 of 38). Further evaluation revealed that 45% of the cases were stage B, 36% were stage C, and 18% were stage D. More results from the same investigators revealed a 25% PPV, with 68% of the detected tumors clinically localized but only approximately 30% pathologically localized after radical prostatectomy.[4] Some investigators reported a high proportion of clinically localized disease when prostate cancer is detected by routine rectal examination,[5] while others reported that even with annual rectal examination, only 20% of cases are localized at diagnosis.[6] It has been reported that 25% of men presenting with metastatic disease had a normal prostate examination.[7] Another case-control study examining screening with both DRE and prostate-specific antigen (PSA) found a reduction in prostate cancer mortality that was not statistically significant (odds ratio [OR], 0.7; 95% confidence interval [CI], 0.46–1.1). Most men in this study were screened with DRE rather than PSA.[8] All four of these case-control studies are consistent with a reduction of 20% to 30% in prostate cancer mortality. Potential biases inherent in this study design, however, limit the ability to draw conclusions on the basis of this evidence alone.

Since PSA assays became widely available in the late 1980s, DRE alone is rarely discussed as a screening modality. Several studies have found that DRE has a poor predictive value for prostate cancer if PSA is at very low levels. In the European Study on Screening for Prostate Cancer, it was found that if DRE is used only for a PSA higher than 1.5 ng/mL (thus, no DRE is performed with PSA <1.5 ng/mL), 29% of all biopsies would be eliminated while maintaining a 95% prostate cancer detection sensitivity. By applying DRE only for patients with a PSA higher than 2.0 ng/mL, the biopsy rate would decrease by 36%, while sensitivity would drop to only 92%.[9] A previous report from this same institution found DRE to have poor performance characteristics. Among 10,523 men randomly assigned to screening, it was reported that the overall prostate cancer detection rate using PSA, DRE, and transrectal ultrasound was 4.5%, compared with only 2.5% if DRE alone was used. Among men with a PSA lower than 3.0 ng/mL, the PPV of DRE was only 4% to 11%.[10] Despite the poor performance of DRE, a retrospective case-control study of men in Olmsted County, Minnesota, who died of prostate cancer found that case patients were less likely to have undergone DRE during the 10 years before diagnosis of prostate cancer (OR, 0.51; 95% CI, 0.31–0.84). These data suggested that screening DREs may prevent 50% to 70% of deaths from prostate cancer.[11] Contrary to these findings, results from a case-control study of 150 men who ultimately died of prostate cancer were compared with 299 controls without disease. In this different population, a similar number of cases and controls had undergone DRE during the 10-year interval before prostate cancer diagnosis.[12] One case-control study reported no statistically significant association between routine screening with DRE and occurrence of metastatic prostate cancer.[13] The Prostate Cancer Prevention Trial requested that all men undergo prostate biopsy at study end to address ascertainment bias; the sensitivity of DRE for prostate cancer was 16.7%. The sensitivity increased to 21.3% in men receiving finasteride.[14]

References
  1. Gilbertsen VA: Cancer of the prostate gland. Results of early diagnosis and therapy undertaken for cure of the disease. JAMA 215 (1): 81-4, 1971. [PUBMED Abstract]
  2. Jenson CB, Shahon DB, Wangensteen OH: Evaluation of annual examinations in the detection of cancer. Special reference to cancer of the gastrointestinal tract, prostate, breast, and female generative tract. JAMA 174: 1783-8, 1960. [PUBMED Abstract]
  3. Chodak GW, Schoenberg HW: Early detection of prostate cancer by routine screening. JAMA 252 (23): 3261-4, 1984. [PUBMED Abstract]
  4. Chodak GW, Keller P, Schoenberg HW: Assessment of screening for prostate cancer using the digital rectal examination. J Urol 141 (5): 1136-8, 1989. [PUBMED Abstract]
  5. Donohue RE, Fauver HE, Whitesel JA, et al.: Staging prostatic cancer: a different distribution. J Urol 122 (3): 327-9, 1979. [PUBMED Abstract]
  6. Wajsman Z, Chu TM: Detection and diagnosis of prostatic cancer. In: Murphy GP, ed.: Prostatic cancer. PSG Pub. Co., 1987, pp 94-99.
  7. Thompson IM, Zeidman EJ: Presentation and clinical course of patients ultimately succumbing to carcinoma of the prostate. Scand J Urol Nephrol 25 (2): 111-4, 1991. [PUBMED Abstract]
  8. Weinmann S, Richert-Boe K, Glass AG, et al.: Prostate cancer screening and mortality: a case-control study (United States). Cancer Causes Control 15 (2): 133-8, 2004. [PUBMED Abstract]
  9. Beemsterboer PM, Kranse R, de Koning HJ, et al.: Changing role of 3 screening modalities in the European randomized study of screening for prostate cancer (Rotterdam). Int J Cancer 84 (4): 437-41, 1999. [PUBMED Abstract]
  10. Schröder FH, van der Maas P, Beemsterboer P, et al.: Evaluation of the digital rectal examination as a screening test for prostate cancer. Rotterdam section of the European Randomized Study of Screening for Prostate Cancer. J Natl Cancer Inst 90 (23): 1817-23, 1998. [PUBMED Abstract]
  11. Jacobsen SJ, Bergstralh EJ, Katusic SK, et al.: Screening digital rectal examination and prostate cancer mortality: a population-based case-control study. Urology 52 (2): 173-9, 1998. [PUBMED Abstract]
  12. Richert-Boe KE, Humphrey LL, Glass AG, et al.: Screening digital rectal examination and prostate cancer mortality: a case-control study. J Med Screen 5 (2): 99-103, 1998. [PUBMED Abstract]
  13. Friedman GD, Hiatt RA, Quesenberry CP, et al.: Case-control study of screening for prostatic cancer by digital rectal examinations. Lancet 337 (8756): 1526-9, 1991. [PUBMED Abstract]
  14. Thompson IM, Tangen CM, Goodman PJ, et al.: Finasteride improves the sensitivity of digital rectal examination for prostate cancer detection. J Urol 177 (5): 1749-52, 2007. [PUBMED Abstract]

PCA3

The U.S. Food and Drug Administration approved the PCA3 gene assay in early 2012 to aid in the decision for repeat biopsy in men with a previous negative biopsy for an elevated prostate-specific antigen (PSA) and for whom a repeat biopsy is being considered for a persistently elevated PSA. This test is performed on a urine sample collected after an attentive digital rectal exam (several strokes applied firmly to the prostate to the right and left prostatic lobes). Using a threshold value of 60, this test enhances the detection of prostate cancer while reducing the number of biopsies in men who are expected to ultimately have a negative biopsy.[1]

References
  1. PROGENSA® PCA3 Assay – P100033. Silver Spring, Md: U.S. Food and Drug Administration, 2012. Available online. Last accessed April 8, 2025.

Frequency of Screening

The optimal frequency and age range for prostate-specific antigen (PSA) testing and digital rectal exam are unknown.[13] Cancer detection rates have been reported to be similar for intervals of 1 to 4 years.[4] With serial annual screening in the Prostate, Lung, Colorectal, and Ovarian (PLCO) Cancer Screening Trial, 8% of men with baseline PSA lower than 1 ng/mL had a prostate cancer diagnosis within 2 years.[5] In the same trial, 2-year intervals in screening produced average delays of 5.4 to 6.5 months, while 4-year screening intervals produced average delays of 15.6 months (baseline PSA, <1 ng/mL) to 20.9 months (baseline PSA, 3–4 ng/mL).[5] While the authors caution that an optimal prostate screening frequency cannot be determined from these data, they conclude that among men who choose to be screened, these data may provide a context for determining a PSA screening schedule.

A report from the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial demonstrated that while more frequent screenings lead to more diagnosed cancers, the detection rate reported for aggressive interval cancers was very similar in the two countries despite their use of different screening frequencies (0.11 with a 4-year interval in Rotterdam and 0.12 with a 2-year interval in Gothenburg). The report suggests that mortality outcomes from the ERSPC (2- and 4-year intervals) and PLCO (1-year interval relative to opportunistic screening) trials should facilitate a more reliable assessment of the benefits and costs of different screening intervals.[6]

References
  1. Etzioni R, Cha R, Cowen ME: Serial prostate specific antigen screening for prostate cancer: a computer model evaluates competing strategies. J Urol 162 (3 Pt 1): 741-8, 1999. [PUBMED Abstract]
  2. Ross KS, Carter HB, Pearson JD, et al.: Comparative efficiency of prostate-specific antigen screening strategies for prostate cancer detection. JAMA 284 (11): 1399-405, 2000. [PUBMED Abstract]
  3. Carter HB, Landis PK, Metter EJ, et al.: Prostate-specific antigen testing of older men. J Natl Cancer Inst 91 (20): 1733-7, 1999. [PUBMED Abstract]
  4. van der Cruijsen-Koeter IW, Roobol MJ, Wildhagen MF, et al.: Tumor characteristics and prognostic factors in two subsequent screening rounds with four-year interval within prostate cancer screening trial, ERSPC Rotterdam. Urology 68 (3): 615-20, 2006. [PUBMED Abstract]
  5. Crawford ED, Pinsky PF, Chia D, et al.: Prostate specific antigen changes as related to the initial prostate specific antigen: data from the prostate, lung, colorectal and ovarian cancer screening trial. J Urol 175 (4): 1286-90; discussion 1290, 2006. [PUBMED Abstract]
  6. Roobol MJ, Grenabo A, Schröder FH, et al.: Interval cancers in prostate cancer screening: comparing 2- and 4-year screening intervals in the European Randomized Study of Screening for Prostate Cancer, Gothenburg and Rotterdam. J Natl Cancer Inst 99 (17): 1296-303, 2007. [PUBMED Abstract]

Types of Tumors Detected by Prostate Cancer Screening

Of serious concern regarding prostate cancer screening is the high prevalence of histologically defined cancer. It has been demonstrated that a considerable fraction (approximately one-third) of men in their fourth and fifth decades have histologically evident prostate cancer.[1] Most of these tumors are well-differentiated and microscopic in size. Conversely, evidence suggests that tumors of potential clinical importance are larger and of higher grade.[2] Since the inception of prostate-specific antigen (PSA) screening, the following events have occurred: (1) a contemporaneous but unrelated decrease in detection of transition-zone tumors, caused by a fall in the number of transurethral resections of the prostate due to the advent of effective treatment for benign prostatic hyperplasia (including alpha blockers and finasteride); and (2) an increase in detection of peripheral-zone tumors due to the incorporation of transrectal ultrasound-guided prostate biopsies. Because transition-zone tumors are predominantly low volume and low grade and because peripheral-zone tumors have a preponderance of moderate-grade and high-grade disease, the proportion of higher-grade tumors detected by current screening practices has increased substantially. A Detroit study found that between 1989 and 1996, poorly differentiated tumors remained stable and well-differentiated tumors fell in frequency while moderately differentiated disease increased in frequency. The largest rise in incidence was in clinically localized disease.[3] It is now known that systematic changes to the histological interpretation of biopsy specimens by anatomical pathologists has occurred during the PSA screening era (i.e., since about 1985) in the United States.[4] This phenomenon, sometimes called grade inflation, is the apparent increase in the distribution of high-grade tumors in the population over time but in the absence of a true biological or clinical change. It is possibly the result of an increasing tendency for pathologists to read tumor grade as more aggressive.[5]

Prostate biopsies in a small percentage of men will demonstrate prostatic intraepithelial neoplasia (PIN). High-grade PIN is not cancer but may predict an increased risk of prostate cancer. PSA does not appear to be elevated with PIN.[6,7]

References
  1. Sakr WA, Haas GP, Cassin BF, et al.: The frequency of carcinoma and intraepithelial neoplasia of the prostate in young male patients. J Urol 150 (2 Pt 1): 379-85, 1993. [PUBMED Abstract]
  2. Stamey TA, McNeal JE, Yemoto CM, et al.: Biological determinants of cancer progression in men with prostate cancer. JAMA 281 (15): 1395-400, 1999. [PUBMED Abstract]
  3. Schwartz KL, Grignon DJ, Sakr WA, et al.: Prostate cancer histologic trends in the metropolitan Detroit area, 1982 to 1996. Urology 53 (4): 769-74, 1999. [PUBMED Abstract]
  4. Albertsen PC, Hanley JA, Barrows GH, et al.: Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst 97 (17): 1248-53, 2005. [PUBMED Abstract]
  5. Thompson IM, Canby-Hagino E, Lucia MS: Stage migration and grade inflation in prostate cancer: Will Rogers meets Garrison Keillor. J Natl Cancer Inst 97 (17): 1236-7, 2005. [PUBMED Abstract]
  6. Lefkowitz GK, Sidhu GS, Torre P, et al.: Is repeat prostate biopsy for high-grade prostatic intraepithelial neoplasia necessary after routine 12-core sampling? Urology 58 (6): 999-1003, 2001. [PUBMED Abstract]
  7. O’Shaughnessy JA, Kelloff GJ, Gordon GB, et al.: Treatment and prevention of intraepithelial neoplasia: an important target for accelerated new agent development. Clin Cancer Res 8 (2): 314-46, 2002. [PUBMED Abstract]

Simulation Models

Several computer simulation models have been developed to analyze trends in prostate cancer detection. The models were also developed to compare these trends with the reported decrease in prostate cancer deaths observed in the United States since the early 1990s, to investigate the cost-effectiveness of various screening strategies, and to attempt to estimate overdiagnosis resulting from screening.

One of the first models looked at trends in prostate cancer detection compared with prostate cancer deaths between 1992 and 1994. Changes in prostate cancer mortality could not be explained entirely by prostate-specific antigen (PSA) screening alone.[1] Simulation modeling from the National Cancer Institute’s Cancer Intervention and Surveillance Modeling Network (CISNET) program suggested that the combination of changes in prostate cancer treatment, improvements in disease management after primary therapy, and screening contributed to the drop in prostate cancer mortality.[2] CISNET models calibrated to Surveillance, Epidemiology, and End Results (SEER) Program incidence data were also used to estimate overdiagnosis caused by PSA screening in the United States, suggesting 23% to 42% of all screen-detected prostate cancers were overdiagnosed.[3] An analysis using the Microsimulation Screening Analysis (MISCAN) model and data from the European Randomized Study of Screening for Prostate Cancer trial predicted the numbers of prostate cancers diagnosed, the prostate cancer deaths averted, the quality-adjusted life years gained, and the cost-effectiveness of 68 screening strategies.[4]

An example of the underlying assumptions and concerns about models is provided by a microsimulation modeling effort that examined the comparative effectiveness of 35 screening strategies, which varied by start and stop ages, screening intervals, and thresholds for biopsy referral.[5] The CISNET model assumes prostate cancer progression from onset to metastasis to clinical diagnosis in the absence of screening, with risks of events indicated by PSA levels. Event rates through the progression states are identified by matching model incidence to observed incidence, although it is not clear that the rates so identified are unique. Survival depends on stage at diagnosis, and screening is assumed to identify some cancers at an earlier stage than without screening, leading to a reduction in mortality. This stage-shift model is virtually guaranteed to produce a benefit of screening.

References
  1. Etzioni R, Legler JM, Feuer EJ, et al.: Cancer surveillance series: interpreting trends in prostate cancer–part III: Quantifying the link between population prostate-specific antigen testing and recent declines in prostate cancer mortality. J Natl Cancer Inst 91 (12): 1033-9, 1999. [PUBMED Abstract]
  2. Etzioni R, Gulati R, Tsodikov A, et al.: The prostate cancer conundrum revisited: treatment changes and prostate cancer mortality declines. Cancer 118 (23): 5955-63, 2012. [PUBMED Abstract]
  3. Draisma G, Etzioni R, Tsodikov A, et al.: Lead time and overdiagnosis in prostate-specific antigen screening: importance of methods and context. J Natl Cancer Inst 101 (6): 374-83, 2009. [PUBMED Abstract]
  4. Heijnsdijk EA, de Carvalho TM, Auvinen A, et al.: Cost-effectiveness of prostate cancer screening: a simulation study based on ERSPC data. J Natl Cancer Inst 107 (1): 366, 2015. [PUBMED Abstract]
  5. Gulati R, Gore JL, Etzioni R: Comparative effectiveness of alternative prostate-specific antigen–based prostate cancer screening strategies: model estimates of potential benefits and harms. Ann Intern Med 158 (3): 145-53, 2013. [PUBMED Abstract]

Providing Information to the Public, Patients, and Their Families

While awaiting results of current studies, physicians and men (and their partners) are faced with the dilemma of whether to recommend or request a screening test. A qualitative study undertaken on focus groups of men, physician experts, and couples with screened and unscreened men has explored types of information that may help inform a man making a decision regarding prostate-specific antigen screening.[1] At a minimum, men should be informed about the possibility that false-positive or false-negative test results can occur, that it is not known whether regular screening will reduce the number of deaths from prostate cancer, and that among experts, the recommendation to screen is controversial.[2,3]

References
  1. Chan EC, Sulmasy DP: What should men know about prostate-specific antigen screening before giving informed consent? Am J Med 105 (4): 266-74, 1998. [PUBMED Abstract]
  2. O’Connor AM, Stacey D, Rovner D, et al.: Decision aids for people facing health treatment or screening decisions. Cochrane Database Syst Rev (3): CD001431, 2001. [PUBMED Abstract]
  3. Volk RJ, Hawley ST, Kneuper S, et al.: Trials of decision aids for prostate cancer screening: a systematic review. Am J Prev Med 33 (5): 428-434, 2007. [PUBMED Abstract]

Harms of Screening

Screening increases the detection of indolent, unsuspected, and asymptomatic prostate cancer. Any potential benefits derived from screening asymptomatic men need to be weighed against the harms of screening and diagnostic procedures and treatments for prostate cancer. These harms are particularly burdensome to men with false-positive screening results and men who are unnecessarily treated because of overdiagnosis.

An unintended consequence of screening and biopsy is the erroneous assumption that a screened population is at increased risk of developing significant disease. In a study that examined the magnitude of prostate cancer risk associated with specific factors across the Selenium and Vitamin E Cancer Prevention Trial (SELECT) and Prostate Cancer Prevention Trial cohorts, the authors demonstrated that the likelihood of undergoing screening and biopsy depends on certain known or suspected risk factors. In turn, differential screening and biopsy can result in spurious conclusions regarding risk factors for prostate cancer.[1] For example, the authors explained that the labeling of a random characteristic such as blue eyes as a risk factor may increase biopsy rates among men with blue eyes, resulting in detection of indolent prostate cancer and leading to the inaccurate conclusion that blue eyes are a risk factor for prostate cancer.

Negative impacts of screen detection on measures of risk may include the following:

  • Interventions that may have no effect on prostate cancer course and may have harmful side effects.
  • Time, cost, and anxiety associated with a diagnosis of inconsequential disease.
  • Misdirection of research focus and resources.

Measurements of risk in men who undergo screening differ from measurements of risk in men who do not undergo screening. Past and current screening and biopsy practices may misrepresent prostate cancer risk factors. Better methods for identifying consequential prostate cancer are needed to avoid unnecessary biopsies.[1]

Three cohort studies in Sweden and the United States linked databases to examine the association between a new diagnosis of prostate cancer and cardiovascular events/death or suicide. One Swedish study found that in the first year after a diagnosis of prostate cancer, the risk of death from cardiovascular disease (CVD) was increased in men diagnosed with prostate cancer compared with men who were not diagnosed with prostate cancer (relative risk [RR], 1.9; 95% confidence interval [CI], 1.9–2.0; adjusted for age, calendar period, and time since diagnosis). The risk of death from CVD was highest in the first week after diagnosis (RR, 11.2; 95% CI, 10.4–12.1) and was also higher in younger men (age <54 years). These risks were lower in men diagnosed in the most recent time periods. Also, in the first year after diagnosis, the risk of committing suicide was higher for men who had been diagnosed with prostate cancer (RR, 2.6; 95% CI, 2.1–3.0; adjusted for age, calendar period, marital status, educational level, and history of psychiatric hospitalization). Again, this was highest in the first week after diagnosis (RR, 8.4; 95% CI, 1.9–22.7).[2] A second Swedish study largely confirmed these findings.[3]

A U.S. cohort study explored the association between prostate cancer diagnosis and CVD mortality or suicide in men diagnosed with prostate cancer, compared with population-level expected rates during three different time periods (preprostate-specific antigen [pre-PSA], peri-PSA, and post-PSA). For CVD mortality, the standardized mortality ratio (SMR) was elevated for men diagnosed with prostate cancer in the first month after diagnosis in all time periods (overall SMR, 2.05; 95% CI, 1.89–2.22), but the SMR decreased in later months during the first year (decreasing to <1.0 in the PSA time period). This association was not changed significantly by age, race, or tumor grade. SMRs were higher for nonmarried men, for men who lived in lower educational status or higher poverty counties, and for men with metastatic disease at diagnosis. Also, in the first 3 months after diagnosis, the SMR for suicide was higher in men with prostate cancer (SMR, 1.9; 95% CI, 1.4–2.6). In months 4 to 12, the SMR was lower but still greater than 1.0. The SMR for suicide, however, was greater than 1.0 only in the pre-PSA and peri-PSA time periods, but not in the post-PSA time period. SMR was higher for nonmarried men but did not vary by education or poverty.[4]

These data lend credence to the concern that overdiagnosis of prostate cancer due to screening could lead to an increased risk of CVD mortality or suicide.

Although there is no literature suggesting serious complications of digital rectal examination (DRE) or transrectal sonography, and the harms associated with venipuncture for PSA testing can be regarded as trivial, prostatic biopsies are associated with important complications. Transient fever, pain, hematospermia, and hematuria are all common, as are positive urine cultures.[57] Sepsis occurs in approximately 0.4% of men.[6,8]

Long-term complications of radical prostatectomy include urinary incontinence, urethral stricture, erectile dysfunction, and the morbidity associated with general anesthesia and a major surgical procedure. Fecal incontinence can also occur. The associated mortality rate is reported to be 0.1% to 1%, depending on age. In the population-based Prostate Cancer Outcomes Study, 8.4% of 1,291 men were incontinent and 59.9% were impotent at 18 or 24 months following radical prostatectomy. More than 40% of men reported that their sexual performance was a moderate-to-large problem. Both sexual and urinary function varied by age, with younger men relatively less affected.[8,9]

Definitive external-beam radiation therapy can result in acute cystitis, proctitis, and sometimes enteritis. These conditions are generally reversible but may be chronic. In the short-term, potency is preserved with irradiation in most cases but may diminish over time. A systematic review of evidence radiation therapy complications shows that 20% to 40% of men who had no erectile dysfunction before treatment developed dysfunction 12 to 24 months afterward. Furthermore, 2% to 16% of men who had no urinary incontinence before treatment developed dysfunction 12 to 24 months afterward, and about 18% of men had some bowel dysfunction 1 year after treatment. The magnitude of effects of brachytherapy has not been determined, but the spectrum of complications are similar.[10] Radiation to the prostate has been reported to increase the risk of secondary malignancies, most notably of the rectum and bladder. While the relative risk in a large Surveillance, Epidemiology and End Results (SEER)-based study was 1.26 (95% CI, 1.21–1.30), the absolute increase in risk is low. The same review of evidence found hormone therapy with luteinizing hormone-releasing hormone (LHRH) agonists reduces sexual function by 40% to 70%, and hormone therapy is associated with breast swelling in 5% to 25% of men. Hot flashes occur in 50% to 60% of men taking LHRH agonists.[8] For more information, see Prostate Cancer Treatment.

The question of whether prostate cancer treatment contributes to symptoms among screened prostate cancer survivors was addressed in an analysis from the Prostate, Lung, Colorectal and Ovarian (PLCO) Cancer Screening Trial. The randomized controlled PLCO analysis compared 529 prostate cancer survivors, 5 to 10 years postdiagnosis, with 514 noncancer controls, regarding prostate cancer-specific symptomatology. There was poorer sexual and urinary function among prostate cancer survivors compared with noncancer controls, suggesting that these symptoms are related to prostate cancer treatment, not aging or comorbidities.[11]

Screening has increased the incidence of prostate cancer. In the current medical climate, most early-stage prostate cancers are treated by radical surgery or irradiation with intent to eradicate the pathology. There is evidence that not all patients diagnosed with prostate cancer because of screening are in immediate need of curative treatment. Death from other causes often occurs before screen detected, localized, and well-differentiated malignancies affect the survival of these patients. To avoid overtreatment and consequent morbid events, active surveillance (AS) is an emerging strategy applicable in these kinds of cases wherein curative treatment is delayed pending objective medical evidence of disease progression.[12]

The effectiveness of AS was investigated retrospectively in the European Randomized Study of Screening for Prostate Cancer (ERSPC) trial. Data from 577 men diagnosed with prostate cancer because of periodic screening between 1994 and 2007 at a mean age of 66.3 years in four participating clinical centers in the Netherlands, Sweden, and Finland were evaluated. Selection criteria for inclusion in the analysis were:

  • PSA less than or equal to 10 ng/mL.
  • PSA density less than 0.2 ng/mL.
  • Stage T1C/T2.
  • Gleason score less than or equal to 3 + 3 = 6.
  • No more than two positive biopsy cores.

Men with positive lymph nodes or distant metastases at the time of diagnosis were excluded from the analysis. These are the same thresholds being applied in the (yet unreported) prospective Prostate Cancer Research International: Active Surveillance study on AS originating from ERSPC and in the (also unreported) protocol-based prospective study of AS in Canada.

The mean follow-up time for the 577 men in the retrospective assessment was 4.35 years (0–11.63 years). The calculated 10-year prostate cancer-specific survival rate was 100%. The overall 10-year survival rate was 77%. The calculated 10-year deferred treatment-free survival rate was 43%.

After 7.75 years, 50% of men had received treatment. The median treatment-free survival was 2.5 years. Men treated during follow-up were slightly younger at diagnosis than men remaining untreated (64.7 years vs. 67.0 years; P < .001). Of the 110 men shifting to active treatment despite favorable PSA levels and PSA doubling times, DRE was known in 53 of the men and played a role in nine of them, whereas rebiopsies were known in 27 of the men and played a role in none of them. On the basis of PSA characteristics, 1.9% of patients who remained untreated may have been better candidates for active treatment, while 55.8% of men who received active treatment were not obvious candidates for radical treatment, and neither DRE nor rebiopsy explained the discrepancy. Factors like anxiety and urologic complaints may have been more explanatory, but the data were not available.

The authors concluded that their data confirmed previous studies’ findings, that many screen-detected prostate cancers may be actively followed (e.g., AS), and curative treatment delayed, thereby delaying or avoiding the morbid consequences of radical therapy without diminishing survival. The authors also noted that a considerable fraction of men do not comply with the AS regimen, apparently for psychological reasons, and AS often resulted in delay, not avoidance, of radical therapy.

In the Prostate Testing for Cancer and Treatment (ProtecT) study, 1,643 men with localized prostate cancer were randomly assigned equally to active monitoring, surgery, or radiation therapy. The primary end point was death from prostate cancer, and secondary outcomes were clinical (local) progression, metastases, and death from all causes.[13]

In a substudy of ProtecT that examined patient-reported outcomes, the response rate was over 85% for most of the questionnaires used to examine quality of life. The study addressed urinary, bowel, and sexual function and specific effects on quality of life, anxiety and depression, and general health. No methods were employed to deal with nonresponse or missing responses. In a quality-of-life study, nonresponse tends to be informative, so this lapse is unusual.[14]

Results showed that men who had undergone prostatectomy reported more impotence and incontinence; men who received radiation reported more bowel dysfunction; and men who received active monitoring reported the lowest levels of these adverse effects. In general, differences decreased over the 6 years that data were collected. Overall, mental and physical health did not differ by treatment.[14]

Whatever the screening modality, the screening process itself can lead to psychological effects in men who have a prostate biopsy but do not have prostate cancer. One study of these men at 12 months after their negative biopsy who reported worrying that they may develop cancer (P < .001), showed large increases in prostate-cancer worry compared with men with a normal PSA (26% vs. 6%).[15] In the same study, biopsied men were more likely than those in the normal PSA group to have had at least one follow-up PSA test in the first year (73% vs. 42%; P < .001), more likely to have had another biopsy (15% vs. 1%; P < .001), and more likely to have visited a urologist (71% vs. 13%; P < .001).

References
  1. Tangen CM, Goodman PJ, Till C, et al.: Biases in Recommendations for and Acceptance of Prostate Biopsy Significantly Affect Assessment of Prostate Cancer Risk Factors: Results From Two Large Randomized Clinical Trials. J Clin Oncol 34 (36): 4338-4344, 2016. [PUBMED Abstract]
  2. Fall K, Fang F, Mucci LA, et al.: Immediate risk for cardiovascular events and suicide following a prostate cancer diagnosis: prospective cohort study. PLoS Med 6 (12): e1000197, 2009. [PUBMED Abstract]
  3. Carlsson S, Sandin F, Fall K, et al.: Risk of suicide in men with low-risk prostate cancer. Eur J Cancer 49 (7): 1588-99, 2013. [PUBMED Abstract]
  4. Fang F, Keating NL, Mucci LA, et al.: Immediate risk of suicide and cardiovascular death after a prostate cancer diagnosis: cohort study in the United States. J Natl Cancer Inst 102 (5): 307-14, 2010. [PUBMED Abstract]
  5. Aus G, Ahlgren G, Bergdahl S, et al.: Infection after transrectal core biopsies of the prostate–risk factors and antibiotic prophylaxis. Br J Urol 77 (6): 851-5, 1996. [PUBMED Abstract]
  6. Rietbergen JB, Kruger AE, Kranse R, et al.: Complications of transrectal ultrasound-guided systematic sextant biopsies of the prostate: evaluation of complication rates and risk factors within a population-based screening program. Urology 49 (6): 875-80, 1997. [PUBMED Abstract]
  7. Sharpe JR, Sadlowski RW, Finney RP, et al.: Urinary tract infection after transrectal needle biopsy of the prostate. J Urol 127 (2): 255-6, 1982. [PUBMED Abstract]
  8. Walter LC, Fung KZ, Kirby KA, et al.: Five-year downstream outcomes following prostate-specific antigen screening in older men. JAMA Intern Med 173 (10): 866-73, 2013. [PUBMED Abstract]
  9. Stanford JL, Feng Z, Hamilton AS, et al.: Urinary and sexual function after radical prostatectomy for clinically localized prostate cancer: the Prostate Cancer Outcomes Study. JAMA 283 (3): 354-60, 2000. [PUBMED Abstract]
  10. Screening for Prostate Cancer. Rockville, Md: U.S. Preventive Services Task Force, 2011. Available online. Last accessed April 8, 2025.
  11. Taylor KL, Luta G, Miller AB, et al.: Long-term disease-specific functioning among prostate cancer survivors and noncancer controls in the prostate, lung, colorectal, and ovarian cancer screening trial. J Clin Oncol 30 (22): 2768-75, 2012. [PUBMED Abstract]
  12. Mahal BA, Butler S, Franco I, et al.: Use of Active Surveillance or Watchful Waiting for Low-Risk Prostate Cancer and Management Trends Across Risk Groups in the United States, 2010-2015. JAMA 321 (7): 704-706, 2019. [PUBMED Abstract]
  13. Hamdy FC, Donovan JL, Lane JA, et al.: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 375 (15): 1415-1424, 2016. [PUBMED Abstract]
  14. Donovan JL, Hamdy FC, Lane JA, et al.: Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 375 (15): 1425-1437, 2016. [PUBMED Abstract]
  15. Fowler FJ, Barry MJ, Walker-Corkery B, et al.: The impact of a suspicious prostate biopsy on patients’ psychological, socio-behavioral, and medical care outcomes. J Gen Intern Med 21 (7): 715-21, 2006. [PUBMED Abstract]

Latest Updates to This Summary (04/08/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Incidence and Mortality of Prostate Cancer

Updated statistics with estimated new cases and deaths for 2025 (cited American Cancer Society as reference 1). Also revised text to state that between 1993 and 2022, prostate cancer mortality rates declined by about 50%. However, between 1993 and 2012, mortality rates decreased from 3.6% per year to 0.5% per year, respectively. This trend may reflect an increase in advanced-stage diagnoses.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about prostate cancer screening. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Prostate Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/prostate/hp/prostate-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389383]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Prostate Cancer Treatment (PDQ®)–Health Professional Version

Prostate Cancer Treatment (PDQ®)–Health Professional Version

General Information About Prostate Cancer

The median age at diagnosis of prostate cancer is 67 years.[1] Prostate cancer may be cured when localized, and it frequently responds to treatment when widespread. The rate of tumor growth varies from very slow to moderately rapid, and some patients may have prolonged survival even after the cancer has metastasized to distant sites, such as bone. The 5-year relative survival rate for men diagnosed in the United States from 2014 to 2020 with local or regional disease was greater than 99%, and the rate for distant disease was 37%; a 97% survival rate was observed for all stages combined.[2] The approach to treatment is influenced by age and coexisting medical problems. Side effects of various forms of treatment should be considered in selecting appropriate management.

Many patients—especially those with localized tumors—may die of other illnesses without ever having suffered disability from prostate cancer, even if managed conservatively without an attempt at curative therapy.[3,4] In part, these favorable outcomes are likely the result of widespread screening with the prostate-specific antigen (PSA) test, which can identify patients with asymptomatic tumors that have little or no lethal potential.[5] The prevalence of clinically indolent tumors is estimated at 30% to 70% in men older than 60 years, based on autopsy series of men dying of causes unrelated to prostate cancer.[6,7]

Because diagnostic methods have changed over time, any analysis of survival after treatment of prostate cancer and comparison of the various treatment strategies is complicated by evidence of increasing diagnosis of nonlethal tumors. Nonrandomized comparisons of treatments may be confounded not only by patient selection factors but also by time trends.

For example, a population-based study in Sweden showed that, from 1960 to the late 1980s, before the use of PSA for screening purposes, long-term relative survival rates after the diagnosis of prostate cancer improved substantially as more sensitive methods of diagnosis were introduced. This occurred despite the use of watchful waiting or active surveillance or palliative hormonal treatment as the most common treatment strategies for localized prostate cancer during the entire era (<150 radical prostatectomies per year were performed in Sweden during the late 1980s). The investigators estimated that, if all prostate cancers diagnosed between 1960 and 1964 were of the lethal variety, then at least 33% of cancers diagnosed between 1980 and 1984 were of the nonlethal variety.[8][Level of evidence C1] With the advent of PSA screening as the most common method of detection in the United States, the ability to diagnose nonlethal prostate cancers has further increased.

Another issue complicating comparisons of outcomes among nonconcurrent series of patients is the possibility of changes in criteria for the histological diagnosis of prostate cancer.[9] This phenomenon creates a statistical artifact that can produce a false sense of therapeutic accomplishment and may also lead to more aggressive therapy.

Controversy exists about the value of screening, the most appropriate staging evaluation, and the optimal treatment of each stage of the disease.[1014]

Incidence and Mortality

Estimated new cases and deaths from prostate cancer in the United States in 2025:[1,2]

  • New cases: 313,780.
  • Deaths: 35,770.

Anatomy

EnlargeDrawing of the male reproductive system and urinary system anatomy showing the front and side views of the ureters, bladder, prostate gland, vas deferens, urethra, penis, and testicles. A side view of the seminal vesicle and ejaculatory duct is also shown. The drawing also shows front and side views of the rectum and lymph nodes in the pelvis.
Figure 1. Anatomy of the male reproductive and urinary systems.

Screening

Screening for prostate cancer is controversial. In the United States, most prostate cancers are diagnosed because of screening, either with a PSA blood test or, less frequently, with a digital rectal examination. Randomized trials have yielded conflicting results.[1517] Systematic literature reviews and meta-analyses have reported no clear evidence that screening for prostate cancer decreases the risk of death from prostate cancer, or that the benefits outweigh the harms of screening.[18,19]

For a detailed summary of evidence regarding the benefits and harms of screening for prostate cancer, see Prostate Cancer Screening.

Pathology

More than 95% of primary prostate cancers are adenocarcinomas. Prostate adenocarcinomas are frequently multifocal and heterogeneous in patterns of differentiation. Prostatic intraepithelial neoplasia (PIN) (noninvasive atypical epithelial cells within benign-appearing acini) is often present in association with prostatic adenocarcinoma. PIN is subdivided into low grade and high grade. The high-grade form may be a precursor of adenocarcinoma.[20]

Several rare tumors account for the rest of the cases. These include:

  • Small-cell tumors.
  • Intralobular acinar carcinomas.
  • Ductal carcinomas.
  • Clear cell carcinomas.
  • Mucinous carcinomas.[21]

Gleason score

The histological grade of prostate adenocarcinomas is usually reported according to one of the variations of the Gleason scoring system, which provides a useful, albeit crude, adjunct to tumor staging in determining prognosis.[21] The Gleason score is calculated based on the dominant histological grades, from grade 1 (well differentiated) to grade 5 (very poorly differentiated). The classical score is derived by adding the two most prevalent pattern grades, yielding a score ranging from 2 to 10. Because there is some evidence that the least-differentiated component of the specimen may provide independent prognostic information, the score is often provided by its separate components (e.g., Gleason score 3 + 4 = 7; or 4 + 3 = 7).[22]

There is evidence that, over time, pathologists have tended to award higher Gleason scores to the same histological patterns, a phenomenon sometimes termed grade inflation.[23,24] This phenomenon complicates comparisons of outcomes in current versus historical patient series. For example, prostate biopsies from a population-based cohort of 1,858 men diagnosed with prostate cancer from 1990 through 1992 were re-read in 2002 to 2004.[23,24] The contemporary Gleason score readings were an average of 0.85 points higher (95% confidence interval, 0.79–0.91; P < .001) than the same slides read a decade earlier. As a result, Gleason-score standardized prostate cancer mortality rates for these men were artifactually improved from 2.08 to 1.50 deaths per 100-person years—a 28% decrease even though overall outcomes were unchanged.

Molecular markers

A number of tumor markers are associated with the outcome of patients with prostate cancer, including:[20,21]

  • Markers of apoptosis including Bcl-2, Bax.
  • Markers of proliferation rate, such as Ki67.
  • TP53 variant or expression.
  • p27.
  • E-cadherin.
  • Microvessel density.
  • DNA ploidy.
  • p16.
  • PTEN gene hypermethylation and allelic losses.

However, none of these has been prospectively validated, and they are not a part of the routine management of patients.

Clinical Presentation

In the United States, most prostate cancers are diagnosed as a result of screening; therefore, symptoms of cancer are infrequent at the time of diagnosis.[21] Nevertheless, local growth of the tumor may produce symptoms of urinary obstruction such as:

  • Decreased urinary stream.
  • Urgency.
  • Hesitancy.
  • Nocturia.
  • Incomplete bladder emptying.

These symptoms are nonspecific and more indicative of benign prostatic hyperplasia than cancer.

Although rare in the current era of widespread screening, prostate cancer may also present with symptoms of metastases, including bone pain, pathological fractures, or symptoms caused by bone marrow involvement.

Diagnostic Evaluation

Needle biopsy is the most common method used to diagnose prostate cancer. Most urologists now perform a transrectal biopsy using a bioptic gun with ultrasound guidance. Less frequently, a transperineal ultrasound-guided approach can be used in patients who may be at increased risk of complications from a transrectal approach.[25] Over the years, there has been a trend toward taking eight to ten or more biopsy samples from several areas of the prostate with a consequent increased yield of cancer detection after an elevated PSA blood test.[21]

The use of magnetic resonance imaging (MRI)−directed biopsy in the initial diagnostic evaluation of prostate cancer is also being studied, either as a replacement for, or in addition to, standard systematic prostate needle biopsies. The data have been reported primarily by experienced MRI radiologists and urologists in referral centers, and generalizability of results is uncertain. A multicenter randomized trial of 500 patients has shown that, in experienced hands, a multiparametric MRI-directed biopsy is more accurate than a transrectal-guided biopsy to detect clinically significant cancers. MRI led to the detection of more Gleason score (≥7) lesions and fewer Gleason score (<7) lesions, with fewer biopsies overall.[26] The data suggested that MRI-directed biopsy can replace standard transrectal-guided biopsies. However, a large, single-arm, single-center study of 2,103 men with MRI-visible lesions who underwent both MRI-directed biopsies and standard systematic prostate needle biopsies under ultrasound visualization suggested otherwise.[27] In that study, MRI-directed biopsies alone led to misclassification of 8.8% of cancers defined as clinically significant (Gleason score 4 + 3 or higher) compared with the combination of both biopsy techniques. Both studies reported only on histology end points at the time of diagnosis, rather than health outcomes on follow-up.

Prophylactic antibiotics, especially fluoroquinolones, are often used before transrectal needle biopsies. There are reports of increasing rates of sepsis, particularly with fluoroquinolone-resistant Escherichia coli, and hospitalization after the procedure.[28,29] Therefore, men undergoing transrectal biopsy should be told to seek medical attention immediately if they experience fever after biopsy.

Prognostic Factors

The following factors influence the survival of patients with prostate cancer:[3034]

Extent of tumor

When the cancer is confined to the prostate gland, long-term prognosis is excellent. Locally advanced cancer is not usually curable, but 5-year survival is still very good. If prostate cancer has spread to distant organs, current therapy will not cure it. Median survival is usually 1 to 3 years, and most of these patients will die of prostate cancer. Even in this group of patients, indolent clinical courses lasting for many years may be observed.

Histological grade of tumor

Poorly differentiated tumors are more likely to have metastasized before diagnosis and are associated with a poorer prognosis. The most commonly used method to report tumor differentiation is the Gleason score. For more information, see the Pathology section.

Patient’s age and health

Any benefits of definitive local therapy with curative intent may take years to emerge. Therefore, therapy with curative intent is usually reserved for men with a sufficiently long life expectancy. For example, radical prostatectomy is often reserved for men with an estimated life expectancy of at least 10 years.

Prostate-specific antigen (PSA) level

PSA, an organ-specific marker, is often used as a tumor marker.[32,33,3540] The higher the level of PSA at baseline, the higher the risk of metastatic disease or subsequent disease progression. However, it is an imprecise marker of risk.

For example, baseline PSA and rate of PSA change were associated with subsequent metastasis or prostate cancer death in a cohort of 267 men with clinically localized prostate cancer who were managed by watchful waiting or active surveillance in the control arm of a randomized trial comparing radical prostatectomy with watchful waiting or active surveillance.[41,42] Nevertheless, the accuracy of classifying men into groups whose cancer remained indolent versus those whose cancer progressed was poor at all examined cut points of PSA or PSA rate of change.

Serum acid phosphatase levels

Elevations of serum acid phosphatase are associated with poor prognosis in both localized and disseminated disease. However, serum acid phosphatase levels are not incorporated into the American Joint Committee on Cancer’s staging system for prostate cancer.[35]

Use of nomograms as a prognostic tool

Several nomograms have been developed to predict outcomes either before radical prostatectomy [4346] or after radical prostatectomy [47,48] with intent to cure. Preoperative nomograms are based on clinical stage, PSA level, Gleason score, and the number of positive and negative prostate biopsy cores. One independently validated nomogram demonstrated increased accuracy in predicting biochemical recurrence-free survival by including preoperative plasma levels of transforming growth factor B1 and interleukin-6 soluble receptor.[49,50]

Postoperative nomograms add pathological findings, such as capsular invasion, surgical margins, seminal vesicle invasion, and lymph node involvement. The nomograms, however, were developed at academic centers and may not be as accurate when generalized to nonacademic hospitals, where most patients are treated.[51,52] In addition, the nomograms use nonhealth (intermediate) outcomes, such as PSA rise or pathological surgical findings, and subjective end points, such as the physician’s perceived need for additional therapy. In addition, the nomograms may be affected by changing methods of diagnosis or neoadjuvant therapy.[44]

Follow-Up After Treatment

The optimal follow-up strategy for men treated for prostate cancer is uncertain. Men should be interviewed and examined for symptoms or signs of recurrent or progressing disease, as well as side effects of therapy that can be managed by changes in therapy. However, using surrogate end points for clinical decision-making is controversial, and the evidence that changing therapy based on such end points translates into clinical benefit is weak. Often, rates of PSA change are thought to be markers of tumor progression. However, even though a tumor marker or characteristic may be consistently associated with a high risk of prostate cancer progression or death, it may be a poor predictor and of limited utility in making therapeutic decisions.

Although the PSA test is nearly universally used to follow patients, the diversity of recommendations on follow-up care reflects the lack of research evidence on which to base firm conclusions. A systematic review of international guidelines highlights the need for robust primary research to inform future evidence-based models of follow-up care for men with prostate cancer.[53]

Preliminary data from a retrospective cohort of 8,669 patients with clinically localized prostate cancer treated with either radical prostatectomy or radiation therapy suggested that short posttreatment PSA doubling time (<3 months in this study) fulfills some criteria as a surrogate end point for all-cause mortality and prostate cancer-specific mortality after surgery or radiation therapy.[54]

Likewise, a retrospective analysis (SWOG-S9916 [NCT00004001]) showed PSA declines of 20% to 40% (but not 50%) at 3 months and 30% or more at 2 months after initiation of chemotherapy for hormone-independent prostate cancer, and fulfilled several criteria of surrogacy for overall survival (OS).[55]

These observations should be independently confirmed in prospective study designs and may not apply to patients treated with hormonal therapy. In addition, there are no standardized criteria of surrogacy or standardized cut points for adequacy of surrogate end points, even in prospective trials.[56]

Follow-up after radical prostatectomy

After radical prostatectomy, a detectable PSA level identifies patients at elevated risk of local treatment failure or metastatic disease;[37] however, a substantial proportion of patients with an elevated or rising PSA level after surgery remain clinically free of symptoms for extended periods.[57] Biochemical evidence of failure on the basis of elevated or slowly rising PSA alone, therefore, may not be sufficient to initiate additional treatment.

For example, in a retrospective analysis of nearly 2,000 men who had undergone radical prostatectomy with curative intent and were followed for a mean of 5.3 years, 315 men (15%) demonstrated an abnormal PSA of 0.2 ng/mL or higher, which is considered evidence of biochemical recurrence. Among these 315 men, 103 (34%) developed clinical evidence of recurrence. The median time to the development of clinical metastasis after biochemical recurrence was 8 years. After the men developed metastatic disease, the median time to death was an additional 5 years.[58]

Follow-up after radiation therapy

For patients treated with radiation therapy, the combination of clinical tumor stage, Gleason score, and pretreatment PSA level is often used to estimate the risk of relapse.[59][Level of evidence C2] As is the case after prostatectomy, PSA is often followed for signs of tumor recurrence after radiation therapy. After radiation therapy with curative intent, persistently elevated or rising PSA may be a prognostic factor for clinical disease recurrence; however, reported case series have used a variety of definitions of PSA failure. The American Society for Therapeutic Radiology and Oncology Consensus Panel has developed criteria.[60,61] It is difficult to base decisions about initiating additional therapy on biochemical failure alone. The implication of the various definitions of PSA failure for OS is not known, and, as in the surgical series, many biochemical relapses (rising PSA only) may not be clinically manifested in patients treated with radiation therapy.[62,63]

Follow-up after hormonal therapy

After hormonal therapy, reduction of PSA to undetectable levels provides information regarding the duration of progression-free status; however, decreases in PSA of less than 80% may not be predictive.[32] Because PSA expression itself is under hormonal control, androgen deprivation therapy can decrease the serum level of PSA independent of tumor response. Clinicians, therefore, cannot rely solely on the serum PSA level to monitor a patient’s response to hormonal therapy; they must also follow clinical criteria.[64]

References
  1. National Cancer Institute: SEER Stat Fact Sheets: Prostate. Bethesda, Md: National Cancer Institute. Available online. Last accessed April 8, 2025.
  2. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  3. Lu-Yao GL, Albertsen PC, Moore DF, et al.: Outcomes of localized prostate cancer following conservative management. JAMA 302 (11): 1202-9, 2009. [PUBMED Abstract]
  4. Albertsen PC, Moore DF, Shih W, et al.: Impact of comorbidity on survival among men with localized prostate cancer. J Clin Oncol 29 (10): 1335-41, 2011. [PUBMED Abstract]
  5. Welch HG, Albertsen PC: Prostate cancer diagnosis and treatment after the introduction of prostate-specific antigen screening: 1986-2005. J Natl Cancer Inst 101 (19): 1325-9, 2009. [PUBMED Abstract]
  6. Welch HG, Black WC: Overdiagnosis in cancer. J Natl Cancer Inst 102 (9): 605-13, 2010. [PUBMED Abstract]
  7. Zlotta AR, Egawa S, Pushkar D, et al.: Prevalence of prostate cancer on autopsy: cross-sectional study on unscreened Caucasian and Asian men. J Natl Cancer Inst 105 (14): 1050-8, 2013. [PUBMED Abstract]
  8. Helgesen F, Holmberg L, Johansson JE, et al.: Trends in prostate cancer survival in Sweden, 1960 through 1988: evidence of increasing diagnosis of nonlethal tumors. J Natl Cancer Inst 88 (17): 1216-21, 1996. [PUBMED Abstract]
  9. Berner A, Harvei S, Skjorten FJ: Follow-up of localized prostate cancer, with emphasis on previous undiagnosed incidental cancer. BJU Int 83 (1): 47-52, 1999. [PUBMED Abstract]
  10. Garnick MB: Prostate cancer: screening, diagnosis, and management. Ann Intern Med 118 (10): 804-18, 1993. [PUBMED Abstract]
  11. Croswell JM, Kramer BS, Crawford ED: Screening for prostate cancer with PSA testing: current status and future directions. Oncology (Williston Park) 25 (6): 452-60, 463, 2011. [PUBMED Abstract]
  12. Bill-Axelson A, Holmberg L, Ruutu M, et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352 (19): 1977-84, 2005. [PUBMED Abstract]
  13. Wilt TJ, Brawer MK, Jones KM, et al.: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367 (3): 203-13, 2012. [PUBMED Abstract]
  14. Hegarty J, Beirne PV, Walsh E, et al.: Radical prostatectomy versus watchful waiting for prostate cancer. Cochrane Database Syst Rev (11): CD006590, 2010. [PUBMED Abstract]
  15. Andriole GL, Grubb RL, Buys SS, et al.: Mortality results from a randomized prostate-cancer screening trial. N Engl J Med 360 (13): 1310-9, 2009. [PUBMED Abstract]
  16. Schröder FH, Hugosson J, Roobol MJ, et al.: Screening and prostate-cancer mortality in a randomized European study. N Engl J Med 360 (13): 1320-8, 2009. [PUBMED Abstract]
  17. Sandblom G, Varenhorst E, Rosell J, et al.: Randomised prostate cancer screening trial: 20 year follow-up. BMJ 342: d1539, 2011. [PUBMED Abstract]
  18. Djulbegovic M, Beyth RJ, Neuberger MM, et al.: Screening for prostate cancer: systematic review and meta-analysis of randomised controlled trials. BMJ 341: c4543, 2010. [PUBMED Abstract]
  19. Ilic D, O’Connor D, Green S, et al.: Screening for prostate cancer: an updated Cochrane systematic review. BJU Int 107 (6): 882-91, 2011. [PUBMED Abstract]
  20. Nelson WG, De Marzo AM, Isaacs WB: Prostate cancer. N Engl J Med 349 (4): 366-81, 2003. [PUBMED Abstract]
  21. Zelefsky MJ, Eastham JA, Sartor AO: Cancer of the prostate. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Lippincott Williams & Wilkins, 2011, pp 1220-71.
  22. Chan TY, Partin AW, Walsh PC, et al.: Prognostic significance of Gleason score 3+4 versus Gleason score 4+3 tumor at radical prostatectomy. Urology 56 (5): 823-7, 2000. [PUBMED Abstract]
  23. Albertsen PC, Hanley JA, Barrows GH, et al.: Prostate cancer and the Will Rogers phenomenon. J Natl Cancer Inst 97 (17): 1248-53, 2005. [PUBMED Abstract]
  24. Thompson IM, Canby-Hagino E, Lucia MS: Stage migration and grade inflation in prostate cancer: Will Rogers meets Garrison Keillor. J Natl Cancer Inst 97 (17): 1236-7, 2005. [PUBMED Abstract]
  25. Webb JA, Shanmuganathan K, McLean A: Complications of ultrasound-guided transperineal prostate biopsy. A prospective study. Br J Urol 72 (5 Pt 2): 775-7, 1993. [PUBMED Abstract]
  26. Kasivisvanathan V, Rannikko AS, Borghi M, et al.: MRI-Targeted or Standard Biopsy for Prostate-Cancer Diagnosis. N Engl J Med 378 (19): 1767-1777, 2018. [PUBMED Abstract]
  27. Ahdoot M, Wilbur AR, Reese SE, et al.: MRI-Targeted, Systematic, and Combined Biopsy for Prostate Cancer Diagnosis. N Engl J Med 382 (10): 917-928, 2020. [PUBMED Abstract]
  28. Nam RK, Saskin R, Lee Y, et al.: Increasing hospital admission rates for urological complications after transrectal ultrasound guided prostate biopsy. J Urol 183 (3): 963-8, 2010. [PUBMED Abstract]
  29. Liss MA, Chang A, Santos R, et al.: Prevalence and significance of fluoroquinolone resistant Escherichia coli in patients undergoing transrectal ultrasound guided prostate needle biopsy. J Urol 185 (4): 1283-8, 2011. [PUBMED Abstract]
  30. Gittes RF: Carcinoma of the prostate. N Engl J Med 324 (4): 236-45, 1991. [PUBMED Abstract]
  31. Paulson DF, Moul JW, Walther PJ: Radical prostatectomy for clinical stage T1-2N0M0 prostatic adenocarcinoma: long-term results. J Urol 144 (5): 1180-4, 1990. [PUBMED Abstract]
  32. Matzkin H, Eber P, Todd B, et al.: Prognostic significance of changes in prostate-specific markers after endocrine treatment of stage D2 prostatic cancer. Cancer 70 (9): 2302-9, 1992. [PUBMED Abstract]
  33. Pisansky TM, Cha SS, Earle JD, et al.: Prostate-specific antigen as a pretherapy prognostic factor in patients treated with radiation therapy for clinically localized prostate cancer. J Clin Oncol 11 (11): 2158-66, 1993. [PUBMED Abstract]
  34. Chodak GW, Thisted RA, Gerber GS, et al.: Results of conservative management of clinically localized prostate cancer. N Engl J Med 330 (4): 242-8, 1994. [PUBMED Abstract]
  35. Carlton JC, Zagars GK, Oswald MJ: The role of serum prostatic acid phosphatase in the management of adenocarcinoma of the prostate with radiotherapy. Int J Radiat Oncol Biol Phys 19 (6): 1383-8, 1990. [PUBMED Abstract]
  36. Stamey TA, Yang N, Hay AR, et al.: Prostate-specific antigen as a serum marker for adenocarcinoma of the prostate. N Engl J Med 317 (15): 909-16, 1987. [PUBMED Abstract]
  37. Stamey TA, Kabalin JN: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. I. Untreated patients. J Urol 141 (5): 1070-5, 1989. [PUBMED Abstract]
  38. Stamey TA, Kabalin JN, McNeal JE, et al.: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. II. Radical prostatectomy treated patients. J Urol 141 (5): 1076-83, 1989. [PUBMED Abstract]
  39. Stamey TA, Kabalin JN, Ferrari M: Prostate specific antigen in the diagnosis and treatment of adenocarcinoma of the prostate. III. Radiation treated patients. J Urol 141 (5): 1084-7, 1989. [PUBMED Abstract]
  40. Andriole GL: Serum prostate-specific antigen: the most useful tumor marker. J Clin Oncol 10 (8): 1205-7, 1992. [PUBMED Abstract]
  41. Fall K, Garmo H, Andrén O, et al.: Prostate-specific antigen levels as a predictor of lethal prostate cancer. J Natl Cancer Inst 99 (7): 526-32, 2007. [PUBMED Abstract]
  42. Parekh DJ, Ankerst DP, Thompson IM: Prostate-specific antigen levels, prostate-specific antigen kinetics, and prostate cancer prognosis: a tocsin calling for prospective studies. J Natl Cancer Inst 99 (7): 496-7, 2007. [PUBMED Abstract]
  43. Partin AW, Kattan MW, Subong EN, et al.: Combination of prostate-specific antigen, clinical stage, and Gleason score to predict pathological stage of localized prostate cancer. A multi-institutional update. JAMA 277 (18): 1445-51, 1997. [PUBMED Abstract]
  44. Partin AW, Mangold LA, Lamm DM, et al.: Contemporary update of prostate cancer staging nomograms (Partin Tables) for the new millennium. Urology 58 (6): 843-8, 2001. [PUBMED Abstract]
  45. Kattan MW, Eastham JA, Stapleton AM, et al.: A preoperative nomogram for disease recurrence following radical prostatectomy for prostate cancer. J Natl Cancer Inst 90 (10): 766-71, 1998. [PUBMED Abstract]
  46. Stephenson AJ, Scardino PT, Eastham JA, et al.: Preoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Natl Cancer Inst 98 (10): 715-7, 2006. [PUBMED Abstract]
  47. Kattan MW, Wheeler TM, Scardino PT: Postoperative nomogram for disease recurrence after radical prostatectomy for prostate cancer. J Clin Oncol 17 (5): 1499-507, 1999. [PUBMED Abstract]
  48. Stephenson AJ, Scardino PT, Eastham JA, et al.: Postoperative nomogram predicting the 10-year probability of prostate cancer recurrence after radical prostatectomy. J Clin Oncol 23 (28): 7005-12, 2005. [PUBMED Abstract]
  49. Shariat SF, Walz J, Roehrborn CG, et al.: External validation of a biomarker-based preoperative nomogram predicts biochemical recurrence after radical prostatectomy. J Clin Oncol 26 (9): 1526-31, 2008. [PUBMED Abstract]
  50. Kattan MW, Shariat SF, Andrews B, et al.: The addition of interleukin-6 soluble receptor and transforming growth factor beta1 improves a preoperative nomogram for predicting biochemical progression in patients with clinically localized prostate cancer. J Clin Oncol 21 (19): 3573-9, 2003. [PUBMED Abstract]
  51. Penson DF, Grossfeld GD, Li YP, et al.: How well does the Partin nomogram predict pathological stage after radical prostatectomy in a community based population? Results of the cancer of the prostate strategic urological research endeavor. J Urol 167 (4): 1653-7; discussion 1657-8, 2002. [PUBMED Abstract]
  52. Greene KL, Meng MV, Elkin EP, et al.: Validation of the Kattan preoperative nomogram for prostate cancer recurrence using a community based cohort: results from cancer of the prostate strategic urological research endeavor (capsure). J Urol 171 (6 Pt 1): 2255-9, 2004. [PUBMED Abstract]
  53. McIntosh HM, Neal RD, Rose P, et al.: Follow-up care for men with prostate cancer and the role of primary care: a systematic review of international guidelines. Br J Cancer 100 (12): 1852-60, 2009. [PUBMED Abstract]
  54. D’Amico AV, Moul JW, Carroll PR, et al.: Surrogate end point for prostate cancer-specific mortality after radical prostatectomy or radiation therapy. J Natl Cancer Inst 95 (18): 1376-83, 2003. [PUBMED Abstract]
  55. Petrylak DP, Ankerst DP, Jiang CS, et al.: Evaluation of prostate-specific antigen declines for surrogacy in patients treated on SWOG 99-16. J Natl Cancer Inst 98 (8): 516-21, 2006. [PUBMED Abstract]
  56. Baker SG: Surrogate endpoints: wishful thinking or reality? J Natl Cancer Inst 98 (8): 502-3, 2006. [PUBMED Abstract]
  57. Frazier HA, Robertson JE, Humphrey PA, et al.: Is prostate specific antigen of clinical importance in evaluating outcome after radical prostatectomy. J Urol 149 (3): 516-8, 1993. [PUBMED Abstract]
  58. Pound CR, Partin AW, Eisenberger MA, et al.: Natural history of progression after PSA elevation following radical prostatectomy. JAMA 281 (17): 1591-7, 1999. [PUBMED Abstract]
  59. Pisansky TM, Kahn MJ, Rasp GM, et al.: A multiple prognostic index predictive of disease outcome after irradiation for clinically localized prostate carcinoma. Cancer 79 (2): 337-44, 1997. [PUBMED Abstract]
  60. Consensus statement: guidelines for PSA following radiation therapy. American Society for Therapeutic Radiology and Oncology Consensus Panel. Int J Radiat Oncol Biol Phys 37 (5): 1035-41, 1997. [PUBMED Abstract]
  61. Roach M, Hanks G, Thames H, et al.: Defining biochemical failure following radiotherapy with or without hormonal therapy in men with clinically localized prostate cancer: recommendations of the RTOG-ASTRO Phoenix Consensus Conference. Int J Radiat Oncol Biol Phys 65 (4): 965-74, 2006. [PUBMED Abstract]
  62. Kuban DA, el-Mahdi AM, Schellhammer PF: Prostate-specific antigen for pretreatment prediction and posttreatment evaluation of outcome after definitive irradiation for prostate cancer. Int J Radiat Oncol Biol Phys 32 (2): 307-16, 1995. [PUBMED Abstract]
  63. Sandler HM, Dunn RL, McLaughlin PW, et al.: Overall survival after prostate-specific-antigen-detected recurrence following conformal radiation therapy. Int J Radiat Oncol Biol Phys 48 (3): 629-33, 2000. [PUBMED Abstract]
  64. Ruckle HC, Klee GG, Oesterling JE: Prostate-specific antigen: concepts for staging prostate cancer and monitoring response to therapy. Mayo Clin Proc 69 (1): 69-79, 1994. [PUBMED Abstract]

Stage Information for Prostate Cancer

Staging Tests

Most men are diagnosed with prostate cancer at an early clinical stage and do not have detectable metastases. They generally do not have to undergo staging tests, such as a bone scan, computed tomography (CT), or magnetic resonance imaging (MRI). However, staging studies are done if there is clinical suspicion of metastasis, such as bone pain, local tumor spread beyond the prostate capsule, or a substantial risk of metastasis (prostate-specific antigen [PSA] >20 ng/mL and Gleason score >7).[1]

Tests used to stage prostate cancer include:

Serum PSA level

Serum PSA can predict the results of radionuclide bone scans in newly diagnosed patients.

  • In one series, only 2 of 852 patients (0.23%) with a PSA of less than 20 ng/mL had a positive bone scan in the absence of bone pain.[2]
  • In another series of 265 patients with prostate cancer, 0 of 23 patients with a PSA of less than 4 ng/mL had a positive bone scan, and 2 of 114 patients with a PSA of less than 10 ng/mL had a positive bone scan.[3]

Magnetic resonance imaging (MRI)

Although MRI has been used to detect extracapsular extension of prostate cancer, a positive-predictive value of about 70% and considerable interobserver variation are problems that make its routine use in staging uncertain.[4] Ultrasound and MRI, however, can reduce clinical understaging and thereby improve patient selection for local therapy. MRI with an endorectal coil appears to be more accurate for identification of organ-confined and extracapsular disease, especially when combined with spectroscopy.[1] MRI is a poor tool for evaluating nodal disease.

MRI is more sensitive than radionuclide bone scans in the detection of bone metastases, but it is impractical for evaluating the entire skeletal system.

Positron emission tomography (PET)

It is becoming more common to use PET-CT with specific radionuclide tracers to stage prostate cancer. Several tracers have been tested and shown the ability to detect either lymph node or distant metastases in certain patients with prostate cancer.

68Ga-gozetotide and 18F-piflufolastat PET-CT

Prostate-specific membrane antigen (PSMA) is a transmembrane receptor expressed in high levels in prostate cancer. PSMA can be targeted for imaging with 68Ga-gozetotide and 18F-piflufolastat. These radionuclide tracers have been tested for the imaging of nodes and metastases in the initial staging of intermediate- and high-risk prostate cancer, as well as imaging of suspected posttreatment recurrent disease in patients with an elevated PSA.

A phase III trial included 764 patients with intermediate- or high-risk prostate cancer who underwent 68Ga-gozetotide PET-CT staging. The trial reported a sensitivity of 40% and a specificity of 95% in the detection of nodal disease as compared with PLND.[5]

68Ga-gozetotide PET-CT was studied alongside CT and bone scan for the detection of metastatic disease in men with high-risk prostate cancer. Compared with conventional imaging, 68Ga-gozetotide PET-CT provided increased sensitivity (85% vs. 38%) and specificity (98% vs. 91%).[6] 68Ga-gozetotide PET-CT was also evaluated to assess recurrent disease and showed a high positive predictive value (PPV) and detection rate.[7] 68Ga-gozetotide also had better results than 18F-fluciclovine in that context.[8]

18F-piflufolastat PET-CT had a sensitivity of 40% and a specificity of 98% in staging intermediate- or high-risk prostate cancer compared with PLND.[9] For the detection of recurrent or metastatic prostate cancer in the context of increasing PSA, 18F-piflufolastat PET-CT had a sensitivity of 95.8% and a PPV of 81.9%.[9]

Based on these data, the U.S. Food and Drug Administration (FDA) approved 68Ga-gozetotide and 18F-piflufolastat PET-CT for the initial staging of patients with prostate cancer and suspicion of metastatic disease, and for the evaluation of potential recurrence based on an elevated posttreatment PSA.[10,11]

18F-fluciclovine PET-CT

18F-fluciclovine PET-CT showed low sensitivity but high specificity in the initial lymph nodal staging of intermediate- and high-risk prostate cancer, compared with PLND.[1214] Compared with conventional imaging, its specificity was similar, but sensitivity was higher for detection of extraprostatic disease.[14]

18F-fluciclovine also detected more bone metastases and was more sensitive and specific than 99mTc-MDP bone scan.[15]

The FDA approved 18F-fluciclovine PET-CT for the assessment of suspected recurrent disease in men with a rising posttreatment PSA.

Pelvic lymph node dissection (PLND)

PLND remains the most accurate method to assess metastasis to the pelvic nodes, and laparoscopic PLND has been shown to accurately assess pelvic nodes as effectively as an open procedure.[16]

The determining factor in deciding whether any type of PLND is indicated is when definitive therapy may be altered. For example, radical prostatectomy is generally reserved for men without lymph node metastasis. Likewise, preoperative seminal vesicle biopsy may be useful in patients with palpable nodules who are being considered for radical prostatectomy (unless they have a low Gleason score) because seminal vesicle involvement could affect the choice of primary therapy and predicts for pelvic lymph node metastasis.[17]

In patients with clinically localized (stage I or stage II) prostate cancer, Gleason pathological grade and enzymatic serum prostatic acid phosphatase values (even within normal range) predict the likelihood of capsular penetration, seminal vesicle invasion, or regional lymph node involvement.[18] Analysis of a series of 166 patients with clinical stage I or stage II prostate cancer undergoing radical prostatectomy revealed an association between Gleason biopsy score and the risk of lymph node metastasis found at surgery. The risks of nodal metastasis for patients grouped according to their Gleason biopsy score was 2% for a Gleason score of 5, 13% for a Gleason score of 6, and 23% for a Gleason score of 8.[19]

Having all patients undergo a PLND is debatable, but in patients undergoing a radical retropubic prostatectomy, nodal status is usually ascertained as a matter of course. Evidence is mounting that PLND is likely unnecessary in patients with a PSA less than 20 ng/mL and a low Gleason score who are undergoing radical perineal prostatectomy. This is especially true for patients whose malignancy was not palpable but detected on ultrasound.[18,20]

Transrectal or transperineal biopsy

The most common means to establish a diagnosis and determine the Gleason score in cases of suspected prostate cancer is by needle biopsy. Most urologists now perform a transrectal biopsy using a bioptic gun with ultrasound guidance. Less frequently, a transperineal ultrasound-guided approach can be used for those patients who may be at increased risk of complications from a transrectal approach.[21] Over the years, there has been a trend toward taking eight to ten or more biopsy samples from several areas of the prostate with a consequent increased yield of cancer detection after an elevated PSA blood test.[1]

Transrectal ultrasound (TRUS)

TRUS may facilitate diagnosis by directing needle biopsy; however, ultrasound is operator dependent and does not assess lymph node size.

A prospective multi-institutional study of preoperative TRUS in men with clinically localized prostate cancer eligible for radical prostatectomy showed that TRUS was no better than digital rectal examination in predicting extracapsular tumor extension or seminal vesicle involvement.[22]

Computed tomography (CT) scans

CT scans can detect grossly enlarged lymph nodes but poorly define intraprostatic features;[23] therefore, it is not reliable for the staging of pelvic node disease when compared with surgical staging.[24]

Technetium Tc 99m (99mTc)-methylene diphosphonate (MDP) bone scan

A 99mTc-MDP bone scan is the most widely used test for metastasis to the bone, which is the most common site of distant tumor spread.

Staging Systems

Historically, two systems have been in common use for the staging of prostate cancer.

  • In 1975, the Jewett system (stage A through stage D) was described and has since been modified.[25] This staging system is no longer in common use, but older studies and publications may refer to it.
  • In 1997, the American Joint Committee on Cancer (AJCC) and the International Union Against Cancer adopted a revised TNM (tumor, node, metastasis) system, which used the same broad T-stage categories as the Jewett system but included subcategories of T stage, such as a stage to describe patients diagnosed through PSA screening. This revised TNM system more precisely stratifies newly diagnosed patients.

AJCC Stage Groupings and TNM Definitions

The AJCC has designated staging by TNM classification.[26]

Table 1. Definition of Histological Grade Groupa
Grade Group Gleason Score Gleason Pattern
aAdapted from AJCC: Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 715–26.
1 ≤6 ≤3+3
2 7 3+4
3 7 4+3
4 8 4+4, 3+5, or 5+3
5 9 or 10 4+5, 5+4, or 5+5
Table 2. Definitions of TNM Stage Ia
Stage TNM Descriptionb,c,d,e PSAf Gleason Score; Gleason Pattern (Grade Group)g Illustration
T = primary tumor; N = regional lymph nodes; M = distant metastasis; cT = clinical T; PSA = prostate-specific antigen; pT = pathological T.
aAdapted from AJCC: Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 715–26.
The explanations for superscripts b through g are at the end of Table 5.
I cT1a–c, cT2a, N0, M0 cT1 = Clinically inapparent tumor that is not palpable. <10 Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
EnlargeTwo panel drawing of stage I prostate cancer; the top panel shows cancer in less than one-half of the right side of the prostate found by needle biopsy. The bottom panel shows cancer in less than one-half of the left side of the prostate found by digital rectal exam. In both panels, the PSA level is less than 10 and the Grade Group is 1. The bladder, rectum, and urethra are also shown.
–cT1a = Tumor incidental histological finding in ≤5% of tissue resected.
–cT1b = Tumor incidental histological finding in >5% of tissue resected.
–cT1c = Tumor identified by needle biopsy found in one or both sides, but not palpable.
cT2 = Tumor is palpable and confined within prostate.
–cT2a = Tumor involves ½ of one side or less.
N0 = No positive regional nodes.
M0 = No distant metastasis.
pT2, N0, M0 pT2 = Organ confined. <10 Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
N0 = No positive regional nodes.
M0 = No distant metastasis.
Table 3. Definitions of TNM Stages IIA, IIB, and IICa
Stage TNM Descriptionb,c,d,e PSAf Gleason Score; Gleason Pattern (Grade Group)g Illustration
T = primary tumor; N = regional lymph nodes; M = distant metastasis; cT = clinical T; PSA = prostate-specific antigen; pT = pathological T.
aAdapted from AJCC: Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 715–26.
The explanations for superscripts b through g are at the end of Table 5.
IIA cT1a–c, cT2a, pT2, N0, M0 See cT1a–c, cT2a descriptions in Table 2, Stage I. ≥10 <20 Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
EnlargeTwo-panel drawing of stage IIA prostate cancer; the top panel shows cancer in one-half or less of one side of the prostate. The PSA level is at least 10 but less than 20 and the Grade Group is 1. The bottom panel shows cancer in more than one-half of one side of the prostate. The PSA level is less than 20 and the Grade Group is 1. In both panels, the bladder, rectum, and urethra are also shown.
pT2 = Organ confined.
cT2b–c, N0, M0 cT2 = Tumor is palpable and confined within prostate. <20 Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
cT2b = Tumor involves >½ of one side but not both sides.
cT2c = Tumor involves both sides.
N0 = No positive regional nodes.
M0 = No distant metastasis.
IIB T1–2, N0, M0 T1 = Clinically inapparent tumor that is not palpable. <20 Gleason Score, 7; Gleason Pattern 3+4 (2).
EnlargeStage IIB prostate cancer; drawing shows cancer in one side of the prostate. The PSA level is less than 20 and the Grade Group is 2. Also shown are the bladder, rectum, and urethra.
–T1a = Tumor incidental histological finding in ≤5% of tissue resected.
–T1b = Tumor incidental histological finding in >5% of tissue resected.
–T1c = Tumor identified by needle biopsy found in one or both sides, but not palpable.
cT2 = Tumor is palpable and confined within prostate.
–cT2a = Tumor involves ½ of one side or less.
–cT2b = Tumor involves >½ of one side but not both sides.
–cT2c = Tumor involves both sides.
pT2 = Organ confined.
N0 = No positive regional nodes.
M0 = No distant metastasis.
IIC T1–2, N0, M0 See T1–2, N0, M0 descriptions above in Stage IIB. <20 Gleason Score, 7; Gleason Pattern, 4 + 3 (3).
EnlargeStage IIC prostate cancer; drawing shows cancer in both sides of the prostate. The PSA level is less than 20 and the Grade Group is 3 or 4. Also shown are the bladder, rectum, and urethra.
T1–2, N0, M0 See T1–2, N0, M0 descriptions above in Stage IIB. <20 Gleason Score, 8; Gleason Pattern, 4+4, 3+5, or 5+3 (4).
Table 4. Definitions of TNM Stages IIIA, IIIB, and IIICa
Stage TNM Descriptionb,c,d,e PSAf Gleason Score; Gleason Pattern (Grade Group)g Illustration
T = primary tumor; N = regional lymph nodes; M = distant metastasis; cT = clinical T; PSA = prostate-specific antigen; pT = pathological T.
aAdapted from AJCC: Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 715–26.
The explanations for superscripts b through g are at the end of Table 5.
IIIA T1–2, N0, M0 See T1–2, N0, M0 descriptions in Table 3, Stage IIB. ≥20 Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
EnlargeStage IIIA prostate cancer; drawing shows cancer in one side of the prostate. The PSA level is at least 20 and the Grade Group is 1, 2, 3, or 4. Also shown are the bladder, rectum, and urethra.
Gleason Score, 7; Gleason Pattern 3+4 (2).
Gleason Score, 7; Gleason Pattern, 4+3 (3).
Gleason Score, 8; Gleason Pattern, 4+4, 3+5, or 5+3 (4).
IIIB T3–4, N0, M0 cT3 = Extraprostatic tumor that is not fixed or does not invade adjacent structures. Any value Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
EnlargeStage IIIB prostate cancer; drawing shows cancer that has spread from the prostate to the seminal vesicles and to nearby tissue. The PSA can be any level and the Grade Group is 1, 2, 3, or 4. Also shown are the pelvic wall, bladder, and rectum.
–cT3a = Extraprostatic extension (unilateral or bilateral). Gleason Score, 7; Gleason Pattern 3+4 (2).
–cT3b = Tumor invades seminal vesicle(s). Gleason Score, 7; Gleason Pattern, 4+3 (3).
pT3 = Extraprostatic extension. Gleason Score, 8; Gleason Pattern, 4+4, 3+5, or 5+3 (4).
–pT3a = Extraprostatic extension (unilateral or bilateral) or microscopic invasion of bladder neck.
–pT3b = Tumor invades seminal vesicle(s).
cT4 or pT4= Tumor is fixed or invades adjacent structures other than seminal vesicles such as external sphincter, rectum, bladder, levator muscles, and/or pelvic wall.
N0 = No positive regional nodes.
M0 = No distant metastasis.
IIIC Any T, N0, M0 TX = Primary tumor cannot be assessed. Any value Gleason Score, 9 or 10; Gleason Pattern, 4+5, 5+4, or 5+5 (5).
EnlargeStage IIIC prostate cancer; drawing shows cancer in one side of the prostate. The PSA can be any level and the Grade Group is 5. Also shown are the bladder, rectum, and urethra.
T0 = No evidence of primary tumor.
T1 = Clinically inapparent tumor that is not palpable.
–T1a = Tumor incidental histological finding in ≤5% of tissue resected.
–T1b = Tumor incidental histological finding in >5% of tissue resected.
–T1c = Tumor identified by needle biopsy found in one or both sides, but not palpable.
cT2 = Tumor is palpable and confined within prostate.
–cT2a = Tumor involves ½ of one side or less.
–cT2b = Tumor involves >½ of one side but not both sides.
–cT2c = Tumor involves both sides.
–pT2 = Organ confined.
cT3 = Extraprostatic tumor that is not fixed or does not invade adjacent structures.
–cT3a = Extraprostatic extension (unilateral or bilateral).
–cT3b = Tumor invades seminal vesicle(s).
pT3 = Extraprostatic extension.
–pT3a = Extraprostatic extension (unilateral or bilateral) or microscopic invasion of bladder neck.
–pT3b = Tumor invades seminal vesicle(s).
cT4 or pT4 = Tumor is fixed or invades adjacent structures other than seminal vesicles such as external sphincter, rectum, bladder, levator muscles, and/or pelvic wall.
N0 = No positive regional nodes.
M0 = No distant metastasis.
Table 5. Definitions of TNM Stages IVA and IVBa
Stage TNM Descriptionb,c,d,e PSAf Gleason Score; Gleason Pattern (Grade Group)g Illustration
T = primary tumor; N = regional lymph nodes; M = distant metastasis; cT = clinical T; PSA = prostate-specific antigen; pT = pathological T.
aAdapted from AJCC: Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 715–26.
bWhen either PSA or Grade Group is not available, grouping should be determined by T category and/or either PSA or Grade Group as available.
cThere is no pathological T1 classification.
dPositive surgical margin should be indicated by an R1 descriptor, indicating residual microscopic disease.
eWhen more than one site of metastasis is present, the most advanced category is used. M1c is most advanced.
fPSA values are used to assign this category.
gRecently the Gleason system has been compressed into so-called Grade Groups.[27]
IVA Any T, N1, M0 Any T = See descriptions in Table 4, Stage IIIC. See Any PSA values in Table 4, Stage IIIC. Gleason Score, ≤6; Gleason Pattern, ≤3+3 (1).
EnlargeStage IVA prostate cancer; drawing shows cancer in one side of the prostate and in nearby lymph nodes. The PSA can be any level and the Grade Group is 1 ,2, 3, 4, or 5. Also shown are the bladder, rectum, and urethra.
Gleason Score, 7; Gleason Pattern 3+4 (2).
Gleason Score, 7; Gleason Pattern, 4+3 (3).
N1 = Metastases in regional node(s). Gleason Score, 8; Gleason Pattern, 4+4, 3+5, or 5+3 (4).
M0 = No distant metastasis. Gleason Score, 9 or 10; Gleason Pattern, 4+5, 5+4, or 5+5 (5).
IVB Any T, Any N, M1 Any T = See descriptions in Table 4, Stage IIIC. See Any PSA values Table 4, Stage IIIC. Any Gleason Score; Gleason Pattern (Grade Group) = See above in Stage IVA.
EnlargeStage IVB prostate cancer; drawing shows other parts of the body where prostate cancer may spread, including the distant lymph nodes and bones. An inset shows cancer cells spreading from the prostate, through the blood and lymph system, to another part of the body where metastatic cancer has formed.
NX = Regional nodes were not assessed.
N0 = No positive regional nodes.
N1 = Metastases in regional node(s).
M1 = Distant metastasis.
–M1a = Nonregional lymph node(s).
–M1b = Bone(s).
–M1c = Other site(s) with or without bone disease.
References
  1. Zelefsky MJ, Eastham JA, Sartor AO: Cancer of the prostate. In: DeVita VT Jr, Lawrence TS, Rosenberg SA: Cancer: Principles and Practice of Oncology. 9th ed. Lippincott Williams & Wilkins, 2011, pp 1220-71.
  2. Oesterling JE, Martin SK, Bergstralh EJ, et al.: The use of prostate-specific antigen in staging patients with newly diagnosed prostate cancer. JAMA 269 (1): 57-60, 1993. [PUBMED Abstract]
  3. Huncharek M, Muscat J: Serum prostate-specific antigen as a predictor of radiographic staging studies in newly diagnosed prostate cancer. Cancer Invest 13 (1): 31-5, 1995. [PUBMED Abstract]
  4. Schiebler ML, Yankaskas BC, Tempany C, et al.: MR imaging in adenocarcinoma of the prostate: interobserver variation and efficacy for determining stage C disease. AJR Am J Roentgenol 158 (3): 559-62; discussion 563-4, 1992. [PUBMED Abstract]
  5. Hope TA, Eiber M, Armstrong WR, et al.: Diagnostic Accuracy of 68Ga-PSMA-11 PET for Pelvic Nodal Metastasis Detection Prior to Radical Prostatectomy and Pelvic Lymph Node Dissection: A Multicenter Prospective Phase 3 Imaging Trial. JAMA Oncol 7 (11): 1635-1642, 2021. [PUBMED Abstract]
  6. Hofman MS, Lawrentschuk N, Francis RJ, et al.: Prostate-specific membrane antigen PET-CT in patients with high-risk prostate cancer before curative-intent surgery or radiotherapy (proPSMA): a prospective, randomised, multicentre study. Lancet 395 (10231): 1208-1216, 2020. [PUBMED Abstract]
  7. Fendler WP, Calais J, Eiber M, et al.: Assessment of 68Ga-PSMA-11 PET Accuracy in Localizing Recurrent Prostate Cancer: A Prospective Single-Arm Clinical Trial. JAMA Oncol 5 (6): 856-863, 2019. [PUBMED Abstract]
  8. Calais J, Ceci F, Eiber M, et al.: 18F-fluciclovine PET-CT and 68Ga-PSMA-11 PET-CT in patients with early biochemical recurrence after prostatectomy: a prospective, single-centre, single-arm, comparative imaging trial. Lancet Oncol 20 (9): 1286-1294, 2019. [PUBMED Abstract]
  9. Pienta KJ, Gorin MA, Rowe SP, et al.: A Phase 2/3 Prospective Multicenter Study of the Diagnostic Accuracy of Prostate Specific Membrane Antigen PET/CT with 18F-DCFPyL in Prostate Cancer Patients (OSPREY). J Urol 206 (1): 52-61, 2021. [PUBMED Abstract]
  10. U.S. Food and Drug Administration: FDA approves first PSMA-targeted PET imaging drug for men with prostate cancer. Food and Drug Administration, 2020. Available online. Last accessed February 13, 2025.
  11. U.S. Food and Drug Administration: FDA approves second PSMA-targeted PET imaging drug for men with prostate cancer. Food and Drug Administration, 2021. Available online. Last accessed February 13, 2025.
  12. Selnæs KM, Krüger-Stokke B, Elschot M, et al.: 18F-Fluciclovine PET/MRI for preoperative lymph node staging in high-risk prostate cancer patients. Eur Radiol 28 (8): 3151-3159, 2018. [PUBMED Abstract]
  13. Suzuki H, Jinnouchi S, Kaji Y, et al.: Diagnostic performance of 18F-fluciclovine PET/CT for regional lymph node metastases in patients with primary prostate cancer: a multicenter phase II clinical trial. Jpn J Clin Oncol 49 (9): 803-811, 2019. [PUBMED Abstract]
  14. Alemozaffar M, Akintayo AA, Abiodun-Ojo OA, et al.: [18F]Fluciclovine Positron Emission Tomography/Computerized Tomography for Preoperative Staging in Patients with Intermediate to High Risk Primary Prostate Cancer. J Urol 204 (4): 734-740, 2020. [PUBMED Abstract]
  15. Chen B, Wei P, Macapinlac HA, et al.: Comparison of 18F-Fluciclovine PET/CT and 99mTc-MDP bone scan in detection of bone metastasis in prostate cancer. Nucl Med Commun 40 (9): 940-946, 2019. [PUBMED Abstract]
  16. Schuessler WW, Pharand D, Vancaillie TG: Laparoscopic standard pelvic node dissection for carcinoma of the prostate: is it accurate? J Urol 150 (3): 898-901, 1993. [PUBMED Abstract]
  17. Stone NN, Stock RG, Unger P: Indications for seminal vesicle biopsy and laparoscopic pelvic lymph node dissection in men with localized carcinoma of the prostate. J Urol 154 (4): 1392-6, 1995. [PUBMED Abstract]
  18. Oesterling JE, Brendler CB, Epstein JI, et al.: Correlation of clinical stage, serum prostatic acid phosphatase and preoperative Gleason grade with final pathological stage in 275 patients with clinically localized adenocarcinoma of the prostate. J Urol 138 (1): 92-8, 1987. [PUBMED Abstract]
  19. Fournier GR, Narayan P: Re-evaluation of the need for pelvic lymphadenectomy in low grade prostate cancer. Br J Urol 72 (4): 484-8, 1993. [PUBMED Abstract]
  20. Daniels GF, McNeal JE, Stamey TA: Predictive value of contralateral biopsies in unilaterally palpable prostate cancer. J Urol 147 (3 Pt 2): 870-4, 1992. [PUBMED Abstract]
  21. Webb JA, Shanmuganathan K, McLean A: Complications of ultrasound-guided transperineal prostate biopsy. A prospective study. Br J Urol 72 (5 Pt 2): 775-7, 1993. [PUBMED Abstract]
  22. Smith JA, Scardino PT, Resnick MI, et al.: Transrectal ultrasound versus digital rectal examination for the staging of carcinoma of the prostate: results of a prospective, multi-institutional trial. J Urol 157 (3): 902-6, 1997. [PUBMED Abstract]
  23. Gerber GS, Goldberg R, Chodak GW: Local staging of prostate cancer by tumor volume, prostate-specific antigen, and transrectal ultrasound. Urology 40 (4): 311-6, 1992. [PUBMED Abstract]
  24. Hanks GE, Krall JM, Pilepich MV, et al.: Comparison of pathologic and clinical evaluation of lymph nodes in prostate cancer: implications of RTOG data for patient management and trial design and stratification. Int J Radiat Oncol Biol Phys 23 (2): 293-8, 1992. [PUBMED Abstract]
  25. Jewett HJ: The present status of radical prostatectomy for stages A and B prostatic cancer. Urol Clin North Am 2 (1): 105-24, 1975. [PUBMED Abstract]
  26. Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 715–26.
  27. Epstein JI, Egevad L, Amin MB, et al.: The 2014 International Society of Urological Pathology (ISUP) Consensus Conference on Gleason Grading of Prostatic Carcinoma: Definition of Grading Patterns and Proposal for a New Grading System. Am J Surg Pathol 40 (2): 244-52, 2016. [PUBMED Abstract]

Treatment Option Overview for Prostate Cancer

Local treatment modalities are associated with prolonged disease-free survival (DFS) for many patients with localized prostate cancer but are rarely curative in patients with locally extensive tumors. Because of clinical understaging using current diagnostic techniques, even when the cancer appears clinically localized to the prostate gland, some patients develop disseminated tumors after local therapy with surgery or radiation.

Treatment options for each stage of prostate cancer are presented in Table 6.

Table 6. Treatment Options by Stage for Prostate Cancer
Stage (TNM Definitions) Treatment Options
EBRT = external-beam radiation therapy; LH-RH = luteinizing hormone-releasing hormone; mCRPC = metastatic castration-resistant prostate cancer; PARP = poly (ADP-ribose) polymerase; TURP = transurethral resection of the prostate.
Stage I Prostate Cancer Watchful waiting or active surveillance/active monitoring
Radical prostatectomy
External-beam radiation therapy (EBRT)
Interstitial implantation of radioisotopes
Photodynamic therapy (under clinical evaluation)
Bicalutamide (under clinical evaluation)
Stage II Prostate Cancer Watchful waiting or active surveillance/active monitoring
Radical prostatectomy
EBRT with or without hormonal therapy
Interstitial implantation of radioisotopes
Cryosurgery (under clinical evaluation)
Proton-beam therapy (under clinical evaluation)
Photodynamic therapy (under clinical evaluation)
Neoadjuvant hormonal therapy (under clinical evaluation)
Bicalutamide (under clinical evaluation)
Stage III Prostate Cancer EBRT with or without hormonal therapy
Hormonal manipulations with or without radiation therapy
Radical prostatectomy with or without EBRT
Watchful waiting or active surveillance/active monitoring
Cryosurgery (under clinical evaluation)
Proton-beam therapy (under clinical evaluation)
Bicalutamide (under clinical evaluation)
Stage IV Prostate Cancer Hormonal manipulations
Bisphosphonates
EBRT with or without hormonal therapy
Palliative radiation therapy
Palliative surgery with transurethral resection of the prostate (TURP)
Watchful waiting or active surveillance/active monitoring
Recurrent Prostate Cancer Chemotherapy for hormone-sensitive or hormone-resistant prostate cancer
Immunotherapy
Radiopharmaceutical therapy
PARP inhibitors for men with mCRPC and BRCA1, BRCA2, or ATM variants
Hormone therapy with PARP inhibitors for men with mCRPC and BRCA1, BRCA2, or ATM variants

Side effects of each treatment approach are covered in the relevant sections below. Patient-reported adverse effects differ substantially across the options for management of clinically localized disease, with few direct comparisons, and include watchful waiting/active surveillance/active monitoring, radical prostatectomy, and radiation therapy. The differences in adverse effects can play an important role in patient choice among treatment options. Detailed comparisons of these effects have been reported in population-based cohort studies, albeit with relatively short follow-up times of 2 to 3 years.[1,2]

Watchful Waiting or Active Surveillance/Active Monitoring

Asymptomatic patients of advanced age or with concomitant illness may warrant careful observation without immediate active treatment.[3,4] Watch and wait, observation, expectant management, and active surveillance/active monitoring are terms indicating a strategy that does not employ immediate therapy with curative intent.

Watchful waiting and active surveillance/active monitoring are the most commonly used terms, and the literature does not always clearly distinguish them, making the interpretation of results difficult. The general concept of watchful waiting is patient follow-up with the application of palliative care as needed to alleviate symptoms of tumor progression. There is no planned attempt at curative therapy at any point in follow-up. For example, transurethral resection of the prostate (TURP) or hormonal therapy may be used to alleviate tumor-related urethral obstruction should there be local tumor growth; hormonal therapy or bone radiation might be used to alleviate pain from metastases. Radical prostatectomy has been compared with watchful waiting or active surveillance/active monitoring in men with early-stage disease (i.e., clinical stages T1b, T1c, or T2).[5] For more information, see the Radical Prostatectomy section.

In contrast, the strategy behind active surveillance/active monitoring is to defer therapy for clinically localized disease but regularly follow the patient and initiate local therapy with curative intent if there are any signs of local tumor progression.[69] The intention is to avoid the morbidity of therapy in men who have indolent or nonprogressive disease but preserve the ability to cure them should the tumor progress. Active surveillance/active monitoring often involves:

  • Regular patient visits.
  • Digital rectal examinations.
  • Prostate-specific antigen (PSA) testing.
  • Transrectal ultrasound (in some series).
  • Transrectal needle biopsies (in some series).

Patient selection, testing intervals, and specific tests, as well as criteria for intervention, are arbitrary and not established in controlled trials.

In the United States, as in other settings with widespread PSA screening, the results of conservative management of localized prostate cancer are particularly favorable. In the aggregate, men managed by watchful waiting or active surveillance/active monitoring (using various criteria, depending upon the study) have had very favorable prostate–cancer-specific mortalities ranging from about 1% to 10% (with the most favorable rates in more recent series).[1018] Most men with screen-detected prostate cancer may, therefore, be candidates for active surveillance/active monitoring, with definitive therapy reserved for signs of tumor progression. This has been shown most clearly in the large Prostate Testing for Cancer Treatment (ProtecT [NCT02044172 and ISRCTN20141297]) randomized trial that compared active monitoring, radical prostatectomy, and radiation therapy.[19] For more information, see the Radical Prostatectomy section.

For more information, see the Treatment of Stage II Prostate Cancer section.

Radical Prostatectomy

A radical prostatectomy is usually reserved for patients who:[2022]

  • Are in good health and elect surgical intervention.
  • Have tumor confined to the prostate gland (stage I and stage II).

Open prostatectomy can be performed by the perineal or retropubic approach. The perineal approach requires a separate incision for lymph node dissection. Laparoscopic lymphadenectomy is technically possible.[23] Robot-assisted prostatectomy is an alternative to open prostatectomy and has become the most common technique in developed countries. In experienced hands, functional outcomes between open and robot-assisted prostatectomy appear very similar, at least in the short- to mid-term. In a randomized trial of 308 men suitable for prostatectomy, urinary, sexual, and bowel functional outcomes were similar between open retropubic and robotic surgeries at a median follow-up of 24 months.[24] The sample size and duration of follow-up were too small to detect meaningful differences in cancer outcomes.

For small, well-differentiated nodules, the incidence of positive pelvic nodes is less than 20%, and pelvic node dissection may be omitted.[25] With larger, less-differentiated tumors, a pelvic lymph node dissection is more important. In these cases, the value of open surgical or laparoscopic pelvic node dissection is not therapeutic, but it spares patients with positive nodes the morbidity of prostatectomy. Radical prostatectomy is usually not performed if a frozen-section evaluation of pelvic nodes reveals metastases; these patients should be considered for entry into existing clinical trials or receive radiation therapy to control local symptoms.

The role of preoperative (neoadjuvant) hormonal therapy is not established.[26,27]

After radical prostatectomy, pathological evaluation stratifies tumor extent into the following classes:

  • Margin-positive disease—The incidence of disease recurrence increases when the tumor margins are positive.[10,28,29] Results of the outcome of patients with positive surgical margins have not been systematically reported.
  • Specimen-confined disease—The incidence of disease recurrence increases when the tumor is not specimen-confined (extracapsular).[10,28]
  • Organ-confined disease—Patients with extraprostatic disease (not organ-confined) are suitable candidates for clinical trials of which the Radiation Therapy Oncology Group’s (RTOG) RTOG-9601 trial (NCT00002874), was an example. These trials have included evaluation of postoperative radiation delivery, cytotoxic agents, and hormonal treatment using luteinizing hormone-releasing hormone (LH-RH) agonists and/or antiandrogens.

Radical prostatectomy compared with other treatment options

In 1993, a structured literature review of 144 papers was done in an attempt to compare the three primary treatment strategies for clinically localized prostate cancer:[30]

  1. Radical prostatectomy.
  2. Definitive radiation therapy.
  3. Observation (watchful waiting or active surveillance/active monitoring).

The authors concluded that poor reporting and selection factors within all series precluded a valid comparison of efficacy for the three management strategies.

In a literature review of case series of patients with palpable, clinically localized disease, the authors found that 10-year prostate−cancer-specific survival rates were best in radical prostatectomy series (about 93%), worst in radiation therapy series (about 75%), and intermediate with deferred treatment (about 85%).[31] Because it is highly unlikely that radiation therapy would worsen disease-specific survival, the most likely explanation is that selection factors affect choice of treatment. Such selection factors make comparisons of therapeutic strategies imprecise.[32]

Radical prostatectomy has been compared with watchful waiting or active surveillance/active monitoring in men with early-stage disease (i.e., clinical stages T1b, T1c, or T2) in randomized trials, with conflicting results. The difference in results may be the result of differences in how the men were diagnosed with prostate cancer.

Evidence (radical prostatectomy vs. watchful waiting or active surveillance/active monitoring):

  1. In a randomized clinical trial performed in Sweden in the pre-PSA screening era, 695 men with prostate cancer were randomly assigned to radical prostatectomy versus watchful waiting. Only about 5% of the men in the trial had been diagnosed by PSA screening. Therefore, the men had more extensive local disease than is typically the case in men diagnosed with prostate cancer in the United States.[3335]
    • The cumulative overall mortality at 18 years was 56.1% in the radical prostatectomy arm and 68.9% in the watchful waiting study arm (absolute difference, 12.7%; 95% confidence interval [CI], 5.1–20.3 percentage points; relative risk [RR]death, 0.71; 95% CI, 0.59–0.86).[35][Level of evidence A1]
    • The cumulative incidence of prostate cancer deaths at 18 years was 17.7% versus 28.7% (absolute difference, 11.0%; 95% CI, 4.5–17.5 percentage points; RRdeath from prostate cancer, 0.56; 95% CI, 0.41–0.77).[35]
    • In a post-hoc–subset analysis, the improvement in overall and prostate cancer-specific mortality associated with radical prostatectomy was restricted to men younger than 65 years.
  2. The Prostate Intervention Versus Observation Trial (PIVOT-1 or VA-CSP-407) is a randomized trial conducted in the PSA screening era that directly compared radical prostatectomy with watchful waiting. From November 1994 through January 2002, 731 men aged 75 years or younger with localized prostate cancer (stage T1–2, NX, M0, with a blood PSA <50 ng/mL) and a life expectancy of at least 10 years were randomly assigned to radical prostatectomy or watchful waiting.[5,36,37][Level of evidence A1]
    • About 50% of the men had nonpalpable, screen-detected disease.
    • After a median follow-up of 12.7 years (range up to about 19.5 years), the all-cause mortality was 61.3% in the prostatectomy arm versus 66.8% in the watchful-waiting study arm, with an absolute difference of 5.5 percentage points (95% CI, -1.5–12.4) that was not statistically significant (hazard ratio [HR], 0.84; 95% CI, 0.70–1.01). Prostate cancer-specific mortality was 7.4% versus 11.4%, and it also was not statistically significant (HR, 0.63; 95% CI, 0.3–1.02).
    • Although treatment for disease progression was given more frequently in the observation arm of the study, most of the treatment was for asymptomatic, local, or biochemical (PSA) progression.
    • As expected, urinary incontinence and erectile/sexual dysfunction was more common in the prostatectomy group during at least 10 years of follow-up. Absolute differences in patient-reported use of absorbent urinary pads was greater in the surgery group by more than 30 percentage points at all time points for at least 10 years. Disease- or treatment-related limitations in activities of daily living were worse with surgery than with observation through 2 years, but then were similar in both study arms.
  3. In the ProtecT trial (NCT02044172 and ISRCTN20141297), 82,429 men were screened with PSA testing, and 2,664 were diagnosed with clinically localized prostate cancer. Among those diagnosed, 1,643 men (median age 62 years, range 50–69 years) consented to a randomly assigned comparison of active monitoring, radical prostatectomy (nerve-sparing when possible), or external-beam 3-dimensional (3D) conformal radiation therapy (74 Gy in 37 fractions). The primary end point was prostate cancer–specific mortality.[19]
    1. With a median follow-up of 10 years, there were 17 deaths from prostate cancer, with no statistically significant differences among the three study arms (P = .48). The 10-year prostate cancer–specific survival rates were 98.8% in the active monitoring arm, 99.0% in the radical prostatectomy arm, and 99.6% in the radiation therapy arm.[19][Level of evidence A1]
    2. Likewise, all-cause mortality was nearly identical in all three study arms: 10.9 deaths in the active monitoring arm, 10.1 in the radical prostatectomy arm, and 10.3 in the radiation therapy arm per 1,000 person-years (P = .87).[19][Level of evidence A1]
    3. There were statistically significant differences in progression to metastatic disease among the treatment arms (33 of 545 men in the active monitoring arm; 13 of 553 men in the radical prostatectomy arm; 16 of 545 men in the radiation therapy arm) that began to emerge after 4 years, but these differences had not translated into any difference in mortality after 10 years of follow-up. Over the course of 10 years, 52% of the patients required active intervention.
    4. As expected, there were substantial differences in patient-reported outcomes among the three management approaches.[38][Level of evidence A3] A substudy of patient-reported outcomes up to 6 years after randomization included the following results:
      • Men in the radical prostatectomy study arm had substantial rates of urinary incontinence (e.g., using one or more absorbent pads qd was reported by 46% at 6 months and by 17% at year 6) with very little incontinence in the other two study arms.
      • Sexual function was also worse in the radical prostatectomy group (e.g., at 6 months, 12% of men reported erections firm enough for intercourse versus 22% in the radiation therapy arm and 52% in the active monitoring arm).
      • Bowel function, however, was worse in the radiation therapy arm (e.g., about 5% reported bloody stools at least half the time at 2 years and beyond vs. none in the radical prostatectomy and active-monitoring study arms).

Complications of radical prostatectomy

Complications of radical prostatectomy include:

Functional outcomes of radical prostatectomy with respect to sexual, urinary, bowel function, and health-related quality of life (QOL), appear to be similar whether the procedure is open retropubic, laparoscopic, or robot-assisted radical prostatectomy.[59]

Morbidity and mortality associated with radical prostatectomy

An analysis of Medicare records on 101,604 radical prostatectomies performed from 1991 to 1994 showed the following results:[39]

  • A 30-day operative mortality rate of 0.5%.
  • A rehospitalization rate of 4.5%.
  • A major complication rate of 28.6%.

Over the study period, these rates decreased by 30%, 8%, and 12%, respectively.[39]

The following outcomes were associated with prostatectomies done at hospitals where fewer of the procedures were performed than those done at hospitals where more were performed:[40,41]

  • Higher rates of 30-day postoperative mortality.
  • Major acute surgical complications.
  • Longer hospital stays.
  • Higher rates of rehospitalization.

Operative morbidity and mortality rates increase with age. Comorbidity, especially underlying cardiovascular disease and a history of stroke, accounts for a portion of the age-related increase in 30-day mortality.

In a cohort of all men with prostate cancer who underwent radical prostatectomy from 1990 to 1999 in Ontario, 75-year-old men with no comorbidities had a predicted 30-day mortality of 0.74%. Thirty-day surgical complication rates also depended more on comorbidity than age (i.e., about 5% vs. 40% for men with 0 vs. ≥4 underlying comorbid conditions, respectively).[41]

Urinary incontinence and impotence

Urinary incontinence and impotence are complications that can result from radical prostatectomy and have been studied in multiple studies.

Evidence (urinary incontinence and impotence after radical prostatectomy):

  1. A large case series of men undergoing the anatomic (nerve-sparing) technique of radical prostatectomy reported the following results:[43]
    • Approximately 6% of the men required the use of pads for urinary incontinence, but an unknown additional proportion of men had occasional urinary dribbling.
    • About 40% to 65% of the men who were sexually potent before surgery retained potency adequate for vaginal penetration and sexual intercourse. Preservation of potency with this technique is dependent on tumor stage and patient age, but the operation probably induces at least a partial deficit in nearly all patients.
  2. A national survey of Medicare patients who underwent radical prostatectomy in 1988 to 1990 reported more morbidity than in the case series reported above.[44]
    • More than 30% of the men reported the need for pads or clamps for urinary wetness, and 63% of all patients reported a current problem with wetness.
    • About 60% of the men reported having no erections since surgery; about 90% of the men had no erections sufficient for intercourse during the month before the survey.
    • About 28% of the patients reported follow-up treatment of cancer with radiation therapy and/or hormonal therapy within 4 years after their prostatectomy.
  3. A population-based longitudinal cohort study (Prostate Cancer Outcomes Study) included 901 men aged 55 to 74 years who had recently undergone radical prostatectomy for prostate cancer.[45]
    • 15.4% of the men had either frequent urinary incontinence or no urinary control at 5 years after surgery.
    • 20.4% of those studied wore pads to stay dry.
    • 79.3% of men reported an inability to have an erection sufficient for intercourse.
  4. A cross-sectional survey of patients with prostate cancer who were treated with radical prostatectomy, radiation therapy, or watchful waiting and active surveillance in a managed care setting showed substantial sexual and urinary dysfunction in the prostatectomy group.[46]
    • Results reported by the patients were consistent with those from the national Medicare survey.
    • In addition, although statistical power was limited, differences in sexual and urinary dysfunction between men who had undergone either nerve-sparing or standard radical prostatectomy were not statistically significant. This issue requires more study.
  5. Case series of 93, 459, and 89 men who had undergone radical prostatectomy by experienced surgeons showed rates of impotence as high as those in the national Medicare survey when men were carefully questioned about sexual potency, although the men in these case series were on average younger than those in the Medicare survey.[4749] One of the case series used the same questionnaire as that used in the Medicare survey.[47] The urinary incontinence rate in that series was also similar to that in the Medicare survey.

Differences are often reported between population-based surveys and case series from individual centers. Reasons for these differences could include:

  • Age differences among the populations.
  • Surgical expertise at the major reporting centers.
  • Patient selection factors.
  • Publication bias of favorable series.
  • Different methods of collecting information from patients.
Penile shortening

Case series of men who have undergone radical prostatectomy have shown shortening of penile length (by an average of 1–2 cm).[5052] The functional consequence of the shortening is not well studied, but it is noticeable to some men.

In a registry of men with rising PSA after initial treatment of clinically localized prostate cancer, 19 of 510 men (3.7%) who had undergone radical prostatectomy complained of reduced penile size.[60] However, the data were based upon physician reporting of patients’ complaints rather than direct patient questioning or before-and-after measurement of penile length. Also, the study sample was restricted to patients with known or suspected tumor recurrence, making generalization difficult.

Recovery of penile length to preoperative measurements within 1 to 2 years has been reported in some, but not all, case series in which men were followed longitudinally.[61]

Inguinal hernia

Inguinal hernia has been reported as a complication of radical prostatectomy.

Evidence (inguinal hernia after radical prostatectomy):

  1. Retrospective cohort studies and case series have shown an increased incidence of inguinal hernia, ranging from 7% to 21%, in men undergoing radical prostatectomy, with rates peaking within 2 years of surgery.[5357]
  2. Observational studies suggest that the rates are higher than in comparable men who have undergone prostate biopsy alone, transurethral resections, and simple open prostatectomy for benign disease;[53,54] or in men with prostate cancer who have undergone pelvic lymph node dissection alone or radiation therapy.[53,55,56]

Although the observations of increased rates of inguinal hernia after radical prostatectomy are consistent, it is conceivable that men with prostate cancer who are being followed carefully by urologists could have higher detection rates of hernia because of frequent examinations or diagnostic imaging (i.e., detection bias). Men should be made aware of this potential complication of prostatectomy.

Fecal incontinence

Radical prostatectomy may cause fecal incontinence, and the incidence may vary with surgical method.[58]

Evidence (fecal incontinence after radical prostatectomy):

  1. In a national survey sample of 907 men who had undergone radical prostatectomy at least 1 year before the survey, 32% of the men who had undergone perineal (nerve-sparing) radical prostatectomy and 17% of the men who had undergone a retropubic radical prostatectomy reported accidents of fecal leakage. Ten percent of the respondents reported moderate amounts of fecal leakage, and 4% of the respondents reported large amounts of fecal leakage. Fewer than 15% of men with fecal incontinence had reported it to a physician or health care provider.[58]

Radiation Therapy and Radiopharmaceutical Therapy

External-beam radiation therapy (EBRT)

Candidates for definitive radiation therapy must have a confirmed pathological diagnosis of cancer that is clinically confined to the prostate and/or surrounding tissues (stage I, stage II, and stage III). Staging laparotomy and lymph node dissection are not required.

Radiation therapy may be a good option for patients who are considered poor medical candidates for radical prostatectomy. These patients can be treated with an acceptably low complication rate if care is given to the delivery technique.[62]

Long-term results with radiation therapy are dependent on stage and are associated with dosimetry of the radiation.

Evidence (EBRT):

  1. A retrospective review of 999 patients treated with megavoltage radiation therapy showed that cause-specific survival rates at 10 years varied substantially by T stage: T1 (79%), T2 (66%), T3 (55%), and T4 (22%).[63] An initial serum PSA level higher than 15 ng/mL is a predictor of probable failure with conventional radiation therapy.[64]
  2. Several randomized studies have demonstrated an improvement in freedom from biochemical (PSA-based) recurrence with higher doses of radiation therapy (74–79 Gy) as compared with lower doses (64–70 Gy).[6569][Level of evidence B1] None of the studies demonstrated a cause-specific survival benefit to higher doses.
    • The MRC-RT01 study (NCT00003290) enrolled 843 men with stage T1b through T3a, N0, M0 prostate cancer. Patients were randomly assigned to receive 64 Gy in 32 fractions versus 74 Gy in 37 fractions by conformal delivery.[68] Men in both study groups received neoadjuvant LH-RH agonist injections every 4 weeks for 3 to 6 months before the start of radiation therapy and throughout the radiation course. The study was powered to detect differences in both biochemical progression-free survival (PFS) and a 15% difference in overall survival (OS).
    • After a median follow-up of 10 years, despite a statistically significant improvement in biochemical PFS with the higher dose of radiation, the 10-year OS rate was the same in both groups: 71% (HR, 0.99; 95% CI, 0.77–1.28; P = .96). Likewise, there were no differences in prostate—cancer-specific survival.
    • Likewise, in the RTOG-0126 trial (NCT00033631), 1,532 men with stage cT1b to T2b (Gleason score 2 to 6 and PSA 10 to <20 ng/mL or Gleason score 7 and PSA <15 ng/mL) prostate cancer were randomly assigned to receive 79.2 Gy in 44 fractions compared with 70.2 Gy in 39 fractions (using 3D conformal or intensity-modulated radiation therapy [IMRT]).[69] With a median follow-up of 8.4 years (maximum, 13.0 years), 8-year OS rates were 76% and 75% (HR, 1.00; 95% CI, 0.83–1.20; P = .98). However, the high-dose radiation was associated with increased late-grade 2 or greater gastrointestinal and genitourinary toxicities (21% and 12% with 79.2 Gy and 15% and 7% with 70.2 Gy).

For more information, see the Radical prostatectomy compared with other treatment options section.

Prophylactic radiation therapy to clinically or pathologically uninvolved pelvic lymph nodes does not appear to improve OS or prostate cancer-specific survival as was seen in the RTOG-7706 trial, for example.[70][Level of evidence A1]

Conventional versus hypofractionated EBRT

The more convenient schedules of hypofractionated radiation therapy (using fewer fractions at higher doses per fraction) appear to yield similar outcomes to conventional schedules of radiation, at least with respect to the intermediate outcomes of DFS and failure-free survival (low levels of evidence not known to translate into health outcomes), and early data on OS rates. However, hypofractionated radiation may incur more toxicity than standard doses, depending on the schedules used.[71]

Evidence (conventional vs. hypofractionated EBRT):

  1. In a small randomized trial, primarily from one treatment center, conventional hypofractionation was not found to be superior to conventional fractionation.[72] In the trial, 303 assessable men were randomly assigned to receive IMRT for a total of 76 Gy in 38 fractions at 2.0 Gy per fraction (conventional IMRT [CIMRT]) versus IMRT for a total of 70.2 Gy in 26 fractions at 2.7 per fraction (hypofractionated IMRT [HIMRT]).
    • The primary end point was biochemical or clinical disease failure (BCDF). The 5-year BCDF rates in the two arms were 21.4% for the CIMRT arm (95% CI, 14.8%–28.7%) and 23.3% for the HIMRT arm (95% CI, 16.4%–31.0%; P = .75).
    • Likewise, there were no statistically significant differences in the secondary end points of overall mortality, prostate–cancer-specific mortality, prostate local failure, or distant failure, despite low mortality rates, and the trial was underpowered for mortality end points.[72][Level of evidence B1]
  2. The much larger, multicenter CHHiP trial (NCT00392535) evaluated conventional or hypofractionated high-dose intensity-modulated radiotherapy in 3,216 men with prostate cancer. The men had stages T1b–T3a, N0, M0 cancer and an estimated risk of seminal vesicle involvement of less than 30% and were randomly assigned in a 1:1:1 ratio to receive either 74 Gy in 37 fractions (the conventional-fraction arm), 60 Gy in 20 fractions, or 57 Gy in 19 fractions.[73,74] The trial was designed as a noninferiority study.
    • The primary end point of biochemical or clinical treatment failure was reported after a median follow-up of 62.4 months. The 5-year failure-free survival rates were 88.3% (conventional, 74 Gy group), 90.6% (60 Gy group), and 85.9% (57 Gy group). The 60 Gy hypofractionated group fulfilled noninferiority criteria compared with conventional 74 Gy fractionation, but the 57 Gy group did not.[74][Level of evidence B1]
    • Overall mortality rates were very similar in the three groups: 9%, 7%, and 8%.[74][Level of evidence A1]
    • A QOL substudy was conducted with 2,100 participants and showed nearly identical patient-reported outcomes in each of the three arms at 2 years after study entry (median follow-up, 50 months).[73][Level of evidence A3]
    • The primary patient-reported outcome was bowel bother. Frequency of moderate bother was 5%, 6%, and 5% in the three study groups. Severe bother was reported in less than 1% of men in each study group.
    • Likewise, there were no differences in any of the secondary outcomes, which included overall QOL, overall urinary bother, or overall sexual bother.
  3. The multicenter, randomized, phase III HYPRO trial (ISRCTN85138529) enrolled 820 men with intermediate- or high-risk prostate cancer (stages T1b–T4, NX–0, MX–0). The men were randomly assigned to receive either conventional radiation therapy (78 Gy in 39 fractions over 8 weeks) or hypofractionated radiation therapy (64.6 Gy in 19 fractions over 6.5 weeks) in a noninferiority design for hypofractionation.[75,76] Median follow-up was 60 months.
    • The primary end point, 5-year relapse-free survival, was similar in the two study arms: 80.5% (95% CI, 75.7%–84.4%) with hypofractionation versus 77.1% (95% CI, 71.9%–81.5%), with conventional fractionation (HR, 0.86; 95% CI, 0.63–1.16; P = .36).[76][Level of evidence B1] The overall 5-year survival rate in the two arms was also similar: 86.2% (95% CI, 82.3%–89.4%) with hypofractionation versus 85.9% (95% CI, 81.8%–89.2%) with conventional fractionation (HR, 1.02; 95% CI, 0.71–1.46; P = .92).[76][Level of evidence A1]
    • With respect to toxicity (key end points of genitourinary [GU] or gastrointestinal [GI] grade 2 or higher toxicities at 3 years), noninferiority for hypofractionated radiation therapy could not be established after a median follow-up of 5 years: cumulative GU toxicity of 41.3% with hypofractionated radiation therapy versus 39% with conventional radiation therapy doses (HR, 1.16; 90% CI, 0.98–1.38); GI toxicity of 21.9% versus 17.7% (HR, 1.19; 90% CI, 0.93–1.52).
    • Cumulative GU grade 3 or higher toxicity was more common in the hypofractionation group: 19.0% versus 12.9% (P = .02).
    • Stool frequency (≥6 qd) was higher in the hypofractionation group: 7% versus 3% (P = .034).
    • In a substudy of 322 men who had a baseline assessment and at least one follow-up assessment, and either no or short-term androgen therapy, erectile dysfunction was similar between the two study arms during 3 years of follow-up.[77]
  4. The RTOG reported a noninferiority trial of 1,115 men with low-risk prostate cancer (T1b–T2c) who were randomly assigned to receive hypofractionated radiation therapy (70 Gy in 28 fractions over 5.6 weeks) versus conventional radiation therapy doses (73.8 Gy in 41 fractions over 8.2 weeks).[78]
    • After a median follow-up of 5.8 years, the hypofractionated radiation therapy arm met the prospective noninferiority criterion with respect to DFS: 86.3% with hypofractionated radiation therapy versus 85.3% with conventional radiation therapy doses (consistent with HR, <1.52; P < .001 for the hypothesis of noninferiority).[78][Level of evidence B1]
    • There were 49 deaths in the hypofractionated radiation therapy arm and 51 deaths in the conventional radiation therapy doses arm (HR for OS, 0.95; conventional radiation therapy doses vs. hypofractionated radiation therapy; 95% CI, 0.64–1.41).
    • However, late GI grade 2 or higher toxicity was worse in the hypofractionated radiation therapy arm: 22.4% versus 14.0% (P = .002); there was also a trend toward worse late GU grade 2 or higher toxicity: 29.7% versus 22.8% (P = .06).
  5. In a multicenter trial (NCT00304759), 1,206 men with intermediate-risk prostate cancer (T1–2a Gleason score ≤6, PSA 10.1–20 ng/mL; T2b–2c Gleason ≤6, PSA ≤20 ng/mL; or T1–2 Gleason = 7, PSA ≤20 ng/mL) were randomly assigned in a noninferiority trial design to receive conventional radiation therapy (78 Gy in 39 fractions) versus hypofractionated radiation therapy (60 Gy over 20 fractions).[79]
    • After a median follow-up of 6 years (maximum 10 years), the primary end point of biochemical clinical failure (87%, PSA failure) was nearly identical with each radiation therapy schedule (85% in both arms; [DFS, 95% CI, 82%–88%]; HR, 0.96; 90% CI, 0.77–1.20).[79][Level of evidence B1]
    • The trial was severely underpowered to detect any differences in overall or prostate-specific mortality. Only 12 deaths in the conventional radiation therapy arm and 10 deaths in the hypofractionated radiation therapy arm were from prostate cancer. Only 14% of all deaths were attributed to prostate cancer.
    • Short- and long-term genitourinary and gastrointestinal toxicities were similar in both study groups.

Brachytherapy

Patients are often offered brachytherapy because of the following favorable characteristics:

  • Low Gleason score.
  • Low PSA level.
  • Stage T1 to T2 tumors.

More information and further study are required to better define the effects of modern interstitial brachytherapy on disease control and QOL and to determine the contribution of favorable patient selection to outcomes.[80][Level of evidence C3]

Information about ongoing clinical trials is available from the NCI website.

Radiopharmaceutical therapy

Alpha emitter radiation

Radium Ra 223 (223Ra) emits alpha particles (i.e., two protons and two neutrons bound together, identical to a helium nucleus) with a half-life of 11.4 days. It is administered intravenously and selectively taken up by newly formed bone stroma. The high-energy alpha particles have a short range of less than 100 mcM. 223Ra improved OS in patients with prostate cancer metastatic to bone. In a double-blind, randomized, controlled trial, 921 men with symptomatic castration-resistant prostate cancer, two or more metastases, and no known visceral metastases were randomly assigned in a 2:1 ratio to 223Ra versus placebo. 223Ra statistically significantly improved OS (median 14.9 months vs. 11.3 months), rate of symptomatic skeletal events (33% vs. 38%), and spinal cord compression (4% vs. 7%).[81,82][Level of evidence A1] With administration at a dose of 50kBq per kg body weight every 4 weeks for six injections, the side effects were similar to those of a placebo.

Complications of radiation therapy

Definitive EBRT can result in acute cystitis, proctitis, and enteritis.[20,42,49,8385] These conditions are generally reversible but may be chronic and rarely require surgical intervention.[85]

A cross-sectional survey of patients with prostate cancer who had been treated in a managed care setting by radical prostatectomy, radiation therapy, or watchful waiting and active surveillance showed substantial sexual and urinary dysfunction in the radiation therapy group.[46]

Radiation is also carcinogenic.[8688] EBRT for prostate cancer is associated with an increased risk of bladder and gastrointestinal cancer. Brachytherapy is associated with an increased risk of bladder cancer.

Reducing complications

Potency, in most cases, is preserved with radiation therapy in the short term but appears to diminish over time.[85] Sildenafil citrate may be effective in the management of sexual dysfunction after radiation therapy in some men.

Evidence (reducing complications):

  1. In a completed, randomized, placebo-controlled, crossover design study (RTOG-0215 [NCT00057759]) of 60 men who had undergone radiation therapy for clinically localized prostate cancer, and who reported erectile dysfunction that began after their radiation therapy, 55% reported successful intercourse after sildenafil versus 18% after placebo (P < .001).[89][Level of evidence A3]
  2. A randomized trial (RTOG-0831 [NCT00931528]) of 121 men with intact erectile function compared daily preventive tadalafil (5 mg PO qd) with placebo for 24 weeks beginning at the start of either EBRT or brachytherapy.[90][Level of evidence A3]
    • There were no statistically significant differences in spontaneous erectile function (the primary end point) or any other measures of sexual function.

Morbidity may be reduced with the employment of sophisticated radiation therapy techniques—such as the use of linear accelerators—and careful simulation and treatment planning.[91,92]

Evidence (3D conformal vs. conventional radiation therapy):

  1. The side effects of similar doses of 3D conformal radiation therapy and conventional radiation therapy (total dose, 60–64 Gy) have been compared in a randomized nonblinded study.[92][Level of evidence A3]
    • No differences were observed in acute morbidity, and late side effects serious enough to require hospitalization were infrequent with both techniques; however, the cumulative incidence of mild or greater proctitis was lower in the conformal radiation arm than in the standard therapy arm (37% vs. 56%; P = .004). Urinary symptoms were similar in the two treatment groups, as were local tumor control and OS rates at 5 years of follow-up.

Radiation therapy can be delivered after an extraperitoneal lymph node dissection without an increase in complications if careful attention is paid to radiation technique. The treatment field should not include the area that contained the dissected pelvic nodes. Previous TURP is associated with an increased risk of stricture above that seen with radiation therapy alone, but, if radiation therapy is delayed 4 to 6 weeks after the TURP, the risk of stricture is lower.[9395] Pretreatment TURP to relieve obstructive symptoms has been associated with tumor dissemination; however, multivariable analysis in pathologically staged cases indicates that this may be due to a worse underlying prognosis of the cases that require TURP rather than the result of the procedure itself.[96]

Comparison of complications from radiation therapy and from radical prostatectomy

In general, radical prostatectomy is associated with a higher rate of urinary incontinence and early sexual impotence but a lower rate of stool incontinence and rectal injury. However, over time, the differences in sexual impotence diminish because the risk rises with time since radiation. Many side effects of definitive local therapy for prostate cancer persist well beyond a decade after therapy, and urinary problems in addition to sexual impotence may worsen with age.[97]

Evidence (complications of radical prostatectomy vs. radiation therapy):

  1. A population-based survey of Medicare recipients who had received radiation therapy as primary treatment for prostate cancer (similar in design to the survey of Medicare patients who underwent radical prostatectomy,[44] described above) has been reported, showing substantial differences in posttreatment morbidity profiles between surgery and radiation therapy.[98]
    • Although the men who had undergone radiation therapy were older at the time of initial therapy, they were less likely to report the need for pads or clamps to control urinary wetness (7% vs. >30%).
    • A larger proportion of patients treated with radiation therapy before surgery reported the ability to have an erection sufficient for intercourse in the month before the survey (men <70 years, 33% who received radiation therapy vs. 11% who underwent surgery alone; men ≥70 years, 27% who received radiation therapy vs. 12% who underwent surgery alone).
    • Men receiving radiation therapy, however, were more likely to report problems with bowel function, especially frequent bowel movements (10% vs. 3%).
    • As in the results of the surgical patient survey, about 24% of patients who received radiation reported additional subsequent treatment for known or suspected cancer persistence or recurrence within 3 years of primary therapy.
  2. A prospective, community-based cohort study of men aged 55 to 74 years treated with radical prostatectomy (n = 1,156) or EBRT (n = 435) attempted to compare the acute and chronic complications of the two treatment strategies after adjusting for baseline differences in patient characteristics and underlying health.[99]
    • Regarding acute treatment-related morbidity, radical prostatectomy was associated with higher rates of cardiopulmonary complications (5.5% vs. 1.9%) and the need for treatment of urinary strictures (17.4% vs. 7.2%). Radiation therapy was associated with more acute rectal proctitis (18.7% vs. 1.6%).
    • With regard to chronic treatment-related morbidity, radical prostatectomy was associated with more urinary incontinence (9.6% vs. 3.5%) and impotence (80% vs. 62%). Radiation therapy was associated with slightly greater declines in bowel function.

Hormonal Therapy and Its Complications

Several different hormonal approaches are used in the management of various stages of prostate cancer.

These approaches include:

Abiraterone acetate

Abiraterone acetate has been shown to improve OS when added to ADT in men with advanced prostate cancer who have castration-sensitive disease. Abiraterone acetate is generally well-tolerated; however, it is associated with an increase in the mineralocorticoid effects of grade 3 or 4 hypertension and hypokalemia compared with ADT alone.[100] It may also be associated with a small increase in respiratory disorders.[101]

Bilateral orchiectomy

Benefits of bilateral orchiectomy include:[42]

  • Ease of the procedure.
  • Compliance.
  • Immediacy in lowering testosterone levels.
  • Low cost relative to the other forms of ADT.

Disadvantages of bilateral orchiectomy include:[42,102]

  • Psychological effects.
  • Loss of libido.
  • Less reversible impotence.
  • Hot flashes.
  • Osteoporosis.[102]

Bilateral orchiectomy has also been associated with an elevated risk of coronary heart disease and myocardial infarction.[103106]

For more information, see Hot Flashes and Night Sweats.

Estrogen therapy

Estrogens at a dose of 3 mg qd of diethylstilbestrol (DES) will achieve castrate levels of testosterone. Like orchiectomy, estrogens may cause loss of libido and impotence. Estrogens also cause gynecomastia, and prophylactic low-dose radiation therapy to the breasts is given to prevent this complication.

DES is no longer manufactured or marketed in the United States and is seldom used today because of the risk of serious side effects, including myocardial infarction, cerebrovascular accidents, and pulmonary embolism.

Luteinizing hormone-releasing hormone (LH-RH) agonist therapy

LH-RH agonists, such as leuprolide, goserelin, and buserelin, lower testosterone to castrate levels. Like orchiectomy and estrogens, LH-RH agonists cause impotence, hot flashes, and loss of libido. Tumor flare reactions may occur transiently but can be prevented by antiandrogens or short-term estrogens at a low dose for several weeks.

There is some evidence that LH-RH agonists are associated with increased risk of cardiovascular morbidity or mortality, although the results are conflicting.[103107]

Evidence (LH-RH agonists and cardiovascular disease):

  1. In a population-based study within the Department of Veterans Affairs’ system, LH-RH agonists were associated with an increased risk of diabetes as well as cardiovascular disease, including coronary heart disease, myocardial infarction, sudden death, and stroke.[103105]
  2. A systematic evidence review and meta-analysis of eight trials (4,141 patients) of men with nonmetastatic prostate cancer who were randomly assigned to receive or not to receive LH-RH agonists found no difference in cardiovascular death rates (11.0% vs. 11.2%; RRdeath, 0.93; 95% CI, 0.79–1.10; P = .41).[108] Median follow-up in those studies was 7.6 to 13.2 years. No excess risk of LH-RH agonists was found regardless of treatment duration or patient age (median age of <70 years or ≥70 years).

Antiandrogen therapy

Antiandrogen agents used in the treatment of prostate cancer include flutamide and bicalutamide. A systematic evidence review compared nonsteroidal antiandrogen monotherapy with surgical or medical castration from 11 randomized trials in 3,060 men with locally advanced, metastatic, or recurrent disease after local therapy.[109] Use of nonsteroidal antiandrogens as monotherapy decreased OS and increased the rate of clinical progression and treatment failure.[109][Level of evidence A1]

The pure antiandrogen, flutamide, may cause diarrhea, breast tenderness, and nausea. Case reports show fatal and nonfatal liver toxic effects.[110] For more information, see Gastrointestinal Complications.

Bicalutamide may cause nausea, breast tenderness, hot flashes, loss of libido, and impotence.[111] For more information, see Nausea and Vomiting Related to Cancer Treatment and Hot Flashes and Night Sweats.

The steroidal antiandrogen, megestrol acetate, suppresses androgen production incompletely and is generally not used as initial therapy.

Additional studies that evaluate the effects of various hormone therapies on QOL are required.[112]

ADT

A national Medicare survey of men who had undergone radical prostatectomy for prostate cancer and either had or had not undergone androgen depletion (either medically or surgically induced) showed a decrease with androgen depletion in all seven health-related QOL measures, including:[113][Level of evidence C1]

  • Impact of cancer and treatment.
  • Concern regarding body image.
  • Mental health.
  • General health.
  • Activity.
  • Worries about cancer and dying.
  • Energy.

ADT can cause osteoporosis and bone fractures. In a population-based sample of 50,613 Medicare patients aged 66 years or older followed for a median of 5.1 years, men who had been treated with either a gonadotropin-releasing hormone (GnRH) or orchiectomy had a 19.4% bone fracture rate compared with 12.6% in men who had not received hormone deprivation therapy. The effect was similar in men whether or not they had metastatic bone disease.[114]

The use of ADT may be associated with complaints of penile shortening, although the data are very limited.[60] In a registry study of men with rising PSA after initial treatment of clinically localized prostate cancer treated with radiation therapy plus ADT, 6 of 225 men (2.7%) complained of reduced penile size. Of the 213 men treated with radiation therapy but no ADT, none complained of changes in penile size. However, the data were based upon physician reporting of patients’ complaints rather than direct patient questioning or before-and-after measurement of penile length. Also, the study sample was restricted to patients with known or suspected tumor recurrence, making generalization difficult.

Placebo-controlled, randomized trials have shown that treatment of bone loss with bisphosphonates decreases the risk of bone fracture in men receiving ADT for prostate cancer (RR, 0.80 in a meta-analysis of 15 trials; 95% CI, 0.69–0.94). In the meta-analysis, zoledronate appeared to have the largest effect.[115]

The use of ADT has also been associated with an increased risk of colorectal cancer.

Evidence (increased risk of colorectal cancer):

  1. Using the Surveillance, Epidemiology, and End Results (SEER) Medicare database, investigators assessed the risk of subsequent colorectal cancer in 107,859 men aged 67 years and older after an initial diagnosis of prostate cancer.[116]
    • The rates of colorectal cancer per 1,000 person-years were 6.3 (95% CI, 5.3–7.5) in men who had orchiectomy, 4.4 (95% CI, 4.0–4.9) in men treated with GnRH agonists, and 3.7 (95% CI, 3.5–3.9) in men who had no androgen deprivation.
    • In men treated with GnRH agonists, the risk increased with increasing duration of treatment (P for trend = .01).

Antiadrenal therapy

Antiadrenal agents used in the treatment of prostate cancer include ketoconazole and aminoglutethimide. Long-term use of ketoconazole can result in impotence, pruritus, nail changes, and adrenal insufficiency. Aminoglutethimide commonly causes sedation and skin rashes. For more information, see Pruritus.

Cryosurgery

Cryosurgery, or cryotherapy, is under evaluation for the treatment of localized prostate cancer. It is a surgical technique that involves destruction of prostate cancer cells by intermittent freezing of the prostate with cryoprobes, followed by thawing.[117][Level of evidence C1]; [118,119][Level of evidence C3] There is limited evidence regarding its efficacy and safety compared with standard prostatectomy and radiation therapy, and the technique is evolving in an attempt to reduce local toxicity and normal tissue damage. The quality of evidence on efficacy is low, currently limited to case series of relatively small size, short follow-up, and surrogate outcomes of efficacy.[120]

Serious toxic effects associated with cryosurgery include bladder outlet injury, urinary incontinence, sexual impotence, and rectal injury. Impotence is common, ranging from about 47% to 100%.

The frequency of other side effects and the probability of cancer control at 5 years of follow-up have varied among reporting centers, and series are small compared with surgery and radiation therapy.[118,119] Other major complications include urethral sloughing, urinary fistula or stricture, and bladder neck obstruction.[120]

Proton-Beam Therapy

There is interest in the use of proton-beam therapy for the treatment of prostate cancer. Although the dose distribution of this form of charged-particle radiation could theoretically improve the therapeutic ratio of prostate radiation, allowing for an increase in dose to the tumor without a substantial increase in side effects, no randomized controlled trials have been reported that compare its efficacy and toxicity with those of other forms of radiation therapy.

Photodynamic Therapy

Vascular-targeted photodynamic therapy using a photosensitizing agent has been tested in men with low-risk prostate cancer.[121]

Neoadjuvant Hormonal Therapy

The role of neoadjuvant hormonal therapy is not established.[26,27]

Bicalutamide

Bicalutamide has not been shown to improve OS in patients with localized or locally advanced prostate cancer.

Evidence (bicalutamide):

  1. The Early Prostate Cancer program is a large, randomized, placebo-controlled, international trial that compared bicalutamide (150 mg PO qd) plus standard care (radical prostatectomy, radiation therapy, or watchful waiting, depending on local custom) with standard care alone for men with nonmetastatic localized or locally advanced prostate cancer (T1–2, N0, and NX; T3–4, any N; or any T, N+). Less than 2% of the 8,113 men had known nodal disease.[122][Level of evidence A1]
    • At a median follow-up of 7.4 years, there was no difference in OS between the bicalutamide and placebo groups (about 76% in both arms [HR, 0.99; CI, 95%, 0.91–1.09; P = .89]).

Information about ongoing clinical trials is available from the NCI website.

References
  1. Barocas DA, Alvarez J, Resnick MJ, et al.: Association Between Radiation Therapy, Surgery, or Observation for Localized Prostate Cancer and Patient-Reported Outcomes After 3 Years. JAMA 317 (11): 1126-1140, 2017. [PUBMED Abstract]
  2. Chen RC, Basak R, Meyer AM, et al.: Association Between Choice of Radical Prostatectomy, External Beam Radiotherapy, Brachytherapy, or Active Surveillance and Patient-Reported Quality of Life Among Men With Localized Prostate Cancer. JAMA 317 (11): 1141-1150, 2017. [PUBMED Abstract]
  3. Chodak GW, Thisted RA, Gerber GS, et al.: Results of conservative management of clinically localized prostate cancer. N Engl J Med 330 (4): 242-8, 1994. [PUBMED Abstract]
  4. Whitmore WF: Expectant management of clinically localized prostatic cancer. Semin Oncol 21 (5): 560-8, 1994. [PUBMED Abstract]
  5. Wilt TJ, Brawer MK, Jones KM, et al.: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367 (3): 203-13, 2012. [PUBMED Abstract]
  6. Shappley WV, Kenfield SA, Kasperzyk JL, et al.: Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J Clin Oncol 27 (30): 4980-5, 2009. [PUBMED Abstract]
  7. Klotz L: Active surveillance with selective delayed intervention: using natural history to guide treatment in good risk prostate cancer. J Urol 172 (5 Pt 2): S48-50; discussion S50-1, 2004. [PUBMED Abstract]
  8. Carter HB, Walsh PC, Landis P, et al.: Expectant management of nonpalpable prostate cancer with curative intent: preliminary results. J Urol 167 (3): 1231-4, 2002. [PUBMED Abstract]
  9. Klotz L, Vesprini D, Sethukavalan P, et al.: Long-term follow-up of a large active surveillance cohort of patients with prostate cancer. J Clin Oncol 33 (3): 272-7, 2015. [PUBMED Abstract]
  10. Johansson JE, Holmberg L, Johansson S, et al.: Fifteen-year survival in prostate cancer. A prospective, population-based study in Sweden. JAMA 277 (6): 467-71, 1997. [PUBMED Abstract]
  11. Johansson JE, Andrén O, Andersson SO, et al.: Natural history of early, localized prostate cancer. JAMA 291 (22): 2713-9, 2004. [PUBMED Abstract]
  12. Waaler G, Stenwig AE: Prognosis of localised prostatic cancer managed by “watch and wait” policy. Br J Urol 72 (2): 214-9, 1993. [PUBMED Abstract]
  13. Lu-Yao GL, Albertsen PC, Moore DF, et al.: Outcomes of localized prostate cancer following conservative management. JAMA 302 (11): 1202-9, 2009. [PUBMED Abstract]
  14. Stattin P, Holmberg E, Johansson JE, et al.: Outcomes in localized prostate cancer: National Prostate Cancer Register of Sweden follow-up study. J Natl Cancer Inst 102 (13): 950-8, 2010. [PUBMED Abstract]
  15. Holmström B, Holmberg E, Egevad L, et al.: Outcome of primary versus deferred radical prostatectomy in the National Prostate Cancer Register of Sweden Follow-Up Study. J Urol 184 (4): 1322-7, 2010. [PUBMED Abstract]
  16. Barry MJ, Albertsen PC, Bagshaw MA, et al.: Outcomes for men with clinically nonmetastatic prostate carcinoma managed with radical prostactectomy, external beam radiotherapy, or expectant management: a retrospective analysis. Cancer 91 (12): 2302-14, 2001. [PUBMED Abstract]
  17. Lu-Yao GL, Yao SL: Population-based study of long-term survival in patients with clinically localised prostate cancer. Lancet 349 (9056): 906-10, 1997. [PUBMED Abstract]
  18. van den Bergh RC, Roemeling S, Roobol MJ, et al.: Outcomes of men with screen-detected prostate cancer eligible for active surveillance who were managed expectantly. Eur Urol 55 (1): 1-8, 2009. [PUBMED Abstract]
  19. Hamdy FC, Donovan JL, Lane JA, et al.: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 375 (15): 1415-1424, 2016. [PUBMED Abstract]
  20. Catalona WJ, Bigg SW: Nerve-sparing radical prostatectomy: evaluation of results after 250 patients. J Urol 143 (3): 538-43; discussion 544, 1990. [PUBMED Abstract]
  21. Corral DA, Bahnson RR: Survival of men with clinically localized prostate cancer detected in the eighth decade of life. J Urol 151 (5): 1326-9, 1994. [PUBMED Abstract]
  22. Zincke H, Bergstralh EJ, Blute ML, et al.: Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol 12 (11): 2254-63, 1994. [PUBMED Abstract]
  23. Schuessler WW, Vancaillie TG, Reich H, et al.: Transperitoneal endosurgical lymphadenectomy in patients with localized prostate cancer. J Urol 145 (5): 988-91, 1991. [PUBMED Abstract]
  24. Coughlin GD, Yaxley JW, Chambers SK, et al.: Robot-assisted laparoscopic prostatectomy versus open radical retropubic prostatectomy: 24-month outcomes from a randomised controlled study. Lancet Oncol 19 (8): 1051-1060, 2018. [PUBMED Abstract]
  25. Fournier GR, Narayan P: Re-evaluation of the need for pelvic lymphadenectomy in low grade prostate cancer. Br J Urol 72 (4): 484-8, 1993. [PUBMED Abstract]
  26. Witjes WP, Schulman CC, Debruyne FM: Preliminary results of a prospective randomized study comparing radical prostatectomy versus radical prostatectomy associated with neoadjuvant hormonal combination therapy in T2-3 N0 M0 prostatic carcinoma. The European Study Group on Neoadjuvant Treatment of Prostate Cancer. Urology 49 (3A Suppl): 65-9, 1997. [PUBMED Abstract]
  27. Fair WR, Cookson MS, Stroumbakis N, et al.: The indications, rationale, and results of neoadjuvant androgen deprivation in the treatment of prostatic cancer: Memorial Sloan-Kettering Cancer Center results. Urology 49 (3A Suppl): 46-55, 1997. [PUBMED Abstract]
  28. Adolfsson J, Rönström L, Löwhagen T, et al.: Deferred treatment of clinically localized low grade prostate cancer: the experience from a prospective series at the Karolinska Hospital. J Urol 152 (5 Pt 2): 1757-60, 1994. [PUBMED Abstract]
  29. Grossfeld GD, Chang JJ, Broering JM, et al.: Impact of positive surgical margins on prostate cancer recurrence and the use of secondary cancer treatment: data from the CaPSURE database. J Urol 163 (4): 1171-7; quiz 1295, 2000. [PUBMED Abstract]
  30. Wasson JH, Cushman CC, Bruskewitz RC, et al.: A structured literature review of treatment for localized prostate cancer. Prostate Disease Patient Outcome Research Team. Arch Fam Med 2 (5): 487-93, 1993. [PUBMED Abstract]
  31. Adolfsson J, Steineck G, Whitmore WF: Recent results of management of palpable clinically localized prostate cancer. Cancer 72 (2): 310-22, 1993. [PUBMED Abstract]
  32. Austenfeld MS, Thompson IM, Middleton RG: Meta-analysis of the literature: guideline development for prostate cancer treatment. American Urological Association Prostate Cancer Guideline Panel. J Urol 152 (5 Pt 2): 1866-9, 1994. [PUBMED Abstract]
  33. Holmberg L, Bill-Axelson A, Helgesen F, et al.: A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N Engl J Med 347 (11): 781-9, 2002. [PUBMED Abstract]
  34. Bill-Axelson A, Holmberg L, Ruutu M, et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352 (19): 1977-84, 2005. [PUBMED Abstract]
  35. Bill-Axelson A, Holmberg L, Garmo H, et al.: Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370 (10): 932-42, 2014. [PUBMED Abstract]
  36. Wilt TJ: The Prostate Cancer Intervention Versus Observation Trial: VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): design and baseline results of a randomized controlled trial comparing radical prostatectomy with watchful waiting for men with clinically localized prostate cancer. J Natl Cancer Inst Monogr 2012 (45): 184-90, 2012. [PUBMED Abstract]
  37. Wilt TJ, Jones KM, Barry MJ, et al.: Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med 377 (2): 132-142, 2017. [PUBMED Abstract]
  38. Donovan JL, Hamdy FC, Lane JA, et al.: Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 375 (15): 1425-1437, 2016. [PUBMED Abstract]
  39. Yao SL, Lu-Yao G: Population-based study of relationships between hospital volume of prostatectomies, patient outcomes, and length of hospital stay. J Natl Cancer Inst 91 (22): 1950-6, 1999. [PUBMED Abstract]
  40. Lu-Yao GL, McLerran D, Wasson J, et al.: An assessment of radical prostatectomy. Time trends, geographic variation, and outcomes. The Prostate Patient Outcomes Research Team. JAMA 269 (20): 2633-6, 1993. [PUBMED Abstract]
  41. Alibhai SM, Leach M, Tomlinson G, et al.: 30-day mortality and major complications after radical prostatectomy: influence of age and comorbidity. J Natl Cancer Inst 97 (20): 1525-32, 2005. [PUBMED Abstract]
  42. Sanda MG, Dunn RL, Michalski J, et al.: Quality of life and satisfaction with outcome among prostate-cancer survivors. N Engl J Med 358 (12): 1250-61, 2008. [PUBMED Abstract]
  43. Catalona WJ, Basler JW: Return of erections and urinary continence following nerve sparing radical retropubic prostatectomy. J Urol 150 (3): 905-7, 1993. [PUBMED Abstract]
  44. Fowler FJ, Barry MJ, Lu-Yao G, et al.: Patient-reported complications and follow-up treatment after radical prostatectomy. The National Medicare Experience: 1988-1990 (updated June 1993). Urology 42 (6): 622-9, 1993. [PUBMED Abstract]
  45. Potosky AL, Davis WW, Hoffman RM, et al.: Five-year outcomes after prostatectomy or radiotherapy for prostate cancer: the prostate cancer outcomes study. J Natl Cancer Inst 96 (18): 1358-67, 2004. [PUBMED Abstract]
  46. Litwin MS, Hays RD, Fink A, et al.: Quality-of-life outcomes in men treated for localized prostate cancer. JAMA 273 (2): 129-35, 1995. [PUBMED Abstract]
  47. Jønler M, Messing EM, Rhodes PR, et al.: Sequelae of radical prostatectomy. Br J Urol 74 (3): 352-8, 1994. [PUBMED Abstract]
  48. Geary ES, Dendinger TE, Freiha FS, et al.: Nerve sparing radical prostatectomy: a different view. J Urol 154 (1): 145-9, 1995. [PUBMED Abstract]
  49. Lim AJ, Brandon AH, Fiedler J, et al.: Quality of life: radical prostatectomy versus radiation therapy for prostate cancer. J Urol 154 (4): 1420-5, 1995. [PUBMED Abstract]
  50. Savoie M, Kim SS, Soloway MS: A prospective study measuring penile length in men treated with radical prostatectomy for prostate cancer. J Urol 169 (4): 1462-4, 2003. [PUBMED Abstract]
  51. Gontero P, Galzerano M, Bartoletti R, et al.: New insights into the pathogenesis of penile shortening after radical prostatectomy and the role of postoperative sexual function. J Urol 178 (2): 602-7, 2007. [PUBMED Abstract]
  52. McCullough A: Penile change following radical prostatectomy: size, smooth muscle atrophy, and curve. Curr Urol Rep 9 (6): 492-9, 2008. [PUBMED Abstract]
  53. Sun M, Lughezzani G, Alasker A, et al.: Comparative study of inguinal hernia repair after radical prostatectomy, prostate biopsy, transurethral resection of the prostate or pelvic lymph node dissection. J Urol 183 (3): 970-5, 2010. [PUBMED Abstract]
  54. Sekita N, Suzuki H, Kamijima S, et al.: Incidence of inguinal hernia after prostate surgery: open radical retropubic prostatectomy versus open simple prostatectomy versus transurethral resection of the prostate. Int J Urol 16 (1): 110-3, 2009. [PUBMED Abstract]
  55. Lughezzani G, Sun M, Perrotte P, et al.: Comparative study of inguinal hernia repair rates after radical prostatectomy or external beam radiotherapy. Int J Radiat Oncol Biol Phys 78 (5): 1307-13, 2010. [PUBMED Abstract]
  56. Lodding P, Bergdahl C, Nyberg M, et al.: Inguinal hernia after radical retropubic prostatectomy for prostate cancer: a study of incidence and risk factors in comparison to no operation and lymphadenectomy. J Urol 166 (3): 964-7, 2001. [PUBMED Abstract]
  57. Lepor H, Robbins D: Inguinal hernias in men undergoing open radical retropubic prostatectomy. Urology 70 (5): 961-4, 2007. [PUBMED Abstract]
  58. Bishoff JT, Motley G, Optenberg SA, et al.: Incidence of fecal and urinary incontinence following radical perineal and retropubic prostatectomy in a national population. J Urol 160 (2): 454-8, 1998. [PUBMED Abstract]
  59. Nossiter J, Sujenthiran A, Charman SC, et al.: Robot-assisted radical prostatectomy vs laparoscopic and open retropubic radical prostatectomy: functional outcomes 18 months after diagnosis from a national cohort study in England. Br J Cancer 118 (4): 489-494, 2018. [PUBMED Abstract]
  60. Parekh A, Chen MH, Hoffman KE, et al.: Reduced penile size and treatment regret in men with recurrent prostate cancer after surgery, radiotherapy plus androgen deprivation, or radiotherapy alone. Urology 81 (1): 130-4, 2013. [PUBMED Abstract]
  61. Kadono Y, Machioka K, Nakashima K, et al.: Changes in penile length after radical prostatectomy: investigation of the underlying anatomical mechanism. BJU Int 120 (2): 293-299, 2017. [PUBMED Abstract]
  62. Forman JD, Order SE, Zinreich ES, et al.: Carcinoma of the prostate in the elderly: the therapeutic ratio of definitive radiotherapy. J Urol 136 (6): 1238-41, 1986. [PUBMED Abstract]
  63. Duncan W, Warde P, Catton CN, et al.: Carcinoma of the prostate: results of radical radiotherapy (1970-1985) Int J Radiat Oncol Biol Phys 26 (2): 203-10, 1993. [PUBMED Abstract]
  64. Zietman AL, Coen JJ, Shipley WU, et al.: Radical radiation therapy in the management of prostatic adenocarcinoma: the initial prostate specific antigen value as a predictor of treatment outcome. J Urol 151 (3): 640-5, 1994. [PUBMED Abstract]
  65. Peeters ST, Heemsbergen WD, Koper PC, et al.: Dose-response in radiotherapy for localized prostate cancer: results of the Dutch multicenter randomized phase III trial comparing 68 Gy of radiotherapy with 78 Gy. J Clin Oncol 24 (13): 1990-6, 2006. [PUBMED Abstract]
  66. Zietman AL, DeSilvio ML, Slater JD, et al.: Comparison of conventional-dose vs high-dose conformal radiation therapy in clinically localized adenocarcinoma of the prostate: a randomized controlled trial. JAMA 294 (10): 1233-9, 2005. [PUBMED Abstract]
  67. Pollack A, Zagars GK, Starkschall G, et al.: Prostate cancer radiation dose response: results of the M. D. Anderson phase III randomized trial. Int J Radiat Oncol Biol Phys 53 (5): 1097-105, 2002. [PUBMED Abstract]
  68. Dearnaley DP, Jovic G, Syndikus I, et al.: Escalated-dose versus control-dose conformal radiotherapy for prostate cancer: long-term results from the MRC RT01 randomised controlled trial. Lancet Oncol 15 (4): 464-73, 2014. [PUBMED Abstract]
  69. Michalski JM, Moughan J, Purdy J, et al.: Effect of Standard vs Dose-Escalated Radiation Therapy for Patients With Intermediate-Risk Prostate Cancer: The NRG Oncology RTOG 0126 Randomized Clinical Trial. JAMA Oncol 4 (6): e180039, 2018. [PUBMED Abstract]
  70. Asbell SO, Martz KL, Shin KH, et al.: Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG #77-06, a phase III study for T1BN0M0 (A2) and T2N0M0 (B) prostate carcinoma. Int J Radiat Oncol Biol Phys 40 (4): 769-82, 1998. [PUBMED Abstract]
  71. Yu JB: Hypofractionated Radiotherapy for Prostate Cancer: Further Evidence to Tip the Scales. J Clin Oncol 35 (17): 1867-1869, 2017. [PUBMED Abstract]
  72. Pollack A, Walker G, Horwitz EM, et al.: Randomized trial of hypofractionated external-beam radiotherapy for prostate cancer. J Clin Oncol 31 (31): 3860-8, 2013. [PUBMED Abstract]
  73. Wilkins A, Mossop H, Syndikus I, et al.: Hypofractionated radiotherapy versus conventionally fractionated radiotherapy for patients with intermediate-risk localised prostate cancer: 2-year patient-reported outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 16 (16): 1605-16, 2015. [PUBMED Abstract]
  74. Dearnaley D, Syndikus I, Mossop H, et al.: Conventional versus hypofractionated high-dose intensity-modulated radiotherapy for prostate cancer: 5-year outcomes of the randomised, non-inferiority, phase 3 CHHiP trial. Lancet Oncol 17 (8): 1047-60, 2016. [PUBMED Abstract]
  75. Aluwini S, Pos F, Schimmel E, et al.: Hypofractionated versus conventionally fractionated radiotherapy for patients with prostate cancer (HYPRO): late toxicity results from a randomised, non-inferiority, phase 3 trial. Lancet Oncol 17 (4): 464-74, 2016. [PUBMED Abstract]
  76. Incrocci L, Wortel RC, Alemayehu WG, et al.: Hypofractionated versus conventionally fractionated radiotherapy for patients with localised prostate cancer (HYPRO): final efficacy results from a randomised, multicentre, open-label, phase 3 trial. Lancet Oncol 17 (8): 1061-9, 2016. [PUBMED Abstract]
  77. Wortel RC, Pos FJ, Heemsbergen WD, et al.: Sexual Function After Hypofractionated Versus Conventionally Fractionated Radiotherapy for Prostate Cancer: Results From the Randomized Phase III HYPRO Trial. J Sex Med 13 (11): 1695-1703, 2016. [PUBMED Abstract]
  78. Lee WR, Dignam JJ, Amin MB, et al.: Randomized Phase III Noninferiority Study Comparing Two Radiotherapy Fractionation Schedules in Patients With Low-Risk Prostate Cancer. J Clin Oncol 34 (20): 2325-32, 2016. [PUBMED Abstract]
  79. Catton CN, Lukka H, Gu CS, et al.: Randomized Trial of a Hypofractionated Radiation Regimen for the Treatment of Localized Prostate Cancer. J Clin Oncol 35 (17): 1884-1890, 2017. [PUBMED Abstract]
  80. Ragde H, Blasko JC, Grimm PD, et al.: Interstitial iodine-125 radiation without adjuvant therapy in the treatment of clinically localized prostate carcinoma. Cancer 80 (3): 442-53, 1997. [PUBMED Abstract]
  81. Parker C, Nilsson S, Heinrich D, et al.: Alpha emitter radium-223 and survival in metastatic prostate cancer. N Engl J Med 369 (3): 213-23, 2013. [PUBMED Abstract]
  82. Sartor O, Coleman R, Nilsson S, et al.: Effect of radium-223 dichloride on symptomatic skeletal events in patients with castration-resistant prostate cancer and bone metastases: results from a phase 3, double-blind, randomised trial. Lancet Oncol 15 (7): 738-46, 2014. [PUBMED Abstract]
  83. Schellhammer PF, Jordan GH, el-Mahdi AM: Pelvic complications after interstitial and external beam irradiation of urologic and gynecologic malignancy. World J Surg 10 (2): 259-68, 1986. [PUBMED Abstract]
  84. Lee JY, Daignault-Newton S, Heath G, et al.: Multinational Prospective Study of Patient-Reported Outcomes After Prostate Radiation Therapy: Detailed Assessment of Rectal Bleeding. Int J Radiat Oncol Biol Phys 96 (4): 770-777, 2016. [PUBMED Abstract]
  85. Hamilton AS, Stanford JL, Gilliland FD, et al.: Health outcomes after external-beam radiation therapy for clinically localized prostate cancer: results from the Prostate Cancer Outcomes Study. J Clin Oncol 19 (9): 2517-26, 2001. [PUBMED Abstract]
  86. Nieder AM, Porter MP, Soloway MS: Radiation therapy for prostate cancer increases subsequent risk of bladder and rectal cancer: a population based cohort study. J Urol 180 (5): 2005-9; discussion 2009-10, 2008. [PUBMED Abstract]
  87. Abdel-Wahab M, Reis IM, Wu J, et al.: Second primary cancer risk of radiation therapy after radical prostatectomy for prostate cancer: an analysis of SEER data. Urology 74 (4): 866-71, 2009. [PUBMED Abstract]
  88. Nam RK, Cheung P, Herschorn S, et al.: Incidence of complications other than urinary incontinence or erectile dysfunction after radical prostatectomy or radiotherapy for prostate cancer: a population-based cohort study. Lancet Oncol 15 (2): 223-31, 2014. [PUBMED Abstract]
  89. Incrocci L, Koper PC, Hop WC, et al.: Sildenafil citrate (Viagra) and erectile dysfunction following external beam radiotherapy for prostate cancer: a randomized, double-blind, placebo-controlled, cross-over study. Int J Radiat Oncol Biol Phys 51 (5): 1190-5, 2001. [PUBMED Abstract]
  90. Pisansky TM, Pugh SL, Greenberg RE, et al.: Tadalafil for prevention of erectile dysfunction after radiotherapy for prostate cancer: the Radiation Therapy Oncology Group [0831] randomized clinical trial. JAMA 311 (13): 1300-7, 2014. [PUBMED Abstract]
  91. Hanks GE, Hanlon AL, Schultheiss TE, et al.: Dose escalation with 3D conformal treatment: five year outcomes, treatment optimization, and future directions. Int J Radiat Oncol Biol Phys 41 (3): 501-10, 1998. [PUBMED Abstract]
  92. Dearnaley DP, Khoo VS, Norman AR, et al.: Comparison of radiation side-effects of conformal and conventional radiotherapy in prostate cancer: a randomised trial. Lancet 353 (9149): 267-72, 1999. [PUBMED Abstract]
  93. Greskovich FJ, Zagars GK, Sherman NE, et al.: Complications following external beam radiation therapy for prostate cancer: an analysis of patients treated with and without staging pelvic lymphadenectomy. J Urol 146 (3): 798-802, 1991. [PUBMED Abstract]
  94. Seymore CH, el-Mahdi AM, Schellhammer PF: The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int J Radiat Oncol Biol Phys 12 (9): 1597-600, 1986. [PUBMED Abstract]
  95. Green N, Treible D, Wallack H, et al.: Prostate cancer–the impact of irradiation on urinary outlet obstruction. Br J Urol 70 (3): 310-3, 1992. [PUBMED Abstract]
  96. Zelefsky MJ, Whitmore WF, Leibel SA, et al.: Impact of transurethral resection on the long-term outcome of patients with prostatic carcinoma. J Urol 150 (6): 1860-4, 1993. [PUBMED Abstract]
  97. Jang JW, Drumm MR, Efstathiou JA, et al.: Long-term quality of life after definitive treatment for prostate cancer: patient-reported outcomes in the second posttreatment decade. Cancer Med 6 (7): 1827-1836, 2017. [PUBMED Abstract]
  98. Fowler FJ, Barry MJ, Lu-Yao G, et al.: Outcomes of external-beam radiation therapy for prostate cancer: a study of Medicare beneficiaries in three surveillance, epidemiology, and end results areas. J Clin Oncol 14 (8): 2258-65, 1996. [PUBMED Abstract]
  99. Potosky AL, Legler J, Albertsen PC, et al.: Health outcomes after prostatectomy or radiotherapy for prostate cancer: results from the Prostate Cancer Outcomes Study. J Natl Cancer Inst 92 (19): 1582-92, 2000. [PUBMED Abstract]
  100. Fizazi K, Tran N, Fein L, et al.: Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med 377 (4): 352-360, 2017. [PUBMED Abstract]
  101. James ND, de Bono JS, Spears MR, et al.: Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med 377 (4): 338-351, 2017. [PUBMED Abstract]
  102. Daniell HW: Osteoporosis after orchiectomy for prostate cancer. J Urol 157 (2): 439-44, 1997. [PUBMED Abstract]
  103. Keating NL, O’Malley AJ, Freedland SJ, et al.: Diabetes and cardiovascular disease during androgen deprivation therapy: observational study of veterans with prostate cancer. J Natl Cancer Inst 102 (1): 39-46, 2010. [PUBMED Abstract]
  104. Keating NL, O’Malley AJ, Smith MR: Diabetes and cardiovascular disease during androgen deprivation therapy for prostate cancer. J Clin Oncol 24 (27): 4448-56, 2006. [PUBMED Abstract]
  105. D’Amico AV, Denham JW, Crook J, et al.: Influence of androgen suppression therapy for prostate cancer on the frequency and timing of fatal myocardial infarctions. J Clin Oncol 25 (17): 2420-5, 2007. [PUBMED Abstract]
  106. O’Farrell S, Garmo H, Holmberg L, et al.: Risk and timing of cardiovascular disease after androgen-deprivation therapy in men with prostate cancer. J Clin Oncol 33 (11): 1243-51, 2015. [PUBMED Abstract]
  107. Levine GN, D’Amico AV, Berger P, et al.: Androgen-deprivation therapy in prostate cancer and cardiovascular risk: a science advisory from the American Heart Association, American Cancer Society, and American Urological Association: endorsed by the American Society for Radiation Oncology. CA Cancer J Clin 60 (3): 194-201, 2010 May-Jun. [PUBMED Abstract]
  108. Nguyen PL, Je Y, Schutz FA, et al.: Association of androgen deprivation therapy with cardiovascular death in patients with prostate cancer: a meta-analysis of randomized trials. JAMA 306 (21): 2359-66, 2011. [PUBMED Abstract]
  109. Kunath F, Grobe HR, Rücker G, et al.: Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev (6): CD009266, 2014. [PUBMED Abstract]
  110. Wysowski DK, Freiman JP, Tourtelot JB, et al.: Fatal and nonfatal hepatotoxicity associated with flutamide. Ann Intern Med 118 (11): 860-4, 1993. [PUBMED Abstract]
  111. Soloway MS, Schellhammer PF, Smith JA, et al.: Bicalutamide in the treatment of advanced prostatic carcinoma: a phase II multicenter trial. Urology 47 (1A Suppl): 33-7; discussion 48-53, 1996. [PUBMED Abstract]
  112. Kirschenbaum A: Management of hormonal treatment effects. Cancer 75 (7 Suppl): 1983-86, 1995.
  113. Fowler FJ, McNaughton Collins M, Walker Corkery E, et al.: The impact of androgen deprivation on quality of life after radical prostatectomy for prostate carcinoma. Cancer 95 (2): 287-95, 2002. [PUBMED Abstract]
  114. Shahinian VB, Kuo YF, Freeman JL, et al.: Risk of fracture after androgen deprivation for prostate cancer. N Engl J Med 352 (2): 154-64, 2005. [PUBMED Abstract]
  115. Serpa Neto A, Tobias-Machado M, Esteves MA, et al.: Bisphosphonate therapy in patients under androgen deprivation therapy for prostate cancer: a systematic review and meta-analysis. Prostate Cancer Prostatic Dis 15 (1): 36-44, 2012. [PUBMED Abstract]
  116. Gillessen S, Templeton A, Marra G, et al.: Risk of colorectal cancer in men on long-term androgen deprivation therapy for prostate cancer. J Natl Cancer Inst 102 (23): 1760-70, 2010. [PUBMED Abstract]
  117. Robinson JW, Saliken JC, Donnelly BJ, et al.: Quality-of-life outcomes for men treated with cryosurgery for localized prostate carcinoma. Cancer 86 (9): 1793-801, 1999. [PUBMED Abstract]
  118. Donnelly BJ, Saliken JC, Ernst DS, et al.: Prospective trial of cryosurgical ablation of the prostate: five-year results. Urology 60 (4): 645-9, 2002. [PUBMED Abstract]
  119. Aus G, Pileblad E, Hugosson J: Cryosurgical ablation of the prostate: 5-year follow-up of a prospective study. Eur Urol 42 (2): 133-8, 2002. [PUBMED Abstract]
  120. Shelley M, Wilt TJ, Coles B, et al.: Cryotherapy for localised prostate cancer. Cochrane Database Syst Rev (3): CD005010, 2007. [PUBMED Abstract]
  121. Azzouzi AR, Vincendeau S, Barret E, et al.: Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol 18 (2): 181-191, 2017. [PUBMED Abstract]
  122. McLeod DG, Iversen P, See WA, et al.: Bicalutamide 150 mg plus standard care vs standard care alone for early prostate cancer. BJU Int 97 (2): 247-54, 2006. [PUBMED Abstract]

Treatment of Stage I Prostate Cancer

Overview

Stage I prostate cancer is defined by the American Joint Committee on Cancer’s TNM (tumor, node, metastasis) classification system:[1]

  • cT1a–c, N0, M0, prostate-specific antigen (PSA) <10 ng/mL, Gleason ≤6.
  • cT2a, N0, M0, PSA <10 ng/mL, Gleason ≤6.
  • pT2, N0, M0, PSA <10 ng/mL, Gleason ≤6.

The frequency of clinically silent, nonmetastatic prostate cancer that can be found at autopsy greatly increases with age and may be as high as 50% to 60% in men aged 90 years and older. Undoubtedly, the incidental discovery of these occult cancers at prostatic surgery performed for other reasons accounts for the similar survival of men with stage I prostate cancer, compared with the normal male population, adjusted for age.

Many stage I cancers are well differentiated and only focally involve the gland (T1a, N0, M0); most require no treatment other than careful follow-up.[2]

In younger patients (aged 50–60 years) whose expected survival is long, treatment should be considered.[3] Radical prostatectomy, external-beam radiation therapy (EBRT), interstitial implantation of radioisotopes, and watchful waiting and active surveillance/active monitoring yield apparently similar survival rates in noncontrolled, selected series. The decision to treat should be made in the context of the patient’s age, associated medical illnesses, and personal desires.[3]

Treatment Options for Stage I Prostate Cancer

Treatment options for patients with stage I prostate cancer include:

Watchful waiting or active surveillance/active monitoring

Asymptomatic patients of advanced age or with concomitant illness may warrant consideration of careful observation without immediate active treatment.[810] Watch and wait, observation, expectant management, and active surveillance/active monitoring are terms indicating a strategy that does not employ immediate therapy with curative intent. For more information, see the Watchful Waiting or Active Surveillance/Active Monitoring section.

Evidence (observation with delayed hormonal therapy):

  1. In a retrospective pooled analysis, 828 men with clinically localized prostate cancer were managed by initial conservative therapy with subsequent hormonal therapy given at the time of symptomatic disease progression.
    • This study showed that the patients with grade 1 or grade 2 tumors experienced a disease-specific survival of 87% at 10 years and that their overall survival (OS) closely approximated the expected survival among men of similar ages in the general population.[8]

Radical prostatectomy

Radical prostatectomy, usually with pelvic lymphadenectomy (with or without the nerve-sparing technique designed to preserve potency) is the most commonly applied therapy with curative intent.[1113] Radical prostatectomy may be difficult after a transurethral resection of the prostate (TURP).

Because about 40% to 50% of men with clinically organ-confined disease are found to have pathological extension beyond the prostate capsule or surgical margins, the role of postprostatectomy adjuvant radiation therapy has been studied.

Consideration may also be given to postoperative radiation therapy (PORT) for patients who are found to have seminal vesicle invasion by tumor at the time of prostatectomy or who have a detectable level of PSA more than 3 weeks after surgery.[1416] Because duration of follow-up in available studies is still relatively short, the value of PORT has not been determined; however, PORT does reduce local recurrence.[14] Careful treatment planning is necessary to avoid morbidity.

Evidence (radical prostatectomy followed by radiation therapy):

  1. In a randomized trial of 425 men with pathological T3, N0, and M0 disease, postsurgical EBRT (60–64 Gy to the prostatic fossa over 30–32 fractions) was compared with observation.[15][Level of evidence A1]
    • The primary end point, metastasis-free survival, could be affected by serial PSA monitoring and resulting metastatic work-up for PSA increase. This could have biased the primary end point in favor of radiation therapy, which was associated with a lower rate of PSA rise. Nevertheless, metastasis-free survival was not statistically different between the two study arms (P = .06). After a median follow-up of about 10.6 years, the overall median survival was 14.7 years in the radiation therapy group versus 13.8 years in the observation group (P = .16).
    • Although the OS rates were not statistically different, complication rates were substantially higher in the radiation therapy group: overall complications were 23.8% versus 11.9%, rectal complications were 3.3% versus 0%, and urethral stricture was 17.8% versus 9.5%.
    • After a median follow-up of about 12.5 years, however, OS was better in the radiation therapy arm; hazard ratio (HR)death, 0.72 (95% confidence interval [CI], 0.55–0.96; P = .023). The 10-year estimated survival rates were 74% in the radiation therapy arm and 66% in the control arm. The 10-year estimated metastasis-free survivals were 73% and 65% (P = .016).[16][Level of evidence A1]
  2. Another randomized trial came to a different conclusion with respect to the effect of postoperative radiation therapy on OS.[17][Level of evidence A1] In the European Organisation for Research and Treatment of Cancer (EORTC) trial (EORTC-22911 [NCT00002511]), 1,005 men aged 75 years and younger with clinical T0 to T3 prostate cancer were randomly assigned after prostatectomy to receive PORT (60 Gy) or observation, with subsequent therapy delayed until the occurrence of either biochemical or clinical relapse. The recommended treatment for local recurrence was radiation.
    • With a median follow-up of 10.6 years (up to 16.6 years), the biochemical progression-free survival (PFS) rates were higher in the observation study arm (60.6% vs. 41.1%; HR, 0.49; 95% CI, 0.41–0.59; P < .0001). Locoregional relapse rates were 8.4% versus 17.3% in favor of immediate radiation (HR, 0.45; 95% CI, 0.32–0.68; P < .0001).
    • However, the large differences in biochemical relapse-free survival and local recurrence did not translate into an advantage in either distant metastasis (11.0% vs. 11.3%; HR, 0.99; 95% CI, 0.67–1.44; P = .94) or in OS (76.9% with immediate radiation vs. 80.7% with observation; HR, 1.18; 95% CI, 0.91–1.53; P = .2). Nor was there a difference in prostate– cancer-specific mortality (3.9% vs. 5.2%; HR, 0.78; 95% CI, 0.46–1.33; P = .34)
    • The 10-year cumulative risk of severe (grade 3) late toxicity in the immediate radiation study group was 5.3% versus 2.5% in the observation group (P = .052). Late adverse effects of any grade were also higher in the immediate radiation group (70.8% vs. 59.7%; P = .001).

Radical prostatectomy has been compared with watchful waiting or active surveillance/active monitoring. For more information, see the Radical prostatectomy compared with other treatment options section.

Evidence (radical prostatectomy compared with watchful waiting):

  1. The Prostate Intervention Versus Observation Trial (PIVOT-1 or VA-CSP-407 [NCT00007644]) is a randomized trial conducted in the PSA screening era that directly compared radical prostatectomy with watchful waiting. From November 1994 through January 2002, 731 men aged 75 years or younger with localized prostate cancer (stage T1–2, NX, M0, with a blood PSA <50 ng/mL) and a life expectancy of at least 10 years were randomly assigned to radical prostatectomy versus watchful waiting.[1820][Level of evidence A1]
    • About 50% of the men had nonpalpable, screen-detected disease.
    • After a median follow-up of 12.7 years (range up to about 19.5 years), the all-cause mortality was 61.3% versus 66.8% in the prostatectomy and watchful-waiting study arms, respectively, an absolute difference of 5.5 percentage points (95% CI -1.5 to 12.4) that was not statistically significant (HR, 0.84; 95% CI, 0.70–1.01). Prostate–cancer-specific mortality was 7.4% versus 11.4%, and it also was not statistically significant (HR, 0.63; 95% CI, 0.3–1.02).
    • Although treatment for disease progression was given more frequently in the observation arm of the study, most of the treatment was for asymptomatic, local, or biochemical (PSA) progression.
    • As expected, urinary incontinence and erectile/sexual dysfunction was more common in the prostatectomy group for at least 10 years of follow-up. Absolute differences in patient-reported use of absorbent urinary pads was greater in the surgery group by more than 30 percentage points at all time points for at least 10 years. Disease- or treatment-related limitations in activities of daily living were worse with surgery than with observation through 2 years, but then were similar in both study arms.

External-beam radiation therapy (EBRT)

EBRT is another treatment option used with curative intent.[2125] Definitive radiation therapy should be delayed 4 to 6 weeks after TURP to reduce the incidence of stricture.[26] Adjuvant hormonal therapy should be considered for patients with bulky T2b to T2c tumors.[27,28]

Evidence (EBRT with or without adjuvant hormonal therapy):

  1. In the Radiation Therapy Oncology Group (RTOG) trial RTOG-7706, prophylactic radiation therapy to clinically or pathologically uninvolved pelvic lymph nodes did not appear to improve OS or prostate cancer-specific survival.[29][Level of evidence A1]
  2. The phase III randomized RTOG-9413 trial (NCT00769548) included 1,323 men with localized prostate cancer, an elevated PSA, and an estimated risk of lymph node involvement of 15%. Patients were randomly assigned to one of four treatment arms: whole-pelvic radiation therapy plus neoadjuvant and concurrent hormonal therapy; prostate-only radiation therapy plus neoadjuvant and concurrent hormonal therapy; whole-pelvic radiation therapy plus adjuvant hormonal therapy; or pelvic-only radiation therapy plus adjuvant hormonal therapy.[30]; [31][Level of evidence B1]
    • Although RTOG-9413 showed increased PFS at 4 years for patients who had a 15% estimated risk of lymph node involvement and received whole-pelvic radiation therapy compared with prostate-only radiation therapy, OS and PSA failure rates were not significantly different.
  3. In a randomized trial, 875 men with locally advanced nonmetastatic prostate cancer (T1b–T2 moderately or poorly differentiated tumors; T3 tumors of any grade) were randomly assigned to receive 3 months of a luteinizing hormone-releasing hormone agonist plus long-term flutamide (250 mg PO tid) with or without EBRT.[28][Level of evidence A1]
    • Nineteen percent of the men had tumor stage T2, and 78% of the men had T3. At 10 years, both overall mortality (29.6% vs. 39.4%; 95% CI for the difference, 0.8%–18.8%) and the prostate–cancer-specific mortality (11.9% vs. 23.9%; 95% CI for the difference, 4.9%–19.1%) favored combined hormonal and radiation therapy.
    • Although flutamide might not be considered a standard hormonal monotherapy in the setting of T2 or T3 tumors, radiation therapy provided a disease-free survival or tumor-specific survival advantage even though this monotherapy was applied. This analysis rests on the assumption that flutamide does not shorten life expectancy and cancer-specific survival. Radiation therapy was not delivered by current standards of dose and technique.

Interstitial implantation of radioisotopes

Interstitial implantation of radioisotopes (i.e., iodine I 125 [125I], palladium, and iridium Ir 192) done through a transperineal technique with either ultrasound or computed-tomography guidance, is being used in patients with T1 or T2a tumors. Short-term results in these patients are similar to those for radical prostatectomy or EBRT.[32,33]; [34][Level of evidence C3]

Factors for consideration in the use of interstitial implants include:

  • The implant is performed as outpatient surgery.
  • The rate of maintenance of sexual potency with interstitial implants has been reported to be 86% to 92%.[32,34] In contrast, rates of maintenance of sexual potency with radical prostatectomy were 10% to 40% and 40% to 60% with EBRT.
  • Typical side effects from interstitial implants that subside with time include urinary tract frequency, urgency, and less commonly, urinary retention.
  • Rectal ulceration may also be seen. In one series, a 10% 2-year actuarial genitourinary grade 2 complication rate and a 12% risk of rectal ulceration were seen. This risk decreased with increased operator experience and modification of the implant technique.[32]

Long-term follow-up of these patients is necessary to assess treatment efficacy and side effects.

Retropubic freehand implantation with 125I has been associated with an increased local failure and complication rate [35,36] and is now rarely done.

Photodynamic therapy

Vascular-targeted photodynamic therapy using a photosensitizing agent has been tested in men with low-risk prostate cancer. In the CLIN1001 PCM301 (NCT01310894) randomized trial, 413 men with low-risk cancer (tumor stage T1–T2c, PSA ≤10 ng/mL, generally Gleason score 3 + 3) were randomly assigned in an open-label trial to receive either the photosensitizing agent, padeliporfin (4 mg/kg intravenously [IV] over 10 minutes, and optical fibers inserted into the target area of the prostate, then activated by 753 nm laser light at 150 mW/cm for 22 minutes 15 seconds), or active surveillance.[37] Median time to local disease progression was 28.3 months for patients who received padeliporfin and 14.1 months for patients who were assigned to active surveillance (HR, 0.34; 95% CI, 0.24–0.46; P < .0001).[37][Level of evidence B1] However, the appropriate population for photodynamic therapy may be quite narrow, as it may overtreat men with very low-risk disease and undertreat men with higher-risk disease.[38]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 715–26.
  2. Consensus conference. The management of clinically localized prostate cancer. JAMA 258 (19): 2727-30, 1987. [PUBMED Abstract]
  3. Epstein JI, Paull G, Eggleston JC, et al.: Prognosis of untreated stage A1 prostatic carcinoma: a study of 94 cases with extended followup. J Urol 136 (4): 837-9, 1986. [PUBMED Abstract]
  4. Thüroff S, Chaussy C, Vallancien G, et al.: High-intensity focused ultrasound and localized prostate cancer: efficacy results from the European multicentric study. J Endourol 17 (8): 673-7, 2003. [PUBMED Abstract]
  5. Blana A, Murat FJ, Walter B, et al.: First analysis of the long-term results with transrectal HIFU in patients with localised prostate cancer. Eur Urol 53 (6): 1194-201, 2008. [PUBMED Abstract]
  6. Ficarra V, Novara G: Editorial comment on: first analysis of the long-term results with transrectal HIFU in patients with localized prostate cancer. Eur Urol 53 (6): 1201-2, 2008. [PUBMED Abstract]
  7. Eastham JA: Editorial comment on: first analysis of the long-term results with transrectal HIFU in patients with localized prostate cancer. Eur Urol 53 (6): 1202-3, 2008. [PUBMED Abstract]
  8. Chodak GW, Thisted RA, Gerber GS, et al.: Results of conservative management of clinically localized prostate cancer. N Engl J Med 330 (4): 242-8, 1994. [PUBMED Abstract]
  9. Whitmore WF: Expectant management of clinically localized prostatic cancer. Semin Oncol 21 (5): 560-8, 1994. [PUBMED Abstract]
  10. Shappley WV, Kenfield SA, Kasperzyk JL, et al.: Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J Clin Oncol 27 (30): 4980-5, 2009. [PUBMED Abstract]
  11. Zincke H, Bergstralh EJ, Blute ML, et al.: Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol 12 (11): 2254-63, 1994. [PUBMED Abstract]
  12. Catalona WJ, Bigg SW: Nerve-sparing radical prostatectomy: evaluation of results after 250 patients. J Urol 143 (3): 538-43; discussion 544, 1990. [PUBMED Abstract]
  13. Catalona WJ, Basler JW: Return of erections and urinary continence following nerve sparing radical retropubic prostatectomy. J Urol 150 (3): 905-7, 1993. [PUBMED Abstract]
  14. Paulson DF, Moul JW, Walther PJ: Radical prostatectomy for clinical stage T1-2N0M0 prostatic adenocarcinoma: long-term results. J Urol 144 (5): 1180-4, 1990. [PUBMED Abstract]
  15. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296 (19): 2329-35, 2006. [PUBMED Abstract]
  16. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol 181 (3): 956-62, 2009. [PUBMED Abstract]
  17. Bolla M, van Poppel H, Collette L, et al.: Postoperative radiotherapy after radical prostatectomy: a randomised controlled trial (EORTC trial 22911). Lancet 366 (9485): 572-8, 2005 Aug 13-19. [PUBMED Abstract]
  18. Wilt TJ, Brawer MK, Jones KM, et al.: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367 (3): 203-13, 2012. [PUBMED Abstract]
  19. Wilt TJ: The Prostate Cancer Intervention Versus Observation Trial: VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): design and baseline results of a randomized controlled trial comparing radical prostatectomy with watchful waiting for men with clinically localized prostate cancer. J Natl Cancer Inst Monogr 2012 (45): 184-90, 2012. [PUBMED Abstract]
  20. Wilt TJ, Jones KM, Barry MJ, et al.: Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med 377 (2): 132-142, 2017. [PUBMED Abstract]
  21. Bagshaw MA: External radiation therapy of carcinoma of the prostate. Cancer 45 (7 Suppl): 1912-21, 1980. [PUBMED Abstract]
  22. Forman JD, Zinreich E, Lee DJ, et al.: Improving the therapeutic ratio of external beam irradiation for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 11 (12): 2073-80, 1985. [PUBMED Abstract]
  23. Ploysongsang S, Aron BS, Shehata WM, et al.: Comparison of whole pelvis versus small-field radiation therapy for carcinoma of prostate. Urology 27 (1): 10-6, 1986. [PUBMED Abstract]
  24. Pilepich MV, Bagshaw MA, Asbell SO, et al.: Definitive radiotherapy in resectable (stage A2 and B) carcinoma of the prostate–results of a nationwide overview. Int J Radiat Oncol Biol Phys 13 (5): 659-63, 1987. [PUBMED Abstract]
  25. Amdur RJ, Parsons JT, Fitzgerald LT, et al.: The effect of overall treatment time on local control in patients with adenocarcinoma of the prostate treated with radiation therapy. Int J Radiat Oncol Biol Phys 19 (6): 1377-82, 1990. [PUBMED Abstract]
  26. Seymore CH, el-Mahdi AM, Schellhammer PF: The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int J Radiat Oncol Biol Phys 12 (9): 1597-600, 1986. [PUBMED Abstract]
  27. Seidenfeld J, Samson DJ, Aronson N, et al.: Relative effectiveness and cost-effectiveness of methods of androgen suppression in the treatment of advanced prostate cancer. Evid Rep Technol Assess (Summ) (4): i-x, 1-246, I1-36, passim, 1999. [PUBMED Abstract]
  28. Widmark A, Klepp O, Solberg A, et al.: Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373 (9660): 301-8, 2009. [PUBMED Abstract]
  29. Asbell SO, Martz KL, Shin KH, et al.: Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG #77-06, a phase III study for T1BN0M0 (A2) and T2N0M0 (B) prostate carcinoma. Int J Radiat Oncol Biol Phys 40 (4): 769-82, 1998. [PUBMED Abstract]
  30. Roach M, DeSilvio M, Lawton C, et al.: Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 21 (10): 1904-11, 2003. [PUBMED Abstract]
  31. Pollack A: A call for more with a desire for less: pelvic radiotherapy with androgen deprivation in the treatment of prostate cancer. J Clin Oncol 21 (10): 1899-901, 2003. [PUBMED Abstract]
  32. Wallner K, Roy J, Harrison L: Tumor control and morbidity following transperineal iodine 125 implantation for stage T1/T2 prostatic carcinoma. J Clin Oncol 14 (2): 449-53, 1996. [PUBMED Abstract]
  33. D’Amico AV, Coleman CN: Role of interstitial radiotherapy in the management of clinically organ-confined prostate cancer: the jury is still out. J Clin Oncol 14 (1): 304-15, 1996. [PUBMED Abstract]
  34. Ragde H, Blasko JC, Grimm PD, et al.: Interstitial iodine-125 radiation without adjuvant therapy in the treatment of clinically localized prostate carcinoma. Cancer 80 (3): 442-53, 1997. [PUBMED Abstract]
  35. Kuban DA, el-Mahdi AM, Schellhammer PF: I-125 interstitial implantation for prostate cancer. What have we learned 10 years later? Cancer 63 (12): 2415-20, 1989. [PUBMED Abstract]
  36. Fuks Z, Leibel SA, Wallner KE, et al.: The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 21 (3): 537-47, 1991. [PUBMED Abstract]
  37. Azzouzi AR, Vincendeau S, Barret E, et al.: Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol 18 (2): 181-191, 2017. [PUBMED Abstract]
  38. Freedland SJ: Low-risk prostate cancer: to treat or not to treat. Lancet Oncol 18 (2): 156-157, 2017. [PUBMED Abstract]

Treatment of Stage II Prostate Cancer

Overview

Stage II prostate cancer is defined by the American Joint Committee on Cancer’s TNM (tumor, node, metastasis) classification system:[1]

Stage IIA

  • cT1a–c, N0, M0, prostate-specific antigen (PSA) ≥10 <20 ng/mL, Gleason ≤6.
  • cT2a, N0, M0, PSA ≥10 <20 ng/mL, Gleason ≤6.
  • pT2, N0, M0, PSA ≥10 <20 ng/mL, Gleason ≤6.
  • cT2b–c, N0, M0, PSA <20 ng/mL, Gleason ≤6.

Stage IIB

  • T1–2, N0, M0, PSA <20 ng/mL, Gleason 7.

Stage IIC

  • T1–2, N0, M0, PSA <20, Gleason 7 or 8.

Radical prostatectomy, external-beam radiation therapy (EBRT), and interstitial implantation of radioisotopes are each employed in the treatment of stage II prostate cancer with apparently similar therapeutic effects. Radical prostatectomy and radiation therapy yield apparently similar survival rates with as many as 10 years of follow-up. For well-selected patients, radical prostatectomy is associated with a 15-year survival comparable with an age-matched population without prostate cancer.[2] Unfortunately, randomized comparative trials of these treatment methods with prolonged follow-up are lacking.

Patients with a small, palpable cancer (T2a, N0, and M0) fare better than patients in whom the disease involves both sides of the gland (T2c, N0, and M0). Patients proven free of node metastases by pelvic lymphadenectomy fare better than patients in whom this staging procedure is not performed; however, this is the result of selection of patients who have a more favorable prognosis.

Side effects of the various forms of therapy—including impotence, incontinence, and bowel injury—should be considered in determining the type of treatment to employ.

Prostate-specific antigen (PSA) changes as markers of tumor progression

Often, changes in PSA are thought to be markers of tumor progression. Even though a tumor marker or characteristic may be consistently associated with a high risk of prostate cancer progression or death, it may be a very poor predictor of very limited utility in making therapeutic decisions.

Baseline PSA and rate of PSA change were associated with subsequent metastasis or prostate cancer death in a cohort of 267 men with clinically localized prostate cancer who were managed by watchful waiting or active surveillance in the control arm of a randomized trial comparing radical prostatectomy with watchful waiting.[3,4] Nevertheless, the accuracy of classifying men into groups whose cancer remained indolent versus those whose cancer progressed was poor at all examined cut points of PSA or PSA rate of change.

Bisphosphonates and risk of bone metastases

Patients with locally advanced nonmetastatic disease (T2–T4, N0–N1, and M0) are at risk of developing bone metastases. Bisphosphonates are being studied as a strategy to decrease this risk.

Evidence (bisphosphonates and risk of bone metastases):

  1. A placebo-controlled randomized trial (MRC-PR04) evaluated a 5-year regimen of the first-generation bisphosphonate clodronate in high oral doses (2,080 mg qd). Clodronate therapy had no favorable impact on either time to symptomatic bone metastasis or survival.[5][Level of evidence A1]

Treatment Options for Stage II Prostate Cancer

Treatment options for patients with stage II prostate cancer include:

Patients with stage II prostate cancer are candidates for clinical trials, including trials of neoadjuvant hormonal therapy followed by radical prostatectomy.

Watchful waiting or active surveillance/active monitoring

Asymptomatic patients of advanced age or with concomitant illness may warrant consideration of careful observation without immediate active treatment.[68] Watch and wait, observation, expectant management, and active surveillance/active monitoring are terms indicating a strategy that does not employ immediate therapy with curative intent. For more information, see the Treatment Option Overview for Prostate Cancer section.

Evidence (observation with delayed hormonal therapy):

  1. In a retrospective pooled analysis, 828 men with clinically localized prostate cancer were managed by initial conservative therapy with subsequent hormonal therapy given at the time of symptomatic disease progression.[6]
    • Patients with well-differentiated tumors or moderately well-differentiated tumors experienced a disease-specific survival of 87% at 10 years. Overall survival (OS) closely approximated the expected survival among men of similar ages in the general population.
    • The decision to treat should be made in the context of the patient’s age, associated medical illnesses, and personal desires.

Radical prostatectomy

Radical prostatectomy, usually with pelvic lymphadenectomy (with or without the nerve-sparing technique designed to preserve potency) is the most commonly applied therapy with curative intent.[2,9,10] Radical prostatectomy may be difficult after a transurethral resection of the prostate (TURP).

Because about 40% to 50% of men with clinically organ-confined disease are found to have pathological extension beyond the prostate capsule or surgical margins, the role of postprostatectomy adjuvant radiation therapy has been studied.

Consideration may also be given to postoperative radiation therapy (PORT) for patients who are found to have seminal vesicle invasion by tumor at the time of prostatectomy or who have a detectable level of PSA more than 3 weeks after surgery.[1113] Because the duration of follow-up in available studies is relatively short, the value of PORT has not been determined; however, PORT does reduce local recurrence.[11] Careful treatment planning is necessary to avoid morbidity.

Evidence (radical prostatectomy followed by radiation therapy):

  1. In a randomized trial of 425 men with pathological T3, N0, M0 disease, postsurgical EBRT (60–64 Gy to the prostatic fossa over 30–32 fractions) was compared with observation.[12][Level of evidence A1]
    • The primary end point, metastasis-free survival, could be affected by serial PSA monitoring and resulting metastatic work-up for PSA increase. This could have biased the primary end point in favor of radiation therapy, which was associated with a lower rate of PSA rise. Nevertheless, metastasis-free survival was not statistically different between the two study arms (P = .06). After a median follow-up of about 10.6 years, overall median survival was 14.7 years in the radiation therapy group versus 13.8 years in the observation group (P = .16).
    • Although the OS rates were not statistically different, complication rates were substantially higher in the radiation therapy group compared with the observation group: overall complications were 23.8% versus 11.9%, rectal complications were 3.3% versus 0%, and urethral stricture was 17.8% versus 9.5%, respectively.
    • After a median follow-up of about 12.5 years, however, OS was better in the radiation therapy arm; hazard ratio (HR)death, 0.72 (95% confidence interval [CI], 0.55–0.96; P = .023). The 10-year estimated survival rates were 74% in the radiation therapy arm and 66% in the control arm. The 10-year estimated metastasis-free survivals were 73% and 65% (P = .016).[13][Level of evidence A1]

Evidence (radical prostatectomy compared directly with watchful waiting/active surveillance/active monitoring and/or external-beam radiation therapy):

  1. In a randomized clinical trial performed in Sweden in the pre-PSA screening era, 695 men with prostate cancer were randomly assigned to radical prostatectomy versus watchful waiting. Only about 5% of the men in the trial had been diagnosed by PSA screening. Therefore, the men had more extensive local disease than is typically the case in men diagnosed with prostate cancer in the United States.[1416]
    • The cumulative overall mortality at 18 years was 56.1% in the radical prostatectomy arm and 68.9% in the watchful waiting study arm (absolute difference, 12.7%; 95% CI, 5.1–20.3 percentage points; relative risk [RR]death, 0.71; 95% CI, 0.59–0.86.[16][Level of evidence A1]
    • The cumulative incidence of prostate cancer deaths at 18 years was 17.7% versus 28.7% (absolute difference, 11.0%; 95% CI, 4.5–17.5 percentage points; RRdeath from prostate cancer, 0.56; 95% CI, 0.41–0.77).[16]
    • In a post-hoc–subset analysis, the improvement in overall and prostate cancer-specific mortality associated with radical prostatectomy was restricted to men younger than 65 years.
  2. The Prostate Intervention Versus Observation Trial (PIVOT-1 or VA-CSP-407) is a randomized trial conducted in the PSA screening era that directly compared radical prostatectomy with watchful waiting. From November 1994 through January 2002, 731 men aged 75 years or younger with localized prostate cancer (stage T1–2, NX, M0, with a blood PSA <50 ng/mL) and a life expectancy of at least 10 years were randomly assigned to radical prostatectomy versus watchful waiting.[1719][Level of evidence A1]
    • About 50% of the men had palpable tumors.
    • After a median follow-up of 12.7 years (range up to about 19.5 years), the all-cause mortality was 61.3% versus 66.8% in the radical-prostatectomy and watchful-waiting study arms, respectively, an absolute difference of 5.5 percentage points (95% CI -1.5 to 12.4) that was not statistically significant (HR, 0.84; 95% CI, 0.70–1.01). Prostate cancer–specific mortality was 7.4% versus 11.4%, and it also was not statistically significant (HR, 0.63; 95% CI, 0.3–1.02).
    • Although treatment for disease progression was given more frequently in the observation arm of the study, most such treatment was for asymptomatic, local, or biochemical (PSA) progression.
    • As expected, urinary incontinence and erectile/sexual dysfunction was more common in the prostatectomy group for at least 10 years of follow-up. Absolute differences in patient-reported use of absorbent urinary pads was greater in the surgery group by more than 30 percentage points at all time points for at least 10 years. Disease- or treatment-related limitations in activities of daily living were worse with surgery than with observation through 2 years, but then were similar in both study arms.
  3. In the ProtecT trial (NCT02044172 and ISRCTN20141297), 82,429 men were screened with PSA testing, and 2,664 were diagnosed with clinically localized prostate cancer. Among those diagnosed, 1,643 men (median age 62 years, range 50–69 years) consented to a randomly assigned comparison of active monitoring, radical prostatectomy (nerve-sparing when possible), or external-beam 3D conformal radiation (74 Gy in 37 fractions). The primary end point was prostate cancer-specific mortality.[20]
    1. With a median follow-up of 10 years, there were a total of 17 deaths from prostate cancer, with no statistically significant differences among the three study arms (P = .48). The 10-year prostate cancer–specific survival rates were 98.8% in the active monitoring arm, 99.0% in the radical prostatectomy arm, and 99.6% radiation therapy arms.[20][Level of evidence A1]
    2. Likewise, all-cause mortality was nearly identical in all three study arms: 10.9 deaths in the active monitoring arm, 10.1 in the radical prostatectomy arm, and 10.3 in the radiation therapy arm per 1,000 person-years (P = .87).[20][Level of evidence A1]
    3. There were statistically significant differences in progression to metastatic disease among the treatment arms (33 of 545 men in the active monitoring arm; 13 of 553 men in the radical prostatectomy arm; 16 of 545 men in the radiation therapy arm) that began to emerge after 4 years, but these differences had not translated into any difference in mortality after 10-years of follow-up. Over the course of 10 years, 52% of the patients required active intervention.
    4. As expected, there were substantial differences in patient-reported outcomes among the three management approaches.[21][Level of evidence A3] A substudy of patient-reported outcomes up to 6 years after randomization reported the following results:
      • Men in the radical prostatectomy study arm had substantial rates of urinary incontinence (e.g., using one or more absorbent pads qd was reported by 46% at 6 months and by 17% at year 6) with very little incontinence in the other two study arms.
      • Sexual function was also worse in the radical prostatectomy group (e.g., at 6 months, 12% of men reported erections firm enough for intercourse vs. 22% in the radiation therapy arm and 52% in the active-monitoring arm).
      • Bowel function, however, was worse in the radiation therapy arm (e.g., about 5% reported bloody stools at least half the time at 2 years and beyond versus none in the radical prostatectomy and active-monitoring study arms).

External-beam radiation therapy (EBRT) with or without hormonal therapy

EBRT is another treatment option often used with curative intent.[2226] Definitive radiation therapy should be delayed 4 to 6 weeks after TURP to reduce the incidence of stricture.[27] Adjuvant hormonal therapy should be considered for patients with bulky T2b to T2c tumors.[28]

The role of adjuvant hormonal therapy in patients with locally advanced disease has been analyzed by the Agency for Health Care Policy and Research (now the Agency for Healthcare Research and Quality). Most patients had more advanced disease, but patients with bulky T2b to T2c tumors were included in the studies that were re-evaluating the role of adjuvant hormonal therapy in patients with locally advanced disease.

Evidence (EBRT with or without adjuvant hormonal therapy):

  1. The Radiation Therapy Oncology Group’s (RTOG) trial 7706 (RTOG-7706).[29][Level of evidence A1]
    • Prophylactic radiation therapy to clinically or pathologically uninvolved pelvic lymph nodes does not appear to improve OS or prostate cancer-specific survival.
  2. RTOG-9413 (RTOG-9413 [NCT00769548]) trial.[30,31][Level of evidence B1]
    • Although RTOG-9413 showed increased progression-free survival at 4 years for patients who had a 15% estimated risk of lymph node involvement and received whole-pelvic radiation therapy compared with prostate-only radiation therapy, OS and PSA failure rates were not significantly different.
  3. In a randomized trial, 875 men with locally advanced nonmetastatic prostate cancer (T1b–T2 moderately or poorly differentiated tumors; T3 tumors of any grade) were randomly assigned to receive 3 months of a luteinizing hormone-releasing hormone (LH-RH) agonist plus long-term flutamide (250 mg PO tid) with or without EBRT.[32][Level of evidence A1]
    • Nineteen percent of the men had tumor stage T2, and 78% of the men had tumor stage T3. At 10 years, both overall mortality (29.6% vs. 39.4%; 95% CI for the difference, 0.8%–18.8%) and prostate cancer-specific mortality (11.9% vs. 23.9%; 95% CI for the difference, 4.9%–19.1%) favored combined hormonal and radiation therapy.
    • Although flutamide might not be considered a standard hormonal monotherapy in the setting of T2 or T3 tumors, radiation therapy provided a disease-free survival or tumor-specific survival advantage even though this monotherapy was applied. This analysis rests on the assumption that flutamide does not shorten life expectancy and cancer-specific survival. Radiation therapy was not delivered by current standards of dose and technique.
  4. Another trial compared androgen deprivation therapy (ADT: an LH-RH agonist or orchiectomy) with ADT plus radiation therapy (65–69 Gy to the prostate by 4-field box technique, including 45 Gy to the whole pelvis, seminal vesicles, and external/internal iliac nodes unless the lymph nodes were histologically negative). This trial, NCIC CTG PR.3/MRC UKPRO7 [NCT00002633], from the National Cancer Institute of Canada randomly assigned 1,205 patients with high-risk (PSA >40 ng/mL or PSA >20 ng/mL and Gleason score ≥8), T2 (12%–13% of the patients), T3 (83% of the patients), and T4 (4%–5% of the patients) with clinical or pathologically staged N0, M0 disease.[33,34][Level of evidence A1]
    • At a median follow-up of 8 years (maximum, 13 years), OS was superior in the ADT-plus-radiation therapy group (HRdeath, 0.77; 95% CI, 0.57–0.85, P = .001). The OS rate at 10 years was 55% for the ADT-plus-radiation therapy group versus 49% for the ADT-alone group.
    • Although radiation therapy had the expected bowel and urinary side effects, quality of life was the same in each study group by 24 months and beyond.[35]
  5. A meta-analysis of randomized clinical trial evidence comparing radiation therapy with radiation therapy plus prolonged androgen suppression has been published. The meta-analysis found a difference in 5-year OS in favor of radiation therapy plus continued androgen suppression (LH-RH agonist or orchiectomy) as compared with radiation therapy alone (HR, 0.631; 95% CI, 0.479–0.831).[28][Level of evidence A1]
  6. In a randomized, prospective clinical trial, 18 months of androgen suppression with an LH-RH agonist appears to have provided results that were similar to 36 months with respect to OS and disease-specific survival.[36][Level of evidence A1] In a multicenter trial, 630 men with stage II to stage IVA cancer (clinical stage T3–T4, or PSA >20 ng/ml, or Gleason score >7) received 70 Gy of radiation in 35 fractions plus a total of either 18 or 36 months of goserelin acetate.
    • With a median follow-up of 9.4 years, OS was nearly identical in each study arm (62% at 10 years; HRdeath, 1.02; 95% CI, 0.81–1.29; P = .8), as was prostate cancer–specific survival (HRprostate death, 0.95; 95% CI, 0.58–0.55; P = .8).
    • Global quality of life was nearly identical on both study arms, but sexual activity and interest in sex was moderately better in the 18-month arm.[36][Level of evidence A3]
  7. A meta-analysis of seven randomized controlled trials comparing early hormonal treatment (adjuvant or neoadjuvant) to deferred hormonal treatment (LH-RH agonists and/or antiandrogens) in patients with locally advanced prostate cancer, whether treated with prostatectomy, radiation therapy, or watchful waiting or active surveillance/active monitoring, showed improved overall mortality for patients receiving early treatment (RR, 0.86; 95% CI, 0.82–0.91).[37][Level of evidence A1]
  8. Short-term neoadjuvant−androgen therapy administered before and during radiation therapy has shown benefit in at least some patients with clinically localized prostate cancer. In an open-label, randomized trial (RTOG-9408 [NCT00002597]), 1,979 men with nonmetastatic stage T1b–c, T2a, or T2b tumors and a PSA level of 20 ng/mL or less were randomly assigned to receive radiation therapy (66.6 Gy prostate dose in 1.8 Gy daily fractions) with or without 4 months of ADT (flutamide 250 mg PO tid plus either monthly goserelin 3.6 mg subcutaneously (SQ) or leuprolide 7.5 mg intramuscularly), beginning 2 months before radiation therapy. Median follow-up was about 9 years.[38][Level of evidence A1]
    • The 10-year OS rate was 57% in the radiation-only group versus 62% in the combined-therapy group (HRdeath, 1.17; 95% CI, 1.01–1.35; P = .03).
    • In a post-hoc analysis, there was no statistically significant interaction between the treatment effect and baseline-risk category of the patients. However, there appeared to be little, if any, benefit associated with combined therapy in the lowest-risk category of patients (Gleason score ≤6; PSA ≤10 ng/mL; and clinical stage ≤T2a).
    • The OS benefit was most apparent in men with intermediate-risk tumors (Gleason score 7; or Gleason score ≤6 and PSA >10 ng/mL; or clinical stage T2b).
  9. The duration of neoadjuvant hormonal therapy has been tested in a randomized trial (TROG 96.01 [ACTRN12607000237482]) involving 818 men with locally advanced (T2b, T2c, T3, and T4) nonmetastatic cancer treated with radiation therapy (i.e., 66 Gy in 2 Gy daily fractions to the prostate and seminal vesicles but not including regional lymph nodes).[39] In an open-label design, patients were randomly assigned to receive radiation therapy alone, 3 months of neoadjuvant androgen deprivation therapy (NADT) (goserelin 3.6 mg SQ each month plus flutamide 250 mg PO tid) for 2 months before and during radiation, or 6 months of NADT for 5 months before and during radiation.[39][Level of evidence A1]
    • After a median follow-up of 10.6 years, there were no statistically significant differences between the radiation-alone group and the radiation-plus-3-months-of NADT group.
    • However, the 6-month NADT arm showed better prostate–cancer-specific mortality and overall mortality than the radiation-alone group; 10-year all-cause mortality 29.2% versus 42.5% (HR, 0.63; 95% CI, 0.48–0.83, P = .0008).
  10. The duration of neoadjuvant hormonal therapy was tested in another trial (RTOG-9910 [NCT00005044]) of 1,489 eligible men with intermediate-risk prostate cancer (T1b–4, Gleason score 2–6, and PSA >10 but ≤100 ng/mL; T1b–4, Gleason score 7, and PSA <20; or T1b–1c, Gleason score 8–10, and PSA <20) and no evidence of metastases. The men were randomly assigned to receive short-course neoadjuvant–androgen suppression (an LH-RH agonist plus bicalutamide or flutamide for 8 weeks before and 8 weeks during radiation therapy) or long-course neoadjuvant–androgen suppression (28 weeks before and 8 weeks during radiation therapy). Both groups received 70.2 Gy radiation in 39 daily fractions to the prostate and 46.8 Gy to the iliac lymph nodes.[40][Level of evidence A1]
    • After a median of 9.4 years, 10-year prostate-specific mortality, the primary end point, was low in both study arms: 5% versus 4% (HR, 0.81; 95% CI, 0.48–1.39).[40][Level of evidence A1]
    • No statistically significant differences in overall mortality or in locoregional disease progression were found.[40][Level of evidence A1]
    • There was also no apparent differential effect of androgen suppression duration among any of the risk-group subsets.
  11. Addition of androgen suppression therapy to EBRT may benefit men who are at an elevated risk of disease recurrence and death from prostate cancer (RTOG-9202 [NCT00767286]).

Interstitial implantation of radioisotopes

Interstitial implantation of radioisotopes (i.e., iodine I 125 [125I], palladium, and iridium), using a transperineal technique with either ultrasound or computed tomography guidance, is being done in patients with T1 or T2a tumors. Short-term results in these patients are similar to those for radical prostatectomy or EBRT.[41,42]; [43][Level of evidence C3]

Factors for consideration in the use of interstitial implants include:

  • The implant is performed as outpatient surgery.
  • The rate of maintenance of sexual potency with interstitial implants has been reported to be 86% to 92%.[41,43] In contrast, rates of maintenance of sexual potency with radical prostatectomy were 10% to 40% and 40% to 60% with EBRT.
  • Typical side effects from interstitial implants that are seen in most patients but subside with time include urinary tract frequency, urgency, and less commonly, urinary retention.
  • Rectal ulceration may also be seen.[41] In one series, a 10% 2-year actuarial genitourinary grade 2 complication rate and a 12% risk of rectal ulceration were seen. This risk decreased with increased operator experience and modification of the implant technique.[44]

Long-term follow-up of these patients is necessary to assess treatment efficacy and side effects.

Retropubic freehand implantation with 125I has been associated with an increased local failure and complication rate [44,45] and is now rarely done.

Ultrasound-guided percutaneous cryosurgery

Cryosurgery is a surgical technique that involves destruction of prostate cancer cells by intermittent freezing of the prostate with cryoprobes followed by thawing.[46][Level of evidence C1]; [47,48][Level of evidence C3] Cryosurgery is less well established than standard prostatectomy, and long-term outcomes are not as well established as with prostatectomy or radiation therapy. Serious toxic effects include:

  • Bladder outlet injury.
  • Urinary incontinence.
  • Sexual impotence.
  • Rectal injury.

The frequency of other side effects and the probability of cancer control at 5 years of follow-up have varied among reporting centers, and series are small compared with surgery and radiation therapy.[47,48]

High-intensity focused ultrasound

High-intensity focused ultrasound has been reported in case series to produce good local disease control. However, it has not been directly compared with more standard therapies, and experience with it is more limited.[4951]

Proton-beam radiation therapy

There is growing interest in the use of proton-beam radiation therapy for the treatment of prostate cancer. Although the dose distribution of this form of charged-particle radiation has the potential to improve the therapeutic ratio of prostate radiation, allowing for an increase in dose to the tumor without a substantial increase in side effects, no randomized controlled trials have been reported that compare its efficacy and toxicity with those of other forms of radiation therapy.

Photodynamic therapy

Vascular-targeted photodynamic therapy using a photosensitizing agent has been tested in men with low-risk prostate cancer. In the CLIN1001 PCM301 (NCT01310894) randomized trial, 413 men with low-risk cancer (tumor stage T1–T2c, PSA ≤10 ng/mL, generally Gleason score 3 + 3) were randomly assigned in an open-label trial to receive either the photosensitizing agent, padeliporfin (4 mg/kg IV over 10 minutes, and optical fibers inserted into the target area of the prostate, then activated by 753 nm laser light at 150 mW/cm for 22 minutes 15 seconds), or active surveillance.[52] Median time to local disease progression was 28.3 months for patients who received padeliporfin and 14.1 months for patients who were assigned to active surveillance (HR, 0.34; 95% CI, 0.24–0.46; P < .0001).[52][Level of evidence B1] However, the appropriate population for photodynamic therapy may be quite narrow, as it may overtreat men with very low-risk disease and undertreat men with higher-risk disease.[53]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 715–26.
  2. Zincke H, Bergstralh EJ, Blute ML, et al.: Radical prostatectomy for clinically localized prostate cancer: long-term results of 1,143 patients from a single institution. J Clin Oncol 12 (11): 2254-63, 1994. [PUBMED Abstract]
  3. Fall K, Garmo H, Andrén O, et al.: Prostate-specific antigen levels as a predictor of lethal prostate cancer. J Natl Cancer Inst 99 (7): 526-32, 2007. [PUBMED Abstract]
  4. Parekh DJ, Ankerst DP, Thompson IM: Prostate-specific antigen levels, prostate-specific antigen kinetics, and prostate cancer prognosis: a tocsin calling for prospective studies. J Natl Cancer Inst 99 (7): 496-7, 2007. [PUBMED Abstract]
  5. Mason MD, Sydes MR, Glaholm J, et al.: Oral sodium clodronate for nonmetastatic prostate cancer–results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J Natl Cancer Inst 99 (10): 765-76, 2007. [PUBMED Abstract]
  6. Chodak GW, Thisted RA, Gerber GS, et al.: Results of conservative management of clinically localized prostate cancer. N Engl J Med 330 (4): 242-8, 1994. [PUBMED Abstract]
  7. Whitmore WF: Expectant management of clinically localized prostatic cancer. Semin Oncol 21 (5): 560-8, 1994. [PUBMED Abstract]
  8. Shappley WV, Kenfield SA, Kasperzyk JL, et al.: Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J Clin Oncol 27 (30): 4980-5, 2009. [PUBMED Abstract]
  9. Catalona WJ, Bigg SW: Nerve-sparing radical prostatectomy: evaluation of results after 250 patients. J Urol 143 (3): 538-43; discussion 544, 1990. [PUBMED Abstract]
  10. Catalona WJ, Basler JW: Return of erections and urinary continence following nerve sparing radical retropubic prostatectomy. J Urol 150 (3): 905-7, 1993. [PUBMED Abstract]
  11. Paulson DF, Moul JW, Walther PJ: Radical prostatectomy for clinical stage T1-2N0M0 prostatic adenocarcinoma: long-term results. J Urol 144 (5): 1180-4, 1990. [PUBMED Abstract]
  12. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296 (19): 2329-35, 2006. [PUBMED Abstract]
  13. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol 181 (3): 956-62, 2009. [PUBMED Abstract]
  14. Holmberg L, Bill-Axelson A, Helgesen F, et al.: A randomized trial comparing radical prostatectomy with watchful waiting in early prostate cancer. N Engl J Med 347 (11): 781-9, 2002. [PUBMED Abstract]
  15. Bill-Axelson A, Holmberg L, Ruutu M, et al.: Radical prostatectomy versus watchful waiting in early prostate cancer. N Engl J Med 352 (19): 1977-84, 2005. [PUBMED Abstract]
  16. Bill-Axelson A, Holmberg L, Garmo H, et al.: Radical prostatectomy or watchful waiting in early prostate cancer. N Engl J Med 370 (10): 932-42, 2014. [PUBMED Abstract]
  17. Wilt TJ, Brawer MK, Jones KM, et al.: Radical prostatectomy versus observation for localized prostate cancer. N Engl J Med 367 (3): 203-13, 2012. [PUBMED Abstract]
  18. Wilt TJ: The Prostate Cancer Intervention Versus Observation Trial: VA/NCI/AHRQ Cooperative Studies Program #407 (PIVOT): design and baseline results of a randomized controlled trial comparing radical prostatectomy with watchful waiting for men with clinically localized prostate cancer. J Natl Cancer Inst Monogr 2012 (45): 184-90, 2012. [PUBMED Abstract]
  19. Wilt TJ, Jones KM, Barry MJ, et al.: Follow-up of Prostatectomy versus Observation for Early Prostate Cancer. N Engl J Med 377 (2): 132-142, 2017. [PUBMED Abstract]
  20. Hamdy FC, Donovan JL, Lane JA, et al.: 10-Year Outcomes after Monitoring, Surgery, or Radiotherapy for Localized Prostate Cancer. N Engl J Med 375 (15): 1415-1424, 2016. [PUBMED Abstract]
  21. Donovan JL, Hamdy FC, Lane JA, et al.: Patient-Reported Outcomes after Monitoring, Surgery, or Radiotherapy for Prostate Cancer. N Engl J Med 375 (15): 1425-1437, 2016. [PUBMED Abstract]
  22. Bagshaw MA: External radiation therapy of carcinoma of the prostate. Cancer 45 (7 Suppl): 1912-21, 1980. [PUBMED Abstract]
  23. Forman JD, Zinreich E, Lee DJ, et al.: Improving the therapeutic ratio of external beam irradiation for carcinoma of the prostate. Int J Radiat Oncol Biol Phys 11 (12): 2073-80, 1985. [PUBMED Abstract]
  24. Ploysongsang S, Aron BS, Shehata WM, et al.: Comparison of whole pelvis versus small-field radiation therapy for carcinoma of prostate. Urology 27 (1): 10-6, 1986. [PUBMED Abstract]
  25. Pilepich MV, Bagshaw MA, Asbell SO, et al.: Definitive radiotherapy in resectable (stage A2 and B) carcinoma of the prostate–results of a nationwide overview. Int J Radiat Oncol Biol Phys 13 (5): 659-63, 1987. [PUBMED Abstract]
  26. Amdur RJ, Parsons JT, Fitzgerald LT, et al.: The effect of overall treatment time on local control in patients with adenocarcinoma of the prostate treated with radiation therapy. Int J Radiat Oncol Biol Phys 19 (6): 1377-82, 1990. [PUBMED Abstract]
  27. Seymore CH, el-Mahdi AM, Schellhammer PF: The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int J Radiat Oncol Biol Phys 12 (9): 1597-600, 1986. [PUBMED Abstract]
  28. Seidenfeld J, Samson DJ, Aronson N, et al.: Relative effectiveness and cost-effectiveness of methods of androgen suppression in the treatment of advanced prostate cancer. Evid Rep Technol Assess (Summ) (4): i-x, 1-246, I1-36, passim, 1999. [PUBMED Abstract]
  29. Asbell SO, Martz KL, Shin KH, et al.: Impact of surgical staging in evaluating the radiotherapeutic outcome in RTOG #77-06, a phase III study for T1BN0M0 (A2) and T2N0M0 (B) prostate carcinoma. Int J Radiat Oncol Biol Phys 40 (4): 769-82, 1998. [PUBMED Abstract]
  30. Roach M, DeSilvio M, Lawton C, et al.: Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 21 (10): 1904-11, 2003. [PUBMED Abstract]
  31. Pollack A: A call for more with a desire for less: pelvic radiotherapy with androgen deprivation in the treatment of prostate cancer. J Clin Oncol 21 (10): 1899-901, 2003. [PUBMED Abstract]
  32. Widmark A, Klepp O, Solberg A, et al.: Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373 (9660): 301-8, 2009. [PUBMED Abstract]
  33. Warde P, Mason M, Ding K, et al.: Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378 (9809): 2104-11, 2011. [PUBMED Abstract]
  34. Mason MD, Parulekar WR, Sydes MR, et al.: Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol 33 (19): 2143-50, 2015. [PUBMED Abstract]
  35. Brundage M, Sydes MR, Parulekar WR, et al.: Impact of Radiotherapy When Added to Androgen-Deprivation Therapy for Locally Advanced Prostate Cancer: Long-Term Quality-of-Life Outcomes From the NCIC CTG PR3/MRC PR07 Randomized Trial. J Clin Oncol 33 (19): 2151-7, 2015. [PUBMED Abstract]
  36. Nabid A, Carrier N, Martin AG, et al.: Duration of Androgen Deprivation Therapy in High-risk Prostate Cancer: A Randomized Phase III Trial. Eur Urol 74 (4): 432-441, 2018. [PUBMED Abstract]
  37. Boustead G, Edwards SJ: Systematic review of early vs deferred hormonal treatment of locally advanced prostate cancer: a meta-analysis of randomized controlled trials. BJU Int 99 (6): 1383-9, 2007. [PUBMED Abstract]
  38. Jones CU, Hunt D, McGowan DG, et al.: Radiotherapy and short-term androgen deprivation for localized prostate cancer. N Engl J Med 365 (2): 107-18, 2011. [PUBMED Abstract]
  39. Denham JW, Steigler A, Lamb DS, et al.: Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 12 (5): 451-9, 2011. [PUBMED Abstract]
  40. Pisansky TM, Hunt D, Gomella LG, et al.: Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol 33 (4): 332-9, 2015. [PUBMED Abstract]
  41. Wallner K, Roy J, Harrison L: Tumor control and morbidity following transperineal iodine 125 implantation for stage T1/T2 prostatic carcinoma. J Clin Oncol 14 (2): 449-53, 1996. [PUBMED Abstract]
  42. D’Amico AV, Coleman CN: Role of interstitial radiotherapy in the management of clinically organ-confined prostate cancer: the jury is still out. J Clin Oncol 14 (1): 304-15, 1996. [PUBMED Abstract]
  43. Ragde H, Blasko JC, Grimm PD, et al.: Interstitial iodine-125 radiation without adjuvant therapy in the treatment of clinically localized prostate carcinoma. Cancer 80 (3): 442-53, 1997. [PUBMED Abstract]
  44. Kuban DA, el-Mahdi AM, Schellhammer PF: I-125 interstitial implantation for prostate cancer. What have we learned 10 years later? Cancer 63 (12): 2415-20, 1989. [PUBMED Abstract]
  45. Fuks Z, Leibel SA, Wallner KE, et al.: The effect of local control on metastatic dissemination in carcinoma of the prostate: long-term results in patients treated with 125I implantation. Int J Radiat Oncol Biol Phys 21 (3): 537-47, 1991. [PUBMED Abstract]
  46. Robinson JW, Saliken JC, Donnelly BJ, et al.: Quality-of-life outcomes for men treated with cryosurgery for localized prostate carcinoma. Cancer 86 (9): 1793-801, 1999. [PUBMED Abstract]
  47. Donnelly BJ, Saliken JC, Ernst DS, et al.: Prospective trial of cryosurgical ablation of the prostate: five-year results. Urology 60 (4): 645-9, 2002. [PUBMED Abstract]
  48. Aus G, Pileblad E, Hugosson J: Cryosurgical ablation of the prostate: 5-year follow-up of a prospective study. Eur Urol 42 (2): 133-8, 2002. [PUBMED Abstract]
  49. Blana A, Murat FJ, Walter B, et al.: First analysis of the long-term results with transrectal HIFU in patients with localised prostate cancer. Eur Urol 53 (6): 1194-201, 2008. [PUBMED Abstract]
  50. Ficarra V, Novara G: Editorial comment on: first analysis of the long-term results with transrectal HIFU in patients with localized prostate cancer. Eur Urol 53 (6): 1201-2, 2008. [PUBMED Abstract]
  51. Eastham JA: Editorial comment on: first analysis of the long-term results with transrectal HIFU in patients with localized prostate cancer. Eur Urol 53 (6): 1202-3, 2008. [PUBMED Abstract]
  52. Azzouzi AR, Vincendeau S, Barret E, et al.: Padeliporfin vascular-targeted photodynamic therapy versus active surveillance in men with low-risk prostate cancer (CLIN1001 PCM301): an open-label, phase 3, randomised controlled trial. Lancet Oncol 18 (2): 181-191, 2017. [PUBMED Abstract]
  53. Freedland SJ: Low-risk prostate cancer: to treat or not to treat. Lancet Oncol 18 (2): 156-157, 2017. [PUBMED Abstract]

Treatment of Stage III Prostate Cancer

Overview

Stage III prostate cancer is defined by the American Joint Committee on Cancer’s TNM (tumor, node, metastasis) classification system:[1]

Stage IIIA

  • T1–2, N0, M0, prostate-specific antigen (PSA) ≥20, Gleason ≤6–8.

Stage IIIB

  • T3–4, N0, M0, any PSA, Gleason ≤6–8.

Stage IIIC

  • Any T, N0, M0, any PSA, Gleason 9 or 10.

Extraprostatic extension with microscopic bladder neck invasion (T4) is included with T3a.

External-beam radiation therapy (EBRT), interstitial implantation of radioisotopes, and radical prostatectomy are used to treat stage III prostate cancer.[2] Prognosis is greatly affected by whether regional lymph nodes are evaluated and proven not to be involved.

EBRT using a linear accelerator is the most common treatment for patients with stage III prostate cancer, and large series support its success in achieving local disease control and disease-free survival (DFS).[3,4] The results of radical prostatectomy in stage III patients are greatly inferior compared with results in patients with stage II cancer. Interstitial implantation of radioisotopes is technically difficult in large tumors.

The patient’s symptoms related to cancer, age, and coexisting medical illnesses should be considered before deciding on a therapeutic plan. In a series of 372 patients treated with radiation therapy and followed for 20 years, 47% eventually died of prostate cancer, but 44% died of intercurrent illnesses without evidence of prostate cancer.[4]

Treatment Options for Stage III Prostate Cancer

Treatment options for patients with stage III prostate cancer include:

External-beam radiation therapy (EBRT) with or without hormonal therapy

EBRT alone,[37] luteinizing hormone-releasing hormone (LH-RH) agonist, or orchiectomy, in addition to EBRT, should be considered.[816] Definitive radiation therapy should be delayed until 4 to 6 weeks after transurethral resection to reduce the incidence of stricture.[17]

Hormonal therapy should be considered in conjunction with radiation therapy especially in men who do not have underlying moderate or severe comorbidities.[8,9] Several studies have investigated its use in patients with locally advanced disease.

Evidence (EBRT with or without hormonal therapy):

  1. Although patients in the Radiation Therapy Oncology Group (RTOG) RTOG-9413 trial (NCT00769548) showed a 15% estimated risk of lymph node involvement and received whole-pelvic radiation therapy compared with prostate-only radiation therapy, overall survival (OS) and PSA failure rates were not significantly different.[18]; [19][Level of evidence B1]
  2. In a randomized trial, 875 men with locally advanced nonmetastatic prostate cancer (T1b–T2 moderately or poorly differentiated tumors; T3 tumors of any grade) were randomly assigned to receive 3 months of an LH-RH agonist plus long-term flutamide (250 mg PO tid) with or without EBRT. Nineteen percent of the men had tumor stage T2, and 78% of the men had stage T3.[20][Level of evidence A1]
    • At 10 years, both overall mortality (29.6% vs. 39.4%; 95% confidence interval [CI] for the difference, 0.8%–8.8%) and the prostate cancer-specific mortality (11.9% vs. 23.9%; 95% CI for the difference, 4.9%–19.1%) favored combined hormonal and radiation therapy.
    • Although flutamide might not be considered a standard hormonal monotherapy in the setting of T2 or T3 tumors, radiation therapy provided a DFS or tumor-specific survival advantage even though this monotherapy was applied. This analysis rests on the assumption that flutamide does not shorten life expectancy and cancer-specific survival. Radiation therapy was not delivered by current standards of dose and technique.
  3. Another trial compared androgen deprivation therapy (ADT: an LH-RH agonist or orchiectomy) to ADT plus radiation therapy (65–69 Gy to the prostate by 4-field box technique, including 45 Gy to the whole pelvis, seminal vesicles, and external/internal iliac nodes unless the lymph nodes were histologically negative). This trial (NCIC CTG PR.3/MRC UKPRO7 [NCT00002633]) from the National Cancer Institute of Canada, randomly assigned 1,205 patients with high-risk (PSA >40 ng/mL or PSA >20 ng/mL and Gleason score ≥8), T2 (12%–13% of the patients), T3 (83% of the patients), and T4 (4%–5% of the patients) with clinical or pathologically staged N0, M0 disease.[21,22][Level of evidence A1]
    • At a median follow-up of 8 years (maximum, 13 years), OS was superior in the ADT-plus-radiation therapy group (hazard ratio [HR]death, 0.77; 95% CI, 0.57–0.85, P = .001). The OS rate at 10 years was 55% for the ADT-plus-radiation therapy group versus 49% for the ADT-alone group.
    • Although radiation therapy had the expected bowel and urinary side effects, quality of life (QOL) was the same in each study group by 24 months and beyond.[23]
  4. The RTOG performed a prospective randomized trial (RTOG-8531) in patients with T3, N0, or any T, N1, M0 disease who received prostatic and pelvic radiation therapy and then were randomly assigned to receive immediate adjuvant goserelin or observation with administration of goserelin at time of relapse. In patients assigned to receive adjuvant goserelin, the drug was started during the last week of the radiation therapy course and was continued indefinitely or until signs of progression.[24][Level of evidence A1]
    • The actuarial 10-year OS rate for the entire population of 945 analyzable patients was 49% on the adjuvant arm versus 39% on the observation arm (P = .002). There was also an improved actuarial 10-year local failure rate (23% vs. 38%, P < .001).
  5. A similar trial was performed by the European Organisation for Research and Treatment of Cancer (EORTC). Patients with T1, T2 (World Health Organization grade 3), N0–NX or T3, T4, N0 disease were randomly assigned to receive either pelvic/prostate radiation therapy or identical radiation therapy and adjuvant goserelin (with cyproterone acetate for 1 month) starting with radiation therapy and continuing for 3 years. The 401 patients available for analysis were followed for a median of 9.1 years.[10,25][Levels of evidence A1 and B1]
    • The Kaplan-Meier estimates of OS rates at 10 years were 58.1% in the adjuvant goserelin arm and 39.8% in the radiation alone arm (P = .0004). Similarly, 10-year DFS rates (47.7% vs. 22.7%, P < .0001) and local control rates (94.0% vs. 76.5%, P < .001) favored the adjuvant arm.[10,25]
    • Two smaller studies, with 78 and 91 patients each, have shown similar results.[26,27]
  6. The role of adjuvant hormonal therapy in patients with locally advanced disease has been analyzed by the Agency for Health Care Policy and Research (AHCPR; now the Agency for Healthcare Research and Quality). Randomized clinical trial evidence comparing radiation therapy with radiation therapy with prolonged androgen suppression (with an LH-RH agonist or orchiectomy) was evaluated in a meta-analysis. Most patients had more advanced disease, but patients with bulky T2b tumors were included in the study.[11][Level of evidence A1]
    • The meta-analysis found a difference in 5-year OS in favor of radiation therapy plus continued androgen suppression compared with radiation therapy alone (HR, 0.631; 95% CI, 0.479–0.831).[11]
  7. Additionally, the RTOG did a study (RTOG-8610) in patients with bulky local disease (T2b, T2c, T3, or T4), with or without nodal involvement below the common iliac chain: 456 men were randomly assigned to receive either radiation therapy alone or radiation therapy with androgen ablation, which was started 8 weeks before radiation therapy and continued for 16 weeks. This trial assessed only short-term hormonal therapy, not long-term therapy, as the studies analyzed by the AHCPR did.[12,28]
    • At 10 years, OS was not statistically significantly different; however, disease-specific mortality rates (23% vs. 36%) and DFS rates (11% vs. 3%) favored the combined treatment arm.[12][Level of evidence A1]
  8. A subset analysis of the RTOG-8610 trial and the RTOG-8531 trial that involved 575 patients with T3, N0, M0 disease indicated that long-term hormones compared with short-term hormones resulted in improved biochemical DFS and cause-specific survival.[29]
  9. This finding was confirmed by RTOG-9202 (NCT00767286), which reported that radiation therapy plus 28 months of androgen deprivation resulted in longer 10-year disease-specific survival rates (23% vs. 13%; P < .0001) but not OS rates (53.9% vs. 51.6%; P = .36).[13]
    • An unplanned post-hoc subgroup analysis found increased OS with longer androgen deprivation (28 months vs. 4 months) (45% vs. 32%; P = .0061) in men with high-grade cancers and Gleason scores of 8 through 10.
  10. In a randomized, prospective clinical trial, 18 months of androgen suppression with an LH-RH agonist appears to have provided results that were similar to 36 months with respect to OS and disease-specific survival.[30][Level of evidence A1] In the trial, 630 men with stage II to stage IVA cancer (clinical stage T3–T4, or PSA >20 ng/ml, or Gleason score >7) received 70 Gy of radiation in 35 fractions alone plus a total of either 18 or 36 months of goserelin acetate.
    • With a median follow-up of 9.4 years, OS was nearly identical in each study arm (62% at 10 years; HRdeath, 1.02; 95% CI, 0.81–1.29, P = .8), as was prostate cancer–specific survival (HRprostate death, 0.95; 95% CI, 0.58–1.55, P = .8).
    • Global quality of life was nearly identical on both study arms, but sexual activity and interest in sex was moderately better in the 18-month arm.[30][Level of evidence A3]
  11. Likewise, a meta-analysis of seven randomized controlled trials comparing early hormonal treatment (adjuvant or neoadjuvant) with deferred hormonal treatment (LH-RH agonists and/or antiandrogens) in patients with locally advanced prostate cancer, whether treated by prostatectomy, radiation therapy, or watchful waiting or active surveillance/active monitoring, showed improved overall mortality for patients receiving early treatment (relative risk, 0.86; 95% CI, 0.82–0.91).[31][Level of evidence A1]
  12. The duration of neoadjuvant hormonal therapy has been tested in a randomized trial (TROG 96.01 [ACTRN12607000237482]) involving 818 men with locally advanced (T2b, T2c, T3, and T4) nonmetastatic cancer treated with radiation therapy (i.e., 66 Gy in 2 Gy daily fractions to the prostate and seminal vesicles but not including regional lymph nodes). In an open-label design, patients were randomly assigned to radiation therapy alone, 3 months of neoadjuvant androgen deprivation therapy (NADT) (goserelin 3.6 mg subcutaneously each month plus flutamide 250 mg PO tid) for 2 months before and during radiation, or 6 months of NADT for 5 months before and during radiation.[14][Level of evidence A1]
    • After a median follow-up of 10.6 years, there were no statistically significant differences between the radiation-alone group and the radiation plus 3 months of NADT group.
    • However, the 6-month NADT arm showed better prostate cancer-specific mortality and overall mortality than radiation alone; 10-year all-cause mortality 29.2% versus 42.5% (HR, 0.63; 95% CI, 0.48–0.83, P = .0008).
  13. The duration of neoadjuvant hormonal therapy was tested in another trial (RTOG-9910 [NCT00005044]) of 1,489 eligible men with intermediate-risk prostate cancer (T1b–4, Gleason score 2–6, and PSA >10 but ≤100 ng/mL; T1b–4, Gleason score 7, and PSA <20; or T1b–1c, Gleason score 8–10, and PSA <20) and no evidence of metastases. The men were randomly assigned to receive short-course neoadjuvant–androgen suppression (an LH-RH agonist plus bicalutamide or flutamide for 8 weeks before and 8 weeks during radiation therapy) or long-course neoadjuvant–androgen suppression (28 weeks before and 8 weeks during radiation therapy). Both groups received 70.2 Gy radiation in 39 daily fractions to the prostate and 46.8 Gy to the iliac lymph nodes.[32][Level of evidence A1]
    • After a median of 9.4 years, 10-year prostate-specific mortality, the primary end point, was low in both study arms: 5% versus 4% (HR, 0.81; 95% CI, 0.48–1.39).[32][Level of evidence A1]
    • No statistically significant differences in overall mortality or in locoregional disease progression were found.[32][Level of evidence A1]
    • There was also no apparent differential effect of androgen suppression duration among any of the risk-group subsets.

Hormonal manipulations (with or without radiation therapy)

Hormonal manipulations (orchiectomy or LH-RH agonists) may be used in the treatment of stage III prostate cancer.[33][Level of evidence A1]

Some data suggest that the efficacy of orchiectomy or LH-RH agonists may be enhanced by the addition of abiraterone acetate in men with locally advanced tumors. In the randomized, open-label, STAMPEDE trial (NCT00268476) trial, 1,917 men (about 95% newly diagnosed; about 50% had metastatic disease and about 50% had locally advanced or node-positive disease) were treated with ADT alone or ADT plus abiraterone acetate (1,000 mg PO qd) and prednisolone (5 mg PO qd).[34] Local radiation therapy was mandated after 6 to 9 months for men with node-negative nonmetastatic disease and optional for those with node-positive nonmetastatic disease. Hormone therapy was curtailed at 2 years or until progression. Radiation therapy was planned in about 40% of the study participants.

  • With a median follow-up of 40 months, the 3-year OS rate was 83% in the abiraterone study group compared with 76% in the ADT-only study group (HRdeath, 0.63; 95% CI, 0.52–0.76; P < .001).[34][Level of evidence A1] Although there was no clear evidence of heterogeneity in relative treatment differences in metastatic disease versus nonmetastatic disease, absolute differences were much smaller in men with nonmetastatic disease and not statistically significant, perhaps because of the short follow-up (HRdeath, 0.75; 95% CI, 0.49–1.18).
  • The main additional differences in toxicity associated with abiraterone compared with ADT alone were hypertension (5% vs. 1%), mild increase in blood aminotransferase levels (6% vs. <1%), and respiratory disorders (5% vs. 2%).

Antiandrogen monotherapy has also been evaluated in men with locally advanced prostate cancer as an alternative to castration.

Evidence (nonsteroidal antiandrogen monotherapy vs. surgical or medical castration):

  1. A systematic evidence review compared nonsteroidal antiandrogen monotherapy with surgical or medical castration from 11 randomized trials in 3,060 men with locally advanced, metastatic, or recurrent disease after local therapy.[35] Use of nonsteroidal antiandrogens as monotherapy decreased OS and increased the rate of clinical progression and treatment failure.[35][Level of evidence A1]

Evidence (orchiectomy vs. LH-RH agonist):

  1. In a randomized equivalence study involving 480 men with locally advanced (T3 and T4) disease, those who were treated with castration had a median OS of 70 months, whereas those treated with bicalutamide (150 mg qd) had a median OS of 63.5 months (HR, 1.05; 95% CI, 0.81–1.36); these results failed to meet the prespecified criteria for equivalence.[36][Level of evidence A1]
Immediate versus deferred hormonal therapy

In patients who are not candidates for or who are unwilling to undergo radical prostatectomy or radiation therapy, immediate hormonal therapy has been compared with deferred treatment (i.e., watchful waiting or active surveillance/active monitoring with hormonal therapy at progression).

Evidence (immediate vs. deferred hormonal therapy):

  1. A randomized trial looked at immediate hormonal treatment (orchiectomy or LH-RH agonist) versus deferred treatment in men with locally advanced or asymptomatic metastatic prostate cancer.[33][Level of evidence A1]
    • Initial results showed better OS and prostate cancer-specific survival with the immediate treatment. This subsequently lost statistical significance as was recorded in abstract form.[37]
    • The incidence of pathological fractures, spinal cord compression, and ureteric obstruction were also lower in the immediate treatment arm.
  2. In another trial, 197 men with stage III or stage IV prostate cancer were randomly assigned to receive bilateral orchiectomy at diagnosis or at the time of symptomatic progression (or at the time of new metastases that were deemed likely to cause symptoms).[38][Level of evidence A1]
    • No statistically significant difference in OS was seen over a 12-year period of follow-up.
  3. In the EORTC-30891 trial (NCT01819285), 985 patients newly diagnosed with prostate cancer, stage T0–4, N0–2, M0, and a median age of 73 years were randomly assigned to receive androgen deprivation, either immediately or on symptomatic disease progression. The study was designed to demonstrate the noninferiority of deferred treatment as compared with immediate treatment in relation to OS.[39][Level of evidence A1]
    • At a median follow-up of 7.8 years, approximately 50% of the patients in the deferred treatment group had initiated androgen deprivation.
    • The median OS in the immediate treatment group was 7.4 years, and, in the deferred treatment group, it was 6.5 years, corresponding to a mortality HR of 1.25 (95% CI, 1.05–1.48), which failed to meet the criteria for noninferiority.
Continuous versus intermittent hormonal therapy

When used as the primary therapy for patients with stage III or stage IV prostate cancer, androgen suppression with hormonal therapy is usually given continuously until there is disease progression. Some investigators have proposed intermittent androgen suppression as a strategy to attain maximal tumor cytoreduction followed by a period without therapy to allow tumor repopulation by hormone-sensitive cells. Theoretically, this strategy might provide tumor hormone responsiveness for a longer period. An animal model suggested that intermittent androgen deprivation (IAD) could prolong the duration of androgen dependence of hormone-sensitive tumors.[40]

Evidence (continuous vs. intermittent hormonal therapy):

  1. A systematic review of 15 randomized trials that compared continuous androgen deprivation versus IAD therapy for patients with advanced or recurrent prostate cancer found no significant difference in OS, which was reported in eight of the trials (HR, 1.02; 95% CI, 0.93–1.11); prostate–cancer-specific survival, reported in five of the trials (HR, 1.02; 95% CI, 0.87–1.19); or progression-free survival, reported in four of the trials (HR, 0.94; 95% CI, 0.84–1.05). The meta-analysis fulfilled prespecified criteria for noninferiority of OS (upper bound of 1.15 for the HRdeath, 1.15).[41][Level of evidence A1] However, of the 15 trials, all but one had an unclear or high risk of bias according to prespecified criteria.
    • There was minimal difference in patient-reported QOL, but most trials found better physical and sexual functioning in patients in the IAD arms.

Radical prostatectomy with or without EBRT

Radical prostatectomy may be used with or without EBRT (in highly selected patients).[42] Because about 40% to 50% of men with clinically organ-confined disease are found to have pathological extension beyond the prostate capsule or surgical margins, the role of postprostatectomy adjuvant radiation therapy has been studied.

Evidence (radical prostatectomy with or without EBRT):

  1. In a randomized trial of 425 men with pathological T3, N0, M0 disease, postsurgical EBRT (60–64 Gy to the prostatic fossa over 30–32 fractions) was compared with observation.[43,44]
    • After a median follow-up of about 12.5 years, OS was better in the radiation therapy arm; HRdeath, 0.72 (95% CI, 0.55–0.96; P = .023). The 10-year estimated survival rates were 74% in the radiation therapy arm and 66% in the control arm.
    • The 10-year estimated metastasis-free survival rates were 73% and 65% (P = .016).[44][Level of evidence A1]
    • Short-term complication rates were substantially higher in the radiation therapy group: overall complications were 23.8% versus 11.9%, rectal complications were 3.3% versus 0%, and urethral stricture was 17.8% versus 9.5%.
    • The role of preoperative (neoadjuvant) hormonal therapy is not established.[45,46] Also, the morphologic changes induced by neoadjuvant androgen ablation may even complicate assessment of surgical margins and capsular involvement.[47]

Watchful waiting or active surveillance/active monitoring

Careful observation without further immediate treatment may be used in the treatment of stage III prostate cancer.[48,49]

Asymptomatic patients of advanced age or with concomitant illness may warrant consideration of careful observation without immediate active treatment.[5052] Watch and wait, observation, expectant management, and active surveillance/active monitoring are terms indicating a strategy that does not employ immediate therapy with curative intent. For more information, see the Treatment Option Overview for Prostate Cancer section.

Treatment of Symptoms

Because many stage III patients have urinary symptoms, control of symptoms is an important consideration in treatment. The following modalities may be used to improve local control of disease and subsequent symptoms:

Radiation therapy

Radiation therapy may be used.[36] EBRT designed to decrease exposure of normal tissues using methods such as computed tomography–based 3-dimensional conformal radiation therapy treatment planning is under clinical evaluation.

Hormonal manipulation

Hormonal manipulations effectively used as initial therapy for prostate cancer include:

  • Orchiectomy.
  • Leuprolide or other LH-RH agonists (e.g., goserelin) in daily or depot preparations. These agents may be associated with tumor flare.
  • Estrogens (diethylstilbestrol [DES] is no longer available in the United States).
  • Nonsteroidal antiandrogens (e.g., flutamide, nilutamide, and bicalutamide) or steroidal antiandrogen (e.g., cyproterone acetate).

A meta-analysis of randomized trials comparing various hormonal monotherapies in men with stage III or stage IV prostate cancer (predominantly stage IV) came to the following conclusions:[53][Level of evidence A1]

  • The OS at 2 years using any of the LH-RH agonists was similar to treatment with orchiectomy or 3 mg qd of DES (HR, 1.26; 95% CI, 0.92–1.39).
  • Survival rates at 2 years were similar or worse with nonsteroidal antiandrogens compared with orchiectomy (HR, 1.22; 95% CI, 0.99–1.50).
  • Treatment withdrawals, used as a surrogate for adverse effects, occurred less with LH-RH agonists (0%–4%) than with nonsteroidal antiandrogens (4%–10%).

Interstitial implantation combined with EBRT

Interstitial implantation combined with EBRT is being used in selected T3 patients, but little information is available.[54]

Alternative forms of radiation therapy

Alternative forms of radiation therapy are being employed in clinical trials.

  • A randomized trial from the RTOG reported improved local control and survival with mixed-beam (neutron/photon) radiation therapy compared with standard photon radiation therapy.[55]
  • A subsequent randomized study from the same group compared fast-neutron radiation therapy with standard photon radiation therapy. Local-regional control was improved with neutron treatment, but no difference in OS was seen, although follow-up was shorter in this trial. Fewer complications were seen with the use of a multileaf collimator.[56]

Proton-beam radiation therapy is also under investigation.[57]

Ultrasound-guided percutaneous cryosurgery

Ultrasound-guided percutaneous cryosurgery is under clinical evaluation.

Cryosurgery is a surgical technique under development that involves destruction of prostate cancer cells by intermittent freezing of the prostate with cryoprobes, followed by thawing.[58][Level of evidence C1]; [59]; [60][Level of evidence C3] Cryosurgery is less well established than standard prostatectomy, and long-term outcomes are not as well established as with prostatectomy or radiation therapy. Serious toxic effects include bladder outlet injury, urinary incontinence, sexual impotence, and rectal injury. The technique of cryosurgery is under development. Impotence is common. The frequency of other side effects and the probability of cancer control after 5 years of follow-up have varied among reporting centers, and series are small compared with surgery and radiation therapy.[59,60]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 715–26.
  2. Paulson DF: Management of prostate malignancy. In: deKernion JB, Paulson DF, eds.: Genitourinary Cancer Management. Lea and Febiger, 1987, pp 107-160.
  3. Babaian RJ, Zagars GK, Ayala AG: Radiation therapy of stage C prostate cancer: significance of Gleason grade to survival. Semin Urol 8 (4): 225-31, 1990. [PUBMED Abstract]
  4. del Regato JA, Trailins AH, Pittman DD: Twenty years follow-up of patients with inoperable cancer of the prostate (stage C) treated by radiotherapy: report of a national cooperative study. Int J Radiat Oncol Biol Phys 26 (2): 197-201, 1993. [PUBMED Abstract]
  5. Pilepich MV, Johnson RJ, Perez CA, et al.: Prognostic significance of nodal involvement in locally advanced (stage C) carcinoma of prostate–RTOG experience. Urology 30 (6): 535-40, 1987. [PUBMED Abstract]
  6. Perez CA, Garcia D, Simpson JR, et al.: Factors influencing outcome of definitive radiotherapy for localized carcinoma of the prostate. Radiother Oncol 16 (1): 1-21, 1989. [PUBMED Abstract]
  7. Freeman JA, Lieskovsky G, Cook DW, et al.: Radical retropubic prostatectomy and postoperative adjuvant radiation for pathological stage C (PcN0) prostate cancer from 1976 to 1989: intermediate findings. J Urol 149 (5): 1029-34, 1993. [PUBMED Abstract]
  8. Kumar S, Shelley M, Harrison C, et al.: Neo-adjuvant and adjuvant hormone therapy for localised and locally advanced prostate cancer. Cochrane Database Syst Rev (4): CD006019, 2006. [PUBMED Abstract]
  9. D’Amico AV, Chen MH, Renshaw AA, et al.: Androgen suppression and radiation vs radiation alone for prostate cancer: a randomized trial. JAMA 299 (3): 289-95, 2008. [PUBMED Abstract]
  10. Bolla M, Van Tienhoven G, Warde P, et al.: External irradiation with or without long-term androgen suppression for prostate cancer with high metastatic risk: 10-year results of an EORTC randomised study. Lancet Oncol 11 (11): 1066-73, 2010. [PUBMED Abstract]
  11. Seidenfeld J, Samson DJ, Aronson N, et al.: Relative effectiveness and cost-effectiveness of methods of androgen suppression in the treatment of advanced prostate cancer. Evid Rep Technol Assess (Summ) (4): i-x, 1-246, I1-36, passim, 1999. [PUBMED Abstract]
  12. Roach M, Bae K, Speight J, et al.: Short-term neoadjuvant androgen deprivation therapy and external-beam radiotherapy for locally advanced prostate cancer: long-term results of RTOG 8610. J Clin Oncol 26 (4): 585-91, 2008. [PUBMED Abstract]
  13. Horwitz EM, Bae K, Hanks GE, et al.: Ten-year follow-up of radiation therapy oncology group protocol 92-02: a phase III trial of the duration of elective androgen deprivation in locally advanced prostate cancer. J Clin Oncol 26 (15): 2497-504, 2008. [PUBMED Abstract]
  14. Denham JW, Steigler A, Lamb DS, et al.: Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 12 (5): 451-9, 2011. [PUBMED Abstract]
  15. Pilepich MV, Caplan R, Byhardt RW, et al.: Phase III trial of androgen suppression using goserelin in unfavorable-prognosis carcinoma of the prostate treated with definitive radiotherapy: report of Radiation Therapy Oncology Group Protocol 85-31. J Clin Oncol 15 (3): 1013-21, 1997. [PUBMED Abstract]
  16. Bolla M, Gonzalez D, Warde P, et al.: Improved survival in patients with locally advanced prostate cancer treated with radiotherapy and goserelin. N Engl J Med 337 (5): 295-300, 1997. [PUBMED Abstract]
  17. Seymore CH, el-Mahdi AM, Schellhammer PF: The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int J Radiat Oncol Biol Phys 12 (9): 1597-600, 1986. [PUBMED Abstract]
  18. Roach M, DeSilvio M, Lawton C, et al.: Phase III trial comparing whole-pelvic versus prostate-only radiotherapy and neoadjuvant versus adjuvant combined androgen suppression: Radiation Therapy Oncology Group 9413. J Clin Oncol 21 (10): 1904-11, 2003. [PUBMED Abstract]
  19. Pollack A: A call for more with a desire for less: pelvic radiotherapy with androgen deprivation in the treatment of prostate cancer. J Clin Oncol 21 (10): 1899-901, 2003. [PUBMED Abstract]
  20. Widmark A, Klepp O, Solberg A, et al.: Endocrine treatment, with or without radiotherapy, in locally advanced prostate cancer (SPCG-7/SFUO-3): an open randomised phase III trial. Lancet 373 (9660): 301-8, 2009. [PUBMED Abstract]
  21. Warde P, Mason M, Ding K, et al.: Combined androgen deprivation therapy and radiation therapy for locally advanced prostate cancer: a randomised, phase 3 trial. Lancet 378 (9809): 2104-11, 2011. [PUBMED Abstract]
  22. Mason MD, Parulekar WR, Sydes MR, et al.: Final Report of the Intergroup Randomized Study of Combined Androgen-Deprivation Therapy Plus Radiotherapy Versus Androgen-Deprivation Therapy Alone in Locally Advanced Prostate Cancer. J Clin Oncol 33 (19): 2143-50, 2015. [PUBMED Abstract]
  23. Brundage M, Sydes MR, Parulekar WR, et al.: Impact of Radiotherapy When Added to Androgen-Deprivation Therapy for Locally Advanced Prostate Cancer: Long-Term Quality-of-Life Outcomes From the NCIC CTG PR3/MRC PR07 Randomized Trial. J Clin Oncol 33 (19): 2151-7, 2015. [PUBMED Abstract]
  24. Pilepich MV, Winter K, Lawton CA, et al.: Androgen suppression adjuvant to definitive radiotherapy in prostate carcinoma–long-term results of phase III RTOG 85-31. Int J Radiat Oncol Biol Phys 61 (5): 1285-90, 2005. [PUBMED Abstract]
  25. Bolla M, Collette L, Blank L, et al.: Long-term results with immediate androgen suppression and external irradiation in patients with locally advanced prostate cancer (an EORTC study): a phase III randomised trial. Lancet 360 (9327): 103-6, 2002. [PUBMED Abstract]
  26. Zagars GK, Johnson DE, von Eschenbach AC, et al.: Adjuvant estrogen following radiation therapy for stage C adenocarcinoma of the prostate: long-term results of a prospective randomized study. Int J Radiat Oncol Biol Phys 14 (6): 1085-91, 1988. [PUBMED Abstract]
  27. Granfors T, Modig H, Damber JE, et al.: Combined orchiectomy and external radiotherapy versus radiotherapy alone for nonmetastatic prostate cancer with or without pelvic lymph node involvement: a prospective randomized study. J Urol 159 (6): 2030-4, 1998. [PUBMED Abstract]
  28. Pilepich MV, Winter K, John MJ, et al.: Phase III radiation therapy oncology group (RTOG) trial 86-10 of androgen deprivation adjuvant to definitive radiotherapy in locally advanced carcinoma of the prostate. Int J Radiat Oncol Biol Phys 50 (5): 1243-52, 2001. [PUBMED Abstract]
  29. Horwitz EM, Winter K, Hanks GE, et al.: Subset analysis of RTOG 85-31 and 86-10 indicates an advantage for long-term vs. short-term adjuvant hormones for patients with locally advanced nonmetastatic prostate cancer treated with radiation therapy. Int J Radiat Oncol Biol Phys 49 (4): 947-56, 2001. [PUBMED Abstract]
  30. Nabid A, Carrier N, Martin AG, et al.: Duration of Androgen Deprivation Therapy in High-risk Prostate Cancer: A Randomized Phase III Trial. Eur Urol 74 (4): 432-441, 2018. [PUBMED Abstract]
  31. Boustead G, Edwards SJ: Systematic review of early vs deferred hormonal treatment of locally advanced prostate cancer: a meta-analysis of randomized controlled trials. BJU Int 99 (6): 1383-9, 2007. [PUBMED Abstract]
  32. Pisansky TM, Hunt D, Gomella LG, et al.: Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol 33 (4): 332-9, 2015. [PUBMED Abstract]
  33. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. Br J Urol 79 (2): 235-46, 1997. [PUBMED Abstract]
  34. James ND, de Bono JS, Spears MR, et al.: Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med 377 (4): 338-351, 2017. [PUBMED Abstract]
  35. Kunath F, Grobe HR, Rücker G, et al.: Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev (6): CD009266, 2014. [PUBMED Abstract]
  36. Iversen P, Tyrrell CJ, Kaisary AV, et al.: Bicalutamide monotherapy compared with castration in patients with nonmetastatic locally advanced prostate cancer: 6.3 years of followup. J Urol 164 (5): 1579-82, 2000. [PUBMED Abstract]
  37. Kirk D: Immediate vs. deferred hormone treatment for prostate cancer: how safe is androgen deprivation? [Abstract] BJU Int 86 (Suppl 3): 218-58, 2000.
  38. Studer UE, Hauri D, Hanselmann S, et al.: Immediate versus deferred hormonal treatment for patients with prostate cancer who are not suitable for curative local treatment: results of the randomized trial SAKK 08/88. J Clin Oncol 22 (20): 4109-18, 2004. [PUBMED Abstract]
  39. Studer UE, Whelan P, Albrecht W, et al.: Immediate or deferred androgen deprivation for patients with prostate cancer not suitable for local treatment with curative intent: European Organisation for Research and Treatment of Cancer (EORTC) Trial 30891. J Clin Oncol 24 (12): 1868-76, 2006. [PUBMED Abstract]
  40. Tombal B: Intermittent androgen deprivation therapy: conventional wisdom versus evidence. Eur Urol 55 (6): 1278-80, 2009. [PUBMED Abstract]
  41. Magnan S, Zarychanski R, Pilote L, et al.: Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol 1 (9): 1261-9, 2015. [PUBMED Abstract]
  42. Walsh PC, Jewett HJ: Radical surgery for prostatic cancer. Cancer 45 (7 Suppl): 1906-11, 1980. [PUBMED Abstract]
  43. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathologically advanced prostate cancer: a randomized clinical trial. JAMA 296 (19): 2329-35, 2006. [PUBMED Abstract]
  44. Thompson IM, Tangen CM, Paradelo J, et al.: Adjuvant radiotherapy for pathological T3N0M0 prostate cancer significantly reduces risk of metastases and improves survival: long-term followup of a randomized clinical trial. J Urol 181 (3): 956-62, 2009. [PUBMED Abstract]
  45. Witjes WP, Schulman CC, Debruyne FM: Preliminary results of a prospective randomized study comparing radical prostatectomy versus radical prostatectomy associated with neoadjuvant hormonal combination therapy in T2-3 N0 M0 prostatic carcinoma. The European Study Group on Neoadjuvant Treatment of Prostate Cancer. Urology 49 (3A Suppl): 65-9, 1997. [PUBMED Abstract]
  46. Fair WR, Cookson MS, Stroumbakis N, et al.: The indications, rationale, and results of neoadjuvant androgen deprivation in the treatment of prostatic cancer: Memorial Sloan-Kettering Cancer Center results. Urology 49 (3A Suppl): 46-55, 1997. [PUBMED Abstract]
  47. Bazinet M, Zheng W, Bégin LR, et al.: Morphologic changes induced by neoadjuvant androgen ablation may result in underdetection of positive surgical margins and capsular involvement by prostatic adenocarcinoma. Urology 49 (5): 721-5, 1997. [PUBMED Abstract]
  48. Adolfsson J: Deferred treatment of low grade stage T3 prostate cancer without distant metastases. J Urol 149 (2): 326-8; discussion 328-9, 1993. [PUBMED Abstract]
  49. Stattin P, Holmberg E, Johansson JE, et al.: Outcomes in localized prostate cancer: National Prostate Cancer Register of Sweden follow-up study. J Natl Cancer Inst 102 (13): 950-8, 2010. [PUBMED Abstract]
  50. Chodak GW, Thisted RA, Gerber GS, et al.: Results of conservative management of clinically localized prostate cancer. N Engl J Med 330 (4): 242-8, 1994. [PUBMED Abstract]
  51. Whitmore WF: Expectant management of clinically localized prostatic cancer. Semin Oncol 21 (5): 560-8, 1994. [PUBMED Abstract]
  52. Shappley WV, Kenfield SA, Kasperzyk JL, et al.: Prospective study of determinants and outcomes of deferred treatment or watchful waiting among men with prostate cancer in a nationwide cohort. J Clin Oncol 27 (30): 4980-5, 2009. [PUBMED Abstract]
  53. Seidenfeld J, Samson DJ, Hasselblad V, et al.: Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med 132 (7): 566-77, 2000. [PUBMED Abstract]
  54. Blasko JC, Grimm PD, Ragde H: Brachytherapy and Organ Preservation in the Management of Carcinoma of the Prostate. Semin Radiat Oncol 3 (4): 240-249, 1993. [PUBMED Abstract]
  55. Laramore GE, Krall JM, Thomas FJ, et al.: Fast neutron radiotherapy for locally advanced prostate cancer. Final report of Radiation Therapy Oncology Group randomized clinical trial. Am J Clin Oncol 16 (2): 164-7, 1993. [PUBMED Abstract]
  56. Russell KJ, Caplan RJ, Laramore GE, et al.: Photon versus fast neutron external beam radiotherapy in the treatment of locally advanced prostate cancer: results of a randomized prospective trial. Int J Radiat Oncol Biol Phys 28 (1): 47-54, 1994. [PUBMED Abstract]
  57. Shipley WU, Verhey LJ, Munzenrider JE, et al.: Advanced prostate cancer: the results of a randomized comparative trial of high dose irradiation boosting with conformal protons compared with conventional dose irradiation using photons alone. Int J Radiat Oncol Biol Phys 32 (1): 3-12, 1995. [PUBMED Abstract]
  58. Robinson JW, Saliken JC, Donnelly BJ, et al.: Quality-of-life outcomes for men treated with cryosurgery for localized prostate carcinoma. Cancer 86 (9): 1793-801, 1999. [PUBMED Abstract]
  59. Donnelly BJ, Saliken JC, Ernst DS, et al.: Prospective trial of cryosurgical ablation of the prostate: five-year results. Urology 60 (4): 645-9, 2002. [PUBMED Abstract]
  60. Aus G, Pileblad E, Hugosson J: Cryosurgical ablation of the prostate: 5-year follow-up of a prospective study. Eur Urol 42 (2): 133-8, 2002. [PUBMED Abstract]

Treatment of Stage IV Prostate Cancer

Overview

Stage IV prostate cancer is defined by the American Joint Committee on Cancer’s TNM (tumor, node, metastasis) classification system:[1]

Stage IVA

  • Any T, N1, M0, any prostate-specific antigen (PSA), any Gleason.

Stage IVB

  • Any T, N0, M1, any PSA, any Gleason.

Extraprostatic extension with microscopic bladder neck invasion (T4) is included with T3a.

Treatment selection depends on the following factors:

  • Age.
  • Coexisting medical illnesses.
  • Symptoms.
  • The presence of distant metastases (most often bone) or regional lymph node involvement only.

The most common symptoms originate from the urinary tract or from bone metastases. Palliation of symptoms from the urinary tract with transurethral resection of the prostate (TURP) or radiation therapy and palliation of symptoms from bone metastases with radiation therapy or hormonal therapy are an important part of the management of these patients. Bisphosphonates may also be used for the management of bone metastases.[2]

Treatment Options for Stage IV Prostate Cancer

Treatment options for patients with stage IV prostate cancer include:

Hormonal manipulations

Hormonal treatment is the mainstay of therapy for metastatic prostate cancer. Cure is rarely, if ever, possible, but striking subjective or objective responses to treatment occur in most patients. The cornerstone of hormonal therapy for prostate cancer is medical or surgical castration to stop the production of testosterone by the testes. This is commonly referred to as androgen deprivation therapy (ADT) and can be achieved with bilateral orchiectomy or with administration of gonadotropin-releasing hormone (GnRH) agonists or antagonists. The most effective purely hormonal approach employs a combination of ADT and one of the following agents:

  • Abiraterone acetate, an inhibitor of cytochrome P450c17, a critical enzyme in androgen biosynthesis.
  • Apalutamide, an androgen receptor antagonist.
  • Enzalutamide, an androgen receptor antagonist.

Randomized controlled trials have reported that combination therapy with any one of these drugs plus ADT results in longer overall survival than does ADT alone.

  1. In the randomized double-blind LATITUDE trial (NCT01715285), 1,199 men with high-risk metastatic castration-sensitive prostate cancer were given ADT plus either abiraterone acetate (1,000 mg PO qd) and prednisone (5 mg PO qd) or ADT plus abiraterone-prednisone placebos.[3] High-risk disease was defined as having at least two of the following three factors: Gleason score of 8 or higher, three or more bone lesions, or measurable visceral metastases.
    • After a median follow-up of 30.4 months, the trial was stopped because of a clear overall survival (OS) benefit in the abiraterone study group: median survival not reached versus 34.7 months OS (hazard ratio [HR], 0.62; 95% confidence interval [CI], 0.51–0.76; P < .001).[3][Level of evidence A1]
    • Abiraterone therapy was well tolerated, but there was an increase in the mineralocorticoid effects of grade 3 or 4 hypertension and hypokalemia compared with the placebo study group.
    • A collection of patient-reported outcomes and Health-Related Quality of Life (HRQOL) data showed clinical benefits in pain progression, prostate cancer–related symptoms, fatigue, functional decline, and overall HRQOL in the abiraterone-acetate study group compared with the placebo group.[4][Level of evidence A3]
  2. In the randomized open-label STAMPEDE trial (NCT00268476), 1,917 men (about 95% newly diagnosed; about 50% had metastatic disease and about 50% had locally advanced or node-positive disease) were treated with ADT alone or ADT plus abiraterone acetate (1,000 mg PO qd) and prednisolone (5 mg PO qd).[5] Local radiation therapy was mandated after 6 to 9 months for men with node-negative nonmetastatic disease and optional for those with node-positive nonmetastatic disease. Hormone therapy was curtailed at 2 years or until progression. Radiation therapy was planned in about 40% of study participants.
    • With a median follow-up of 40 months, the 3-year OS rate was 83% in the abiraterone study group compared with 76% in the ADT-only study group (HRdeath, 0.63; 95% CI, 0.52–0.76; P< .001).[5][Level of evidence A1] Although there was no clear evidence of heterogeneity in relative treatment differences in metastatic disease versus nonmetastatic disease, absolute differences were much smaller in men with nonmetastatic disease and not statistically significant, perhaps because of the short follow-up (HRdeath, 0.75; 95% CI, 0.49–1.18).
    • The main additional differences in toxicity associated with abiraterone compared with ADT alone were hypertension (5% vs. 1%), mild increase in blood aminotransferase levels (6% vs. < 1%), and respiratory disorders (5% vs. 2%).
  3. In the randomized, controlled, double-blind phase III TITAN trial (NCT02489318), 1,052 men with metastatic, castration-sensitive prostate cancer were randomly assigned to receive ADT alone or ADT plus either apalutamide (240 mg PO qd) or placebo.[6]
    • The 2-year OS rate was 82.4% in the apalutamide group and 73.5% in the placebo group (HR, 0.67; 95% CI, 0.51−0.89).
    • Radiographic progression-free survival (PFS) was 68.2% in the apalutamide group and 47.5% in the placebo group (HR, 0.48; 95% CI, 0.39−0.60).
    • Grade 3 or 4 adverse events were reported in 42.2% of patients in the apalutamide group and 40.8% of patients in the placebo group.
    • Apalutamide has been associated with an increased risk of seizure, so men with a history of or predisposition to seizures were excluded from this trial.
  4. In the randomized, controlled, open-label phase III ENZAMET trial (NCT02446405), 1,125 men with castrate-sensitive prostate cancer were randomly assigned to receive ADT alone or ADT plus enzalutamide (160 mg PO qd).[7]
    1. The 3-year OS rate was 80% in the combined-therapy arm and 72% in the ADT monotherapy arm (HR, 0.67; 95% CI, 0.52−0.86).
    2. PSA PFS (HR, 0.39, P < .001) and clinical PFS (HR, 0.40; P < .001) were also longer in the combined-therapy arm.
    3. Serious adverse events were reported in 42% of patients in the enzalutamide arm compared with 34% in the monotherapy arm.
      • Treatment was discontinued more frequently in the enzalutamide arm (33 vs. 14 events), and seizures and fatigue were more common in the enzalutamide arm: seven men (1%) had seizures in the enzalutamide arm versus none in the ADT-alone arm.
      • Six percent of men in the combined-therapy arm reported grade 3 to 4 fatigue compared with 1% in the ADT-alone arm.

Hormonal manipulations effectively used as initial therapy for prostate cancer include:[8]

  • Orchiectomy alone or with an androgen blocker as seen in the Southwest Oncology Group (SWOG-8894) trial.
  • Luteinizing hormone-releasing hormone (LH-RH) agonists, such as leuprolide in daily or depot preparations. These agents may be associated with tumor flare when used alone; therefore, the initial concomitant use of antiandrogens should be considered in the presence of liver pain, ureteral obstruction, or impending spinal cord compression.[912][Level of evidence A1]
  • Leuprolide plus flutamide;[13] however, the addition of an antiandrogen to leuprolide has not been clearly shown in a meta-analysis to improve survival.[14]
  • Estrogens (diethylstilboestrol [DES], chlorotrianisene, ethinyl estradiol, conjugated estrogens-USP and DES-diphosphate). DES is no longer commercially available in the United States.

In some series, pretreatment levels of PSA were inversely correlated with progression-free duration in patients with metastatic prostate cancer who received hormonal therapy. After hormonal therapy is initiated, a PSA reduction to beneath a detectable level provides information regarding the duration of progression-free status; however, decreases in PSA of less than 80% may not be very predictive.[15]

Orchiectomy and estrogens yield similar results, and selection of one or the other depends on patient preference and the morbidity of expected side effects. Estrogens are associated with the development or exacerbation of cardiovascular disease, especially in high doses. DES at a dose of 1 mg qd is not associated with cardiovascular complications as frequent as those found at higher doses; however, the use of DES has decreased because of cardiovascular toxic effects.

The psychological implications of orchiectomy are objectionable to many patients, and many will choose an alternative therapy if effective.[16] Combined orchiectomy and estrogens are not indicated to be superior to either treatment administered alone.[17]

A large proportion of men experience hot flushes after bilateral orchiectomy or treatment with LH-RH agonists. These hot flashes can persist for years.[18] Varying levels of success in the management of these symptoms have been reported with DES, clonidine, cyproterone acetate, or medroxyprogesterone acetate.

After tumor progression on one form of hormonal manipulation, an objective tumor response to any other form is uncommon.[19] Some studies, however, suggest that withdrawal of flutamide (with or without aminoglutethimide administration) is associated with a decline in PSA and that one may need to monitor for this response before initiating new therapy.[2022] Low-dose prednisone may palliate symptoms in about 33% of cases.[23] Newer hormonal approaches, such as inhibition of androgen receptors, have been shown to improve OS and quality of life (QOL) after tumor progression despite ADT. For more information, see the Treatment of Recurrent Hormone-Sensitive or Hormone-Resistant Prostate Cancer section.

Immediate versus deferred hormonal therapy

Some patients may be asymptomatic and careful observation without further immediate therapy may be appropriate.

Evidence (immediate vs. deferred hormonal therapy):

  1. A meta-analysis of seven randomized controlled trials comparing early (adjuvant or neoadjuvant) with deferred hormonal treatment (LH-RH agonists and/or antiandrogens) in patients with locally advanced prostate cancer, whether treated with prostatectomy, radiation therapy, or watchful waiting or active surveillance/active monitoring, showed improved overall mortality with early treatment (relative risk, 0.86; 95% CI, 0.82–0.91).[24][Level of evidence A1]
  2. In a small, randomized trial of 98 men who underwent radical prostatectomy plus pelvic lymphadenectomy and were found to have nodal metastases (stage T1–2, N1, M0), immediate continuous hormonal therapy with the LH-RH agonist goserelin or with orchiectomy was compared with deferred therapy until documentation of disease progression.[25][Level of evidence A1];[26]
    • After a median follow-up of 11.9 years, OS (P = .04) and prostate–cancer-specific survival (P = .004) were superior in the immediate adjuvant therapy arm.
    • At 10 years, the survival rate in the immediate therapy arm was about 80% versus about 60% in the deferred therapy arm.[27]
  3. Another trial (RTOG-8531) with twice as many randomly assigned patients showed no difference in OS with early versus late hormonal manipulation.[28]
  4. Immediate hormonal therapy with goserelin or orchiectomy has also been compared with deferred hormonal therapy for clinical disease progression in a randomized trial (EORTC-30846) of men with regional lymph node involvement but no clinical evidence of metastases (any T, N+, M0). None of the 234 men had a prostatectomy or prostatic radiation therapy.[29][Level of evidence A1]
    • After a median follow-up of 8.7 years, the HR for OS in the deferred versus immediate hormonal therapy arms was 1.23 (95% CI, 0.88–1.71).
    • No statistically significant difference in OS between deferred and immediate hormonal therapy was found, but the trial was underpowered to detect small or modest differences.
  5. Immediate hormonal treatment (e.g., orchiectomy or LH-RH agonist) versus deferred treatment (e.g., watchful waiting with hormonal therapy at progression) was examined in a randomized study in men with locally advanced or asymptomatic metastatic prostate cancer.[30][Level of evidence A1]
    • The initial results showed better OS and prostate–cancer-specific survival with immediate treatment.
    • The incidence of pathological fractures, spinal cord compression, and ureteric obstruction were also lower in the immediate treatment arm.
  6. In another trial, 197 men with stage III or stage IV prostate cancer were randomly assigned to have a bilateral orchiectomy at diagnosis or at the time of symptomatic progression (or at the time of new metastases that were deemed likely to cause symptoms).[31][Level of evidence A1]
    • After 12 years of follow-up, no statistically significant difference was observed in OS.
Luteinizing hormone-releasing hormone (LH-RH) agonists or antiandrogens

Approaches using LH-RH agonists or antiandrogens in patients with stage IV prostate cancer have produced response rates similar to other hormonal treatments.[9,32]

Evidence (LH-RH agonists or antiandrogens):

  1. In a randomized trial, the LH-RH agonist leuprolide (1 mg subcutaneously [SQ] qd) was as effective as DES (3 mg PO qd) in any T, any N, M1 patients, but caused less gynecomastia, nausea and vomiting, and thromboembolisms.[10]
  2. In other randomized studies, the depot LH-RH agonist goserelin was as effective as orchiectomy [11,33,34] or DES at a dose of 3 mg qd.[32] A depot preparation of leuprolide, which is therapeutically equivalent to daily leuprolide, is available as a monthly or 3-monthly depot.
  3. A systematic evidence review compared nonsteroidal antiandrogen monotherapy with surgical or medical castration from 11 randomized trials in 3,060 men with locally advanced, metastatic, or recurrent disease after local therapy.[35] Use of nonsteroidal antiandrogens as monotherapy decreased OS and increased the rate of clinical progression and treatment failure.[35][Level of evidence A1]
  4. A small randomized study comparing 1 mg DES PO tid with 250 mg of flutamide tid in patients with metastatic prostate cancer showed similar response rates with both regimens but superior survival with DES. More cardiovascular and/or thromboembolic toxic effects of borderline statistical significance were associated with DES treatment.[36][Level of evidence A1] A variety of combinations of hormonal therapy have been tested.
Maximal androgen blockade (MAB)

On the basis that the adrenal glands continue to produce androgens after surgical or medical castration, case series studies were performed in which antiandrogen therapy was added to castration. Promising results from the case series led to widespread use of the strategy, known as MAB or total androgen blockade. Subsequent randomized controlled trials, however, cast doubt on the efficacy of adding an antiandrogen to castration.

Evidence (MAB):

  1. In a large, randomized, controlled trial comparing treatment with bilateral orchiectomy plus either the antiandrogen flutamide or placebo, no difference in OS was reported.[37][Level of evidence A1]
    • Although it has been suggested that MAB may improve the more subjective end point of response rate, prospectively assessed QOL was worse in the flutamide arm than in the placebo arm primarily because of more diarrhea and worse emotional function in the flutamide-treated group.[38][Level of evidence A3]
  2. A meta-analysis of 27 randomized trials of 8,275 patients comparing conventional surgical or medical castration with MAB—castration plus prolonged use of an antiandrogen such as flutamide, cyproterone acetate, or nilutamide—did not show a statistically significant improvement in survival associated with MAB.[14][Level of evidence A1]

    When trials of androgen suppression versus androgen suppression plus either nilutamide or flutamide were examined in a subset analysis, the absolute survival rate at 5 years was better for the combined-therapy group (2.9% better, 95% CI, 0.3–5.5); however, when trials of androgen suppression versus androgen suppression plus cyproterone acetate were examined, the absolute survival trend at 5 years was worse for the combined-therapy group (2.8% worse, 95% CI, -7.6 to +2.0).[14]

  3. The Agency for Health Care Policy and Research (now the Agency for Healthcare Research and Quality) performed a systematic review of the available randomized, clinical trial evidence of single hormonal therapies and total androgen blockade performed by its Technology Evaluation Center, an evidence-based Practice Center of the Blue Cross and Blue Shield Association. A meta-analysis of randomized trials comparing various hormonal monotherapies in men with stage III or stage IV prostate cancer (predominantly stage IV) came to the following conclusions:[39][Level of evidence A1]
    • OS at 2 years using any of the LH-RH agonists was similar to treatment with orchiectomy or 3 mg every day of DES (HR, 1.26; 95% CI, 0.92–1.39).
    • Survival rates at 2 years were similar or worse with nonsteroidal antiandrogens compared with orchiectomy (HR, 1.22; 95% CI, 0.99–1.50).
    • Treatment withdrawals, used as a surrogate for adverse effects, occurred less with LH-RH agonists (0%–4%) than with nonsteroidal antiandrogens (4%–10%).

    Total androgen blockade was of no greater benefit than single hormonal therapy and with less patient tolerance. Also, the evidence was judged insufficient to determine whether men newly diagnosed with asymptomatic metastatic disease should have immediate androgen suppression therapy or should have therapy deferred until they have clinical signs or symptoms of progression.[40]

Continuous versus intermittent hormonal therapy

When used as the primary therapy for patients with stage III or stage IV prostate cancer, androgen suppression with hormonal therapy is often given continuously until there is disease progression. Another option is intermittent androgen suppression as a strategy to attain maximal tumor cytoreduction followed by a period without therapy to allow treatment-free periods. It was proposed that this strategy might provide tumor hormone responsiveness for a longer period. An animal model suggested that intermittent androgen deprivation (IAD) could prolong the duration of androgen dependence of hormone-sensitive tumors.[41] However, randomized controlled trials in humans have failed to support the hypothesis that IAD would delay the development of castration-resistant disease. If there are benefits from IAD, they appear to be in the realm of physical and sexual functioning.

Evidence (continuous vs. intermittent hormonal therapy):

  1. A systematic review of 15 randomized trials that compared continuous ADT versus IAD therapy for patients with advanced or recurrent prostate cancer found no significant difference in OS, which was reported in eight of the trials (HR, 1.02; 95% CI, 0.93–1.11); prostate cancer-specific survival, reported in five of the trials (HR, 1.02; 95% CI, 0.87–1.19); or PFS, reported in four of the trials (HR, 0.94; 95% CI, 0.84–1.05). The meta-analysis fulfilled prespecified criteria for noninferiority of OS (upper bound of 1.15 for the HRdeath, 1.15).[42][Level of evidence A1] However, of the 15 trials, all but one had an unclear or high risk of bias according to prespecified criteria.

    • There was minimal difference in patient-reported QOL, but most trials found better physical and sexual functioning in patients in the IAD arms.

Hormonal manipulations with chemotherapy

The addition of chemotherapy has been shown in randomized trials to improve OS compared with ADT alone, with efficacy that appears to be comparable with hormonal therapy, which includes ADT plus abiraterone acetate. However, the two approaches have not been directly compared in a randomized study.

The addition of docetaxel has been tested in combination with long-term hormone therapy in the first-line management of metastatic prostate cancer and has been shown to improve results more than hormone therapy alone. A systematic evidence review and meta-analysis of randomized trials in hormone-sensitive metastatic prostate cancer summarizes these data.[43]

Evidence (hormonal manipulations with chemotherapy):

  1. In the analysis of three randomized trials (3,206 men), the HRdeath associated with the addition of docetaxel to standard of care was 0.77 (95% CI, 0.68–0.87; P < .0001), representing an absolute improvement of 9% in 4-year survival (95% CI, 5–14).[43][Level of evidence A1]
  2. In the CHAARTED trial (NCT00309985), 790 patients with metastatic, hormone-sensitive disease were randomly assigned to receive ADT with or without docetaxel (75 mg/m2 intravenously [IV] every 3 weeks for 6 cycles).[44,45] Previous adjuvant ADT was permissible if it lasted 12 months or less and progression had occurred within 12 months of completion. Patients were prospectively stratified as having a high- versus low-volume disease, with high volume defined as presence of visceral metastases or at least four bone lesions, with at least one lying outside the vertebral column or pelvis. About 65% of patients had high-volume disease by this definition.
    • With a median follow-up of 53.7 months, median OS in the ADT-plus-docetaxel arm was 57.6 months and in the ADT-alone arm, it was 47.2 months (HRdeath, 0.72; 95% CI, 0.59–0.89; P = .0018).[45][Level of evidence A1]
    • The survival advantage was observed only in patients with high-volume disease. In the group with high-volume disease, there was a clear improvement in median OS (61.2 months vs. 34.4 months) (HR, 0.63; 95% CI, 0.50–0.79; P < .001). However, there was no observed difference in survival in men with low-volume disease (median OS, 63.5 months vs. not reached) (HR, 1.04; 95% CI, 0.70–1.55; P = .86). The test for heterogeneity of efficacy was statistically significant (P = .033).
    • Comparison of QOL between the two study groups, as measured by the Functional Assessment of Cancer Therapy-Prostate (FACT-P) scale, was not found to exceed the prospectively defined minimally important difference at any time point over the 12 months of planned assessment.[46]

Bisphosphonates

In addition to hormonal therapy, adjuvant treatment with bisphosphonates has been tested.[47]

Evidence (bisphosphonates):

  1. In MRC-PR05, 311 men with bone metastases who were starting or responding to standard hormonal therapy were randomly assigned to oral sodium clodronate (2,080 mg qd) or a matching placebo for up to 3 years.[47][Level of evidence A1]
    • At a median follow-up of 11.5 years, OS was better in the clodronate arm: HRdeath, 0.77 (95% CI, 0.60–0.98; P = .032).
    • Five- and 10-year survival rates were 30% and 17% in the clodronate arm versus 21% and 9% in the placebo arm.
  2. A parallel study (MRC-PR04) in men with locally advanced but nonmetastatic disease showed no benefit associated with clodronate.
  3. CALGB-90202 [NCT00079001] was a randomized controlled trial that compared zoledronic acid (4 mg IV every 4 weeks) with placebo in 645 men with androgen deprivation-sensitive prostate cancer that was metastatic to bone. Patients who progressed on hormone-therapy resistance received open-label, zoledronic acid.[48][Level of evidence B1]
    • There was no difference between the two study arms in risk of the primary end point of time to skeletal-related events (defined as the need for palliative bone radiation, clinical fracture, spinal cord compression, bone surgery, or death from prostate cancer) after up to 7 years of follow-up.
    • There were also no differences in PFS or OS.
  4. In another negative randomized trial (STAMPEDE [NCT00268476]), 1,245 men with locally advanced (M0) or metastatic (M1) prostate cancer, who were initiating long-term hormonal therapy, were randomly assigned in a 2:1:1 ratio to one of three arms: standard of care, celecoxib (400 mg bid for 1 year), and celecoxib plus zoledronic acid (4 mg IV for six 3-week cycles, then 4-week cycles for 2 years).[49]
    • After a median follow-up of 69 months, there was no detectable improvement in survival associated with either celecoxib or celecoxib plus zoledronic acid.
    • Although survival was better in patients with M disease who received celecoxib plus zoledronic acid than in patients with M1 disease who received the standard of care (HRdeath, 0.78; 95% CI, 0.62–0.98), a formal test for interaction with metastasis status was not statistically significant; therefore, the unexpected finding can only be considered hypothesis-generating.
Bisphosphonates and decreasing risk of bone metastases

Patients with locally advanced nonmetastatic disease (T2–T4, N0–N1, and M0) are at risk of developing bone metastases, and bisphosphonates are being studied as a strategy to decrease this risk. However, a placebo-controlled randomized trial (MRC-PR04) of a 5-year regimen of the first-generation bisphosphonate clodronate in high oral doses (2,080 mg qd) had no favorable impact on either time to symptomatic bone metastasis or survival.[50][Level of evidence A1]

External-beam radiation therapy (EBRT) with or without hormonal therapy

EBRT may be used for attempted cure in highly selected stage M0 patients.[51,52] Definitive radiation therapy should be delayed 4 to 6 weeks after TURP to reduce incidence of stricture.[53]

Hormonal therapy should be considered in addition to EBRT.[40,54]

Evidence (radiation therapy with or without hormonal therapy):

  1. The Blue Cross and Blue Shield Association Technology Evaluation Center, an evidence-based practice center of the Agency for Healthcare Research and Quality (AHRQ), performed a systematic review of the available randomized clinical trial evidence comparing radiation therapy with radiation therapy and prolonged androgen suppression.[40][Level of evidence A1] Some patients with bulky T2b tumors were included in the studied groups.
    • The meta-analysis found a difference in 5-year OS in favor of radiation therapy plus continued androgen suppression using an LH-RH agonist or orchiectomy compared with radiation therapy alone (HR, 0.63; 95% CI, 0.48–0.83).
  2. In a randomized, prospective clinical trial, 18 months of androgen suppression with an LH-RH agonist appears to have provided results that were similar to 36 months with respect to OS and disease-specific survival.[55][Level of evidence A1] In the trial, 630 men with stage II to stage IVA cancer (clinical stage T3–T4, or PSA >20 ng/ml, or Gleason score >7) received 70 Gy of radiation in 35 fractions alone plus a total of either 18 or 36 months of goserelin acetate.
    • With a median follow-up of 9.4 years, OS was nearly identical in each study arm (62% at 10 years; HRdeath, 1.02; 95% CI, 0.81–1.29, P = .8), as was prostate cancer–specific survival (HRprostate death, 0.95; 95% CI, 0.58–1.55, P = .8).
    • Global quality of life was nearly identical on both study arms, but sexual activity and interest in sex was moderately better in the 18-month arm.[55][Level of evidence A3]
  3. The optimal duration of neoadjuvant hormonal therapy has been studied. In a randomized trial (TROG 96.01 [ACTRN12607000237482]) of 818 men with locally advanced (T2b, T2c, T3, and T4), nonmetastatic cancer treated with radiation therapy (i.e., 66 Gy in 2 Gy daily fractions to the prostate and seminal vesicles but not including regional nodes). Patients were randomly assigned to radiation therapy alone, 3 months of neoadjuvant androgen deprivation therapy (NADT) (goserelin 3.6 mg SQ each month plus flutamide 250 mg PO tid) for 2 months before and during radiation, or 6 months of NADT for 5 months before and during radiation.[54][Level of evidence A1]
    • After a median follow-up of 10.6 years, there were no statistically significant differences between the radiation alone group and the radiation plus 3 months of NADT group.
    • However, the 6-month NADT arm showed better prostate cancer-specific mortality and overall mortality than radiation alone; 10-year all-cause mortality 29.2% versus 42.5% (HR, 0.63; 95% CI, 0.48–0.83, P = .0008).
  4. The duration of neoadjuvant hormonal therapy was tested in another trial (RTOG-9910 [NCT00005044]) of 1,489 eligible men with intermediate-risk prostate cancer (T1b–4, Gleason score 2–6, and PSA >10 but ≤100 ng/mL; T1b–4, Gleason score 7, and PSA <20; or T1b–1c, Gleason score 8–10, and PSA <20) and no evidence of metastases. The men were randomly assigned to receive short-course neoadjuvant–androgen suppression (an LH-RH agonist plus bicalutamide or flutamide for 8 weeks before and 8 weeks during radiation therapy) or long-course neoadjuvant-androgen suppression (28 weeks before and 8 weeks during radiation therapy). Both groups received 70.2 Gy radiation in 39 daily fractions to the prostate and 46.8 Gy to the iliac lymph nodes.[56][Level of evidence A1]
    • After a median of 9.4 years, 10-year prostate specific mortality, the primary end point, was low in both study arms: 5% versus 4% (HR, 0.81; 95% CI, 0.48–1.39).[56][Level of evidence A1]
    • No statistically significant differences in overall mortality or in locoregional disease progression were found.[56][Level of evidence A1]
    • There was also no apparent differential effect of androgen suppression duration among any of the risk-group subsets.

Palliative radiation therapy

A single fraction of 8 Gy has been shown to have similar benefits on bone pain relief and QOL as multiple fractions (3 Gy × 10) as was evidenced in the RTOG-9714 trial (NCT00003162).[57]; [58][Level of evidence A3] For more information, see Cancer Pain.

Palliative surgery with transurethral resection of the prostate (TURP)

Transurethral resection of the prostate may be useful in relieving urinary obstruction as part of palliative care in advanced prostate cancer.

Watchful waiting or active surveillance/active monitoring

Careful observation without further immediate treatment (in selected asymptomatic patients).[59]

Radical prostatectomy with immediate orchiectomy

An uncontrolled, retrospective review of a large series of patients with any T, N1–3, M0 disease treated at the Mayo Clinic with concurrent radical prostatectomy and orchiectomy was associated with intervals to local and distant progression; however, increase in OS has not been demonstrated.[60] Patient selection factors make such study designs difficult to interpret.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Prostate. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp. 715–26.
  2. Dearnaley DP, Sydes MR, Mason MD, et al.: A double-blind, placebo-controlled, randomized trial of oral sodium clodronate for metastatic prostate cancer (MRC PR05 Trial). J Natl Cancer Inst 95 (17): 1300-11, 2003. [PUBMED Abstract]
  3. Fizazi K, Tran N, Fein L, et al.: Abiraterone plus Prednisone in Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med 377 (4): 352-360, 2017. [PUBMED Abstract]
  4. Chi KN, Protheroe A, Rodríguez-Antolín A, et al.: Patient-reported outcomes following abiraterone acetate plus prednisone added to androgen deprivation therapy in patients with newly diagnosed metastatic castration-naive prostate cancer (LATITUDE): an international, randomised phase 3 trial. Lancet Oncol 19 (2): 194-206, 2018. [PUBMED Abstract]
  5. James ND, de Bono JS, Spears MR, et al.: Abiraterone for Prostate Cancer Not Previously Treated with Hormone Therapy. N Engl J Med 377 (4): 338-351, 2017. [PUBMED Abstract]
  6. Chi KN, Agarwal N, Bjartell A, et al.: Apalutamide for Metastatic, Castration-Sensitive Prostate Cancer. N Engl J Med 381 (1): 13-24, 2019. [PUBMED Abstract]
  7. Davis ID, Martin AJ, Stockler MR, et al.: Enzalutamide with Standard First-Line Therapy in Metastatic Prostate Cancer. N Engl J Med 381 (2): 121-131, 2019. [PUBMED Abstract]
  8. Scott WW, Menon M, Walsh PC: Hormonal therapy of prostatic cancer. Cancer 45 (7 Suppl): 1929-36, 1980. [PUBMED Abstract]
  9. Parmar H, Edwards L, Phillips RH, et al.: Orchiectomy versus long-acting D-Trp-6-LHRH in advanced prostatic cancer. Br J Urol 59 (3): 248-54, 1987. [PUBMED Abstract]
  10. Leuprolide versus diethylstilbestrol for metastatic prostate cancer. The Leuprolide Study Group. N Engl J Med 311 (20): 1281-6, 1984. [PUBMED Abstract]
  11. Peeling WB: Phase III studies to compare goserelin (Zoladex) with orchiectomy and with diethylstilbestrol in treatment of prostatic carcinoma. Urology 33 (5 Suppl): 45-52, 1989. [PUBMED Abstract]
  12. Sharifi R, Soloway M: Clinical study of leuprolide depot formulation in the treatment of advanced prostate cancer.The Leuprolide Study Group. J Urol 143 (1): 68-71, 1990. [PUBMED Abstract]
  13. Crawford ED, Eisenberger MA, McLeod DG, et al.: A controlled trial of leuprolide with and without flutamide in prostatic carcinoma. N Engl J Med 321 (7): 419-24, 1989. [PUBMED Abstract]
  14. Maximum androgen blockade in advanced prostate cancer: an overview of the randomised trials. Prostate Cancer Trialists’ Collaborative Group. Lancet 355 (9214): 1491-8, 2000. [PUBMED Abstract]
  15. Matzkin H, Eber P, Todd B, et al.: Prognostic significance of changes in prostate-specific markers after endocrine treatment of stage D2 prostatic cancer. Cancer 70 (9): 2302-9, 1992. [PUBMED Abstract]
  16. Cassileth BR, Soloway MS, Vogelzang NJ, et al.: Patients’ choice of treatment in stage D prostate cancer. Urology 33 (5 Suppl): 57-62, 1989. [PUBMED Abstract]
  17. Byar DP: Proceedings: The Veterans Administration Cooperative Urological Research Group’s studies of cancer of the prostate. Cancer 32 (5): 1126-30, 1973. [PUBMED Abstract]
  18. Karling P, Hammar M, Varenhorst E: Prevalence and duration of hot flushes after surgical or medical castration in men with prostatic carcinoma. J Urol 152 (4): 1170-3, 1994. [PUBMED Abstract]
  19. Small EJ, Vogelzang NJ: Second-line hormonal therapy for advanced prostate cancer: a shifting paradigm. J Clin Oncol 15 (1): 382-8, 1997. [PUBMED Abstract]
  20. Scher HI, Kelly WK: Flutamide withdrawal syndrome: its impact on clinical trials in hormone-refractory prostate cancer. J Clin Oncol 11 (8): 1566-72, 1993. [PUBMED Abstract]
  21. Sartor O, Cooper M, Weinberger M, et al.: Surprising activity of flutamide withdrawal, when combined with aminoglutethimide, in treatment of “hormone-refractory” prostate cancer. J Natl Cancer Inst 86 (3): 222-7, 1994. [PUBMED Abstract]
  22. Small EJ, Srinivas S: The antiandrogen withdrawal syndrome. Experience in a large cohort of unselected patients with advanced prostate cancer. Cancer 76 (8): 1428-34, 1995. [PUBMED Abstract]
  23. Tannock I, Gospodarowicz M, Meakin W, et al.: Treatment of metastatic prostatic cancer with low-dose prednisone: evaluation of pain and quality of life as pragmatic indices of response. J Clin Oncol 7 (5): 590-7, 1989. [PUBMED Abstract]
  24. Boustead G, Edwards SJ: Systematic review of early vs deferred hormonal treatment of locally advanced prostate cancer: a meta-analysis of randomized controlled trials. BJU Int 99 (6): 1383-9, 2007. [PUBMED Abstract]
  25. Messing EM, Manola J, Sarosdy M, et al.: Immediate hormonal therapy compared with observation after radical prostatectomy and pelvic lymphadenectomy in men with node-positive prostate cancer. N Engl J Med 341 (24): 1781-8, 1999. [PUBMED Abstract]
  26. Eisenberger MA, Walsh PC: Early androgen deprivation for prostate cancer? N Engl J Med 341 (24): 1837-8, 1999. [PUBMED Abstract]
  27. Messing EM, Manola J, Yao J, et al.: Immediate versus deferred androgen deprivation treatment in patients with node-positive prostate cancer after radical prostatectomy and pelvic lymphadenectomy. Lancet Oncol 7 (6): 472-9, 2006. [PUBMED Abstract]
  28. Lawton CA, Winter K, Grignon D, et al.: Androgen suppression plus radiation versus radiation alone for patients with stage D1/pathologic node-positive adenocarcinoma of the prostate: updated results based on national prospective randomized trial Radiation Therapy Oncology Group 85-31. J Clin Oncol 23 (4): 800-7, 2005. [PUBMED Abstract]
  29. Schröder FH, Kurth KH, Fosså SD, et al.: Early versus delayed endocrine treatment of pN1-3 M0 prostate cancer without local treatment of the primary tumor: results of European Organisation for the Research and Treatment of Cancer 30846–a phase III study. J Urol 172 (3): 923-7, 2004. [PUBMED Abstract]
  30. Immediate versus deferred treatment for advanced prostatic cancer: initial results of the Medical Research Council Trial. The Medical Research Council Prostate Cancer Working Party Investigators Group. Br J Urol 79 (2): 235-46, 1997. [PUBMED Abstract]
  31. Studer UE, Hauri D, Hanselmann S, et al.: Immediate versus deferred hormonal treatment for patients with prostate cancer who are not suitable for curative local treatment: results of the randomized trial SAKK 08/88. J Clin Oncol 22 (20): 4109-18, 2004. [PUBMED Abstract]
  32. Waymont B, Lynch TH, Dunn JA, et al.: Phase III randomised study of zoladex versus stilboestrol in the treatment of advanced prostate cancer. Br J Urol 69 (6): 614-20, 1992. [PUBMED Abstract]
  33. Vogelzang NJ, Chodak GW, Soloway MS, et al.: Goserelin versus orchiectomy in the treatment of advanced prostate cancer: final results of a randomized trial. Zoladex Prostate Study Group. Urology 46 (2): 220-6, 1995. [PUBMED Abstract]
  34. Kaisary AV, Tyrrell CJ, Peeling WB, et al.: Comparison of LHRH analogue (Zoladex) with orchiectomy in patients with metastatic prostatic carcinoma. Br J Urol 67 (5): 502-8, 1991. [PUBMED Abstract]
  35. Kunath F, Grobe HR, Rücker G, et al.: Non-steroidal antiandrogen monotherapy compared with luteinising hormone-releasing hormone agonists or surgical castration monotherapy for advanced prostate cancer. Cochrane Database Syst Rev (6): CD009266, 2014. [PUBMED Abstract]
  36. Chang A, Yeap B, Davis T, et al.: Double-blind, randomized study of primary hormonal treatment of stage D2 prostate carcinoma: flutamide versus diethylstilbestrol. J Clin Oncol 14 (8): 2250-7, 1996. [PUBMED Abstract]
  37. Eisenberger MA, Blumenstein BA, Crawford ED, et al.: Bilateral orchiectomy with or without flutamide for metastatic prostate cancer. N Engl J Med 339 (15): 1036-42, 1998. [PUBMED Abstract]
  38. Moinpour CM, Savage MJ, Troxel A, et al.: Quality of life in advanced prostate cancer: results of a randomized therapeutic trial. J Natl Cancer Inst 90 (20): 1537-44, 1998. [PUBMED Abstract]
  39. Seidenfeld J, Samson DJ, Hasselblad V, et al.: Single-therapy androgen suppression in men with advanced prostate cancer: a systematic review and meta-analysis. Ann Intern Med 132 (7): 566-77, 2000. [PUBMED Abstract]
  40. Seidenfeld J, Samson DJ, Aronson N, et al.: Relative effectiveness and cost-effectiveness of methods of androgen suppression in the treatment of advanced prostate cancer. Evid Rep Technol Assess (Summ) (4): i-x, 1-246, I1-36, passim, 1999. [PUBMED Abstract]
  41. Calais da Silva FE, Bono AV, Whelan P, et al.: Intermittent androgen deprivation for locally advanced and metastatic prostate cancer: results from a randomised phase 3 study of the South European Uroncological Group. Eur Urol 55 (6): 1269-77, 2009. [PUBMED Abstract]
  42. Magnan S, Zarychanski R, Pilote L, et al.: Intermittent vs Continuous Androgen Deprivation Therapy for Prostate Cancer: A Systematic Review and Meta-analysis. JAMA Oncol 1 (9): 1261-9, 2015. [PUBMED Abstract]
  43. Vale CL, Burdett S, Rydzewska LH, et al.: Addition of docetaxel or bisphosphonates to standard of care in men with localised or metastatic, hormone-sensitive prostate cancer: a systematic review and meta-analyses of aggregate data. Lancet Oncol 17 (2): 243-56, 2016. [PUBMED Abstract]
  44. Sweeney CJ, Chen YH, Carducci M, et al.: Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer. N Engl J Med 373 (8): 737-46, 2015. [PUBMED Abstract]
  45. Kyriakopoulos CE, Chen YH, Carducci MA, et al.: Chemohormonal Therapy in Metastatic Hormone-Sensitive Prostate Cancer: Long-Term Survival Analysis of the Randomized Phase III E3805 CHAARTED Trial. J Clin Oncol 36 (11): 1080-1087, 2018. [PUBMED Abstract]
  46. Morgans AK, Chen YH, Sweeney CJ, et al.: Quality of Life During Treatment With Chemohormonal Therapy: Analysis of E3805 Chemohormonal Androgen Ablation Randomized Trial in Prostate Cancer. J Clin Oncol 36 (11): 1088-1095, 2018. [PUBMED Abstract]
  47. Dearnaley DP, Mason MD, Parmar MK, et al.: Adjuvant therapy with oral sodium clodronate in locally advanced and metastatic prostate cancer: long-term overall survival results from the MRC PR04 and PR05 randomised controlled trials. Lancet Oncol 10 (9): 872-6, 2009. [PUBMED Abstract]
  48. Smith MR, Halabi S, Ryan CJ, et al.: Randomized controlled trial of early zoledronic acid in men with castration-sensitive prostate cancer and bone metastases: results of CALGB 90202 (alliance). J Clin Oncol 32 (11): 1143-50, 2014. [PUBMED Abstract]
  49. Mason MD, Clarke NW, James ND, et al.: Adding Celecoxib With or Without Zoledronic Acid for Hormone-Naïve Prostate Cancer: Long-Term Survival Results From an Adaptive, Multiarm, Multistage, Platform, Randomized Controlled Trial. J Clin Oncol 35 (14): 1530-1541, 2017. [PUBMED Abstract]
  50. Mason MD, Sydes MR, Glaholm J, et al.: Oral sodium clodronate for nonmetastatic prostate cancer–results of a randomized double-blind placebo-controlled trial: Medical Research Council PR04 (ISRCTN61384873). J Natl Cancer Inst 99 (10): 765-76, 2007. [PUBMED Abstract]
  51. Bagshaw MA: External radiation therapy of carcinoma of the prostate. Cancer 45 (7 Suppl): 1912-21, 1980. [PUBMED Abstract]
  52. Ploysongsang S, Aron BS, Shehata WM, et al.: Comparison of whole pelvis versus small-field radiation therapy for carcinoma of prostate. Urology 27 (1): 10-6, 1986. [PUBMED Abstract]
  53. Seymore CH, el-Mahdi AM, Schellhammer PF: The effect of prior transurethral resection of the prostate on post radiation urethral strictures and bladder neck contractures. Int J Radiat Oncol Biol Phys 12 (9): 1597-600, 1986. [PUBMED Abstract]
  54. Denham JW, Steigler A, Lamb DS, et al.: Short-term neoadjuvant androgen deprivation and radiotherapy for locally advanced prostate cancer: 10-year data from the TROG 96.01 randomised trial. Lancet Oncol 12 (5): 451-9, 2011. [PUBMED Abstract]
  55. Nabid A, Carrier N, Martin AG, et al.: Duration of Androgen Deprivation Therapy in High-risk Prostate Cancer: A Randomized Phase III Trial. Eur Urol 74 (4): 432-441, 2018. [PUBMED Abstract]
  56. Pisansky TM, Hunt D, Gomella LG, et al.: Duration of androgen suppression before radiotherapy for localized prostate cancer: radiation therapy oncology group randomized clinical trial 9910. J Clin Oncol 33 (4): 332-9, 2015. [PUBMED Abstract]
  57. Kaasa S, Brenne E, Lund JA, et al.: Prospective randomised multicenter trial on single fraction radiotherapy (8 Gy x 1) versus multiple fractions (3 Gy x 10) in the treatment of painful bone metastases. Radiother Oncol 79 (3): 278-84, 2006. [PUBMED Abstract]
  58. Chow E, Harris K, Fan G, et al.: Palliative radiotherapy trials for bone metastases: a systematic review. J Clin Oncol 25 (11): 1423-36, 2007. [PUBMED Abstract]
  59. Stattin P, Holmberg E, Johansson JE, et al.: Outcomes in localized prostate cancer: National Prostate Cancer Register of Sweden follow-up study. J Natl Cancer Inst 102 (13): 950-8, 2010. [PUBMED Abstract]
  60. Zincke H: Extended experience with surgical treatment of stage D1 adenocarcinoma of prostate. Significant influences of immediate adjuvant hormonal treatment (orchiectomy) on outcome. Urology 33 (5 Suppl): 27-36, 1989. [PUBMED Abstract]

Treatment of Recurrent Hormone-Sensitive or Hormone-Resistant Prostate Cancer

Overview

In recurrent hormone-sensitive or hormone-resistant prostate cancer, the selection of further treatment depends on many factors, including:

  • Previous treatment.
  • Site of recurrence.
  • Coexistent illnesses.
  • Individual patient considerations.

Definitive radiation therapy can be given to patients with disease that fails only locally after prostatectomy.[14] A randomized trial (RTOG-9601 [NCT00002874]) has shown improved overall survival (OS) and prostate–cancer-specific survival with the addition of high-dose bicalutamide to radiation therapy compared with radiation therapy alone in men with locally recurrent prostate cancer after radical prostatectomy.[5]

  • In the trial, 760 men who were initially treated with radical prostatectomy for tumor stage T2 or T3, and who had a detectable prostate-specific antigen (PSA) level of 0.2 to 4.0 ng/mL, but no evidence of metastases, were randomly assigned to receive radiation (64.8 Gy over 36 fractions) and either bicalutamide (150 mg PO qd) or placebo for 24 months. The median interval from surgery to PSA detectability was 1.4 years and from surgery to randomization was 2.1 years. Median follow-up was 13 years.
  • Actuarial OS at 12 years was 76.3% in the bicalutamide group versus 71.3% in the placebo group (hazard ratio [HR], 0.77; 95% confidence interval [CI], 0.59–0.99; P = .04).[5][Level of evidence A1]
  • Prostate–cancer-specific mortality at 12 years was 5.8% (bicalutamide) versus 13.4% (placebo), (HR, 0.49; 95% CI, 0.32–0.74; P < .001).[5][Level of evidence A1]
  • Most treatment-related toxicities were similar between the two groups, except for gynecomastia, which occurred in 69.7% of the men who received bicalutamide versus 10.9% of those who received placebo. This side effect may be mitigated by prophylactic breast irradiation, which was not used in this study because of the double-blinded design.

Some patients with a local recurrence after definitive radiation therapy can undergo salvage prostatectomy.[6] However, only about 10% of patients treated initially with radiation therapy will have local relapse only. In these patients, prolonged disease control is often possible with hormonal therapy, with median cancer-specific survival of 6 years after local failure.[7]

Cryosurgical ablation of recurrence after radiation therapy is frequently associated with a high complication rate. This technique is still undergoing clinical evaluation.[8]

Hormonal therapy is used to manage most relapsing patients with disseminated disease who initially received locoregional therapy with surgery or radiation therapy. For more information, see the Treatment Options for Stage IV Prostate Cancer section.

Immediate Versus Deferred Hormonal Therapy

For more information on the use of immediate hormonal therapy (bicalutamide or luteinizing hormone-releasing hormone [LH-RH] agonists) plus radiation in patients with locally recurrent prostate cancer after radical prostatectomy, see the Treatment Option Overview for Prostate Cancer section.

PSA is often used to monitor patients after initial therapy with curative intent, and elevated or rising PSA is a common trigger for additional therapy even in asymptomatic men. Despite how common the situation is, it is not clear whether additional treatments given because of rising PSA in asymptomatic men with prostate cancer increase OS. The quality of evidence is limited.

  1. After radical prostatectomy, detectable PSA levels identify patients at elevated risk of local treatment failure or metastatic disease;[9] however, a substantial proportion of patients with elevated or rising PSA levels after initial therapy with curative intent may remain clinically free of symptoms for extended periods.[10] In a retrospective analysis of nearly 2,000 men who had undergone radical prostatectomy with curative intent and who were followed for a mean of 5.3 years, 315 men (15%) demonstrated an abnormal PSA of 0.2 ng/mL or higher, which is evidence of biochemical recurrence.[11]
    • Of these 315 men, 103 men (34%) developed clinical evidence of recurrence.
    • The median time to development of clinical metastasis after biochemical recurrence was 8 years.
    • After the men developed metastatic disease, the median time to death was an additional 5 years.
  2. After radiation therapy with curative intent, persistently elevated or rising PSA may be a prognostic factor for clinical disease recurrence. However, reported case series have used a variety of definitions of PSA failure. Criteria have been developed by the American Society for Therapeutic Radiology and Oncology Consensus Panel.[12,13] The implication of the various definitions of PSA failure for OS is not known, and as in the surgical series, many biochemical relapses (rising PSA alone) may not be clinically manifested in patients treated with radiation therapy.[14,15]
  3. A randomized trial (PMCC-VCOG-PR-0103 [NCT00110162]) of androgen deprivation therapy (ADT) in men who received curative therapy but had a rising PSA, provided some evidence of improved OS associated with immediate versus delayed therapy.[16] The study had important shortcomings.
    1. Two groups of men were randomly assigned to open-label, immediate-versus-delayed (at least 2-year delay) ADT:
      • Group 1 included men who had a PSA relapse after curative therapy (89% of the study population).
      • Group 2 included asymptomatic men who were considered unsuitable for curative treatment because of age, comorbidity, or locally advanced disease (11% of the study population).

      Planned accrual was 750 patients, but because of slow accrual, the trial closed at 293 patients.

    2. In groups 1 and 2 combined, with a median follow-up of 5 years, the 5-year OS rate was 86.4% in the delayed ADT study arm versus 91.2% in the immediate ADT study arm (log-rank P = .047).[16][Level of evidence A1] After full adjustment for baseline characteristics, the HR for OS was 0.54 (95% CI, 0.27–1.06; P = .074).
    3. For group 1 only (those with PSA relapse after curative therapy, N = 261), the estimated 5-year survival rate was 78.2% versus 84.3% with delayed-versus-immediate ADT (log-rank P = .10; fully adjusted HR, 0.59; 95% CI, 0.26–1.30, P = .19).
    4. Toxicity was greater in the immediate ADT study arm compared with delayed therapy. Serious (grade 4) adverse events were reported in 42% of patients in the immediate ADT study arm versus 31% of patients in the delayed therapy arm. Quality of life (QOL) fell by 6.1% (considered a small but clinically important drop) with immediate ADT versus 3% with delayed ADT (considered a trivial drop); this was not a statistically significant difference (P = .14).[16] Sexual activity was lower and hormone-related symptoms (hot flashes and sore or enlarged nipples) were clinically and statistically significantly worse in the immediate ADT arm compared with the delayed therapy arm.[17]

Hormonal Therapy for Recurring Disease

Continuous versus intermittent hormonal therapy

Most men who are treated for recurrence after initial local therapy are asymptomatic, and the recurrence is detected by a rising PSA. It is possible that intermittent androgen deprivation (IAD) therapy can be used as an alternative to continuous ADT (CAD) to improve QOL and decrease the amount of time during which the patient experiences the side effects of hormonal therapy, without decreasing the survival rate.

  1. This important clinical question was addressed in a noninferiority-designed, randomized, controlled trial with 1,386 men who had rising PSA levels (>3 ng/mL, with serum testosterone >5 nmol/L) more than 1 year after primary or salvage radiation therapy for localized prostate cancer.[18][Levels of evidence A1 and A3]
    • The ADT arm consisted of 8-month treatment cycles with an LH-RH agonist (combined with a nonsteroidal antiandrogen for at least the first 4 weeks) that was reinstituted if the PSA level exceeded 10 ng/mL. The study was powered to detect (with 95% confidence) an 8% lower OS rate in the IAD group compared with the CAD group at 7 years.
    • After a median follow-up of 6.9 years (maximum follow-up, 11.2 years), OS in the two groups was nearly identical, and the study was stopped (median survival, 8.8 vs. 9.1 years; HRdeath, 1.02; 95% CI, 0.86–1.21). This fulfilled the prospective criterion of noninferiority.
    • In a retrospective analysis, prostate–cancer-specific mortality was also similar in the two arms (HR, 1.18; 95% CI, 0.90–1.55; P = .24). In addition, IAD was statistically significantly better than CAD in several QOL domains, such as hot flashes, desire for sexual activity, and urinary symptoms. Patients on the IAD study arm received a median of 15.4 months of treatment versus 43.9 months on the CAD arm.
    • The study did not address whether the initiation of any ADT for an elevated PSA after initial local therapy extends survival compared with delay until clinically symptomatic progression. Of note, 59% of all deaths were unrelated to prostate cancer, and 14% of all patients died of prostate cancer.
  2. A systematic review evaluated 15 randomized trials that compared CAD versus IAD therapy for patients with advanced or recurrent prostate cancer. There was no significant difference in OS, which was reported in eight of the trials (HR, 1.02; 95% CI, 0.93–1.11); prostate–cancer-specific survival, reported in five of the trials (HR, 1.02; 95% CI, 0.87–1.19); or progression-free survival (PFS), reported in four of the trials (HR, 0.94; 95% CI, 0.84–1.05). The meta-analysis fulfilled prespecified criteria for noninferiority of OS (upper bound of 1.15 for the HR of 1.15).[19][Level of evidence A1] However, of the 15 trials, all but one had an unclear or high risk of bias according to prespecified criteria.
    • There was minimal difference in patient-reported QOL, but most trials found better physical and sexual functioning in patients in the IAD arms.

Nonsteroidal antiandrogen therapy with or without androgen deprivation therapy

Enzalutamide was tested with or without leuprolide in patients with clinically nonmetastatic, hormone–sensitive prostate cancer with high-risk biochemical recurrence (defined as a PSA doubling time ≤9 months and a PSA >2 ng/mL above nadir after radiation therapy, or PSA >1 ng/mL after radical prostatectomy with or without postoperative radiation therapy; M0 by conventional imaging). [Note: In practice, it is recommended that these patients undergo staging with prostate-specific membrane antigen (PSMA) positron emission tomography–computed tomography.]

  1. The phase III EMBARK trial (NCT02319837) included 1,068 men. Patients had received prior definitive therapy with radical prostatectomy and/or radiation therapy with curative intent, had a rapidly rising PSA, and were not candidates for salvage pelvic-directed therapy. Patients were randomly assigned in a 1:1:1 ratio to receive blinded enzalutamide (160 mg PO qd) with leuprolide, blinded placebo (PO qd) plus leuprolide, or open-label single-agent enzalutamide (160 mg PO qd).[20]
    • After a follow-up of 60.7 months, the enzalutamide-leuprolide combination was superior to leuprolide monotherapy for the primary end point of 5-year metastasis-free survival (87.3% vs. 71.4%; HR, 0.42; 95% CI, 0.30–0.61; P < .001). After a follow-up of 60.7 months, enzalutamide monotherapy was superior to leuprolide monotherapy for a key secondary end point of 5-year metastasis-free survival (80.0% vs. 71.4%; HR, 0.63; 95% CI, 0.46–0.87; P < .005).[20][Level of evidence B1]
    • OS data were not mature, but at the time of the report, 12% of deaths were in the overall population, 3.4% were in the enzalutamide-leuprolide combination group, 6.1% were in the leuprolide monotherapy group, and 5.4% were in the enzalutamide monotherapy group.
    • Treatment suspension in all arms occurred at 36 weeks if PSA reached undetectable levels (<0.2 ng/mL). Treatment could be restarted per assigned treatment arms when the PSA increased to >2.0 ng/mL for patients who had a prior prostatectomy, or >5.0 ng/mL for patients who had prior primary radiation therapy. In the enzalutamide-leuprolide combination group, 90.9% of patients had treatment suspended for a median of 20.2 months. In the leuprolide monotherapy arm, 67.8% of patients had treatment suspended for a median of 16.8 months. In the enzalutamide monotherapy arm, 85.9% of patients had treatment suspended for a median of 11.1 months.
    • There was no substantial between-group differences in QOL measures.
    • No new safety signals were reported.
    • Grade 3 or higher toxicities for any adverse event were 46.5% in the enzalutamide-leuprolide combination group, 42.7% in the leuprolide monotherapy group, and 50.0% in the enzalutamide monotherapy group.
    • The most common adverse events in the combination group and leuprolide monotherapy group were hot flashes and fatigue. The most common adverse events in the enzalutamide monotherapy group were gynecomastia, hot flashes, and fatigue.
    • Adverse events of special interest included fractures, cognitive and memory impairment, and seizures. Fractures occurred in 18.4% of patients in the combination group, 13.6% of patients in the leuprolide monotherapy group, and 11% of the patients in the enzalutamide monotherapy group. Cognitive and memory impairment occurred in 15% of patients in the combination group, 6.5% of patients in the leuprolide monotherapy group, and 14.1% of patients in the enzalutamide monotherapy group. Seizures occurred in 1.1% of patients in the combination group, 0% of patients in the leuprolide monotherapy group, and 0.8% of patients in the enzalutamide monotherapy group.

Nonsteroidal antiandrogen monotherapy versus surgical or medical castration

A systematic evidence review compared nonsteroidal antiandrogen monotherapy with surgical or medical castration from 11 randomized trials in 3,060 men with locally advanced, metastatic, or recurrent disease after local therapy.[21] The use of nonsteroidal antiandrogens as monotherapy decreased OS and increased the rate of clinical progression and treatment failure.[21][Level of evidence A1]

Hormonal approaches

As noted above, studies have shown that chemotherapy with docetaxel or cabazitaxel and immunotherapy with sipuleucel-T can prolong OS in patients with hormone-sensitive or hormone-resistant metastatic prostate cancer. Nevertheless, hormonal therapy has also been shown to improve survival even in men who have progressed after other forms of hormonal therapy as well as chemotherapy. Some forms of hormonal therapy are effective in the management of metastatic hormone-refractory prostate cancer.

Because there are no head-to-head comparisons, there are no trials to help decide which of these agents should be used first or in what sequence they should be used.

Even among patients with metastatic hormone-refractory prostate cancer, some heterogeneity is found in prognosis and in retained hormone sensitivity. In such patients who have symptomatic bone disease, several factors are associated with worsened prognosis: poor performance status, elevated alkaline phosphatase, abnormal serum creatinine, and short (<1 year) previous response to hormonal therapy.[22] The absolute level of PSA at the initiation of therapy in relapsed or hormone-refractory patients has not shown prognostic significance.[23]

Some patients whose disease has progressed on combined androgen blockade can respond to a variety of second-line hormonal therapies. Aminoglutethimide, hydrocortisone, flutamide withdrawal, progesterone, ketoconazole, and combinations of these therapies have produced PSA responses in 14% to 60% of patients and have also produced clinical responses of 0% to 25% when assessed. The duration of these PSA responses has ranged from 2 to 4 months.[24] Survival rates are similar whether ketoconazole plus hydrocortisone is initiated at the same time as antiandrogen (e.g., flutamide, bicalutamide, or nilutamide) withdrawal or when PSA has risen after an initial trial of antiandrogen withdrawal, as seen in the CLB-9583 trial (NCT00002760).[25][Level of evidence A1] There are conflicting data on whether PSA changes in men undergoing chemotherapy are predictive of survival.[23,26]

Patients treated with either luteinizing-hormone agonists or estrogens as primary therapy are generally maintained with castrate levels of testosterone. One study from the Eastern Cooperative Oncology Group (ECOG) showed that a superior survival resulted when patients were maintained on primary androgen deprivation;[9] however, another study from SWOG (formerly the Southwest Oncology Group) did not show an advantage to continued androgen blockade.[27]

Evidence (hormonal approaches for castration-resistant progressive disease with no previous chemotherapy):

  1. Abiraterone acetate is an inhibitor of androgen biosynthesis that works by blocking cytochrome P450c17 (CYP17). Abiraterone has mineralocorticoid effects, producing an increased incidence of fluid retention and edema, hypokalemia, hypertension, and cardiac dysfunction. In addition, abiraterone is associated with hepatotoxicity.[28] However, compared with other therapies, abiraterone toxicities are mild. In a double-blinded placebo-controlled trial, 1,088 men with progressing hormone-refractory disease (serum testosterone <50 ng per deciliter on previous antiandrogen therapy), no previous chemotherapy, and ECOG performance status (PS) 0 to 1 were given prednisone (5 mg PO bid) plus either abiraterone acetate (1,000 mg PO qd) or placebo.[29,30][Level of evidence A1] The coprimary end points were radiological PFS and OS. Four sequential analyses were planned.
    • At the second interim analysis, after a median follow-up of 22.2 months, the study was stopped and unblinded because of aggregate efficacy and safety as assessed by the data monitoring committee. At that point, the radiological PFS had reached the prespecified stopping boundary in favor of abiraterone (median PFS, 16.5 months vs. 8.3 months; HR, 0.53; 95% CI, 0.45–0.62; P < .001).
    • At the fourth (and final) analysis with a median follow-up of 49.2 months (maximum 60 months), 65% of patients in the abiraterone-acetate study arm had died, and 71% of patients in the placebo study arm had died (HR, 0.81; 95% CI, 0.70–0.93; P = .033). Median OS was 34.7 versus 30.3 months.[30][Level of evidence A1]
    • Median time to health-related QOL deterioration was long in the abiraterone study arm, as assessed by the Functional Assessment of Cancer Therapy-Prostate Version 4 (FACT-P) total score (12.7 months vs. 8.3 months; HR, 0.78; 95% CI, 0.66-0.92; P = .003) and by the prostate–cancer-specific subscale (11.1 months vs. 5.8 months; HR, 0.70; 95% CI, 0.60–0.83; P < .0001).[31][Level of evidence A3]
    • In addition, patients in the abiraterone study group had statistically significant longer median times to opiate use for pain, initiation of cytotoxic chemotherapy, decline in PS, and PSA progression.[29,31][Levels of evidence A3 and B1]
  2. Enzalutamide, an androgen receptor antagonist, has been shown to increase OS and QOL in men with metastatic prostate cancer that has progressed despite ADT. In the PREVAIL study (NCT01212991), 1,717 asymptomatic or mildly symptomatic men with recurrent metastatic prostate cancer despite ADT were randomly assigned to receive either enzalutamide (160 mg PO qd) or placebo.[3234][Levels of evidence A1 and A3]
    • After a median follow-up of 22 months, the study was stopped because of an OS benefit in the enzalutamide study arm (HR, 0.72; 95% CI, 0.6–0.84; P < .001). The proportion of men who had died was 28% versus 35%, and the median OS was 32.4 versus 30.2 months.
    • Median time until decline in global QOL, measured by the FACT-P score, was 11.3 months in the enzalutamide group and 5.6 months in the placebo group (P < .001). A delayed occurrence of first skeletal-related event requiring clinical intervention was also shown.[32,33][Levels of evidence A3 and B1]
    • Grade 3 or worse adverse events were more common in the enzalutamide group (43% vs. 37%), primarily because of differences in hypertension, fatigue, and falls. Because patients receiving enzalutamide were on assigned therapy for an average of 1 year longer than those on placebo, the duration of response was longer in patients receiving enzalutamide, and this difference may have contributed to the increase in adverse events.
  3. Enzalutamide has also been tested in patients with clinically nonmetastatic, hormone-resistant prostate cancer (defined as PSA doubling time ≤10 months while undergoing hormonal therapy).[35]
    • In the double-blind phase III PROSPER trial (NCT02003924), 1,401 men without clinical metastases on imaging, but with a rapidly rising PSA, were randomly assigned in a 2:1 ratio to receive either enzalutamide (160 mg PO qd) or placebo. After follow-up of up to 41 months, enzalutamide showed superiority in the primary end point, metastasis-free survival: 77% versus 51% (median 36.6 vs. 14.7 months; HR, 0.29; 95% CI, 0.24–0.35; P < .001).[35][Level of evidence B1]
    • OS data were not mature, but at the time of the report, 11% of the men had died in the enzalutamide arm versus 13% in the placebo arm.
    • The rate of decline in health-related QOL was the same in both arms.
    • Grade 3 or higher toxicities were more common in the enzalutamide group: 31% versus 23%.
    • There were also excesses in several adverse events of special interest because they had been reported previously in patients treated with enzalutamide. These events included hypertension (12% vs. 5%), major cardiovascular events (5% vs. 3%), and mental impairment disorders (5% vs. 2%).
  4. Continuing enzalutamide in patients who were switched to abiraterone because of progression, and who had metastatic castration-resistant prostate cancer (mCRPC) and a rising PSA while receiving enzalutamide, did not appear to improve the rate of PFS or of clinical progression. This strategy was tested in the randomized PLATO trial (NCT01995513).[36][Level of evidence B1]
  5. Apalutamide, an androgen receptor antagonist, was tested in patients with clinically nonmetastatic, castration-resistant prostate cancer (defined as PSA doubling time ≤10 months while undergoing androgen deprivation therapy).[37] In the trial, 1,207 men were randomly assigned in a 2:1 ratio to receive either daily apalutamide (240 mg PO) or a placebo. All patients continued their previous ADT.
    • With a median follow-up of 20.3 months, metastasis-free survival was 40.5 months in the apalutamide group compared with 16.2 months in the placebo group (HR, 0.28; 95% CI, 0.23–0.35; P < .001).[37][Level of evidence B1]
    • There was a trend toward improved OS in the apalutamide group, but it did not reach statistical significance at the time of the report (HR, 0.70; 95% CI, 0.47–1.04; P = .07).
    • There were increases in a number of toxicities associated with apalutamide treatment, which included the following: bone fractures (11.7% vs. 6.5%), hypothyroidism (8.1% vs. 2.0%), fatigue (30.4% vs. 21.1%), hypertension (24.8% vs. 19.8%), rash (23.8% vs. 5.5%), diarrhea (20.3% vs. 15.1%), weight loss (16.1% vs. 6.3%), arthralgias (15.9% vs. 7.5%), and falls (15.6% vs. 9.0%).
    • In a prespecified exploratory analysis, QOL over time was similar in the apalutamide and placebo arms. QOL was assessed overall and for all component subscale scores of the FACT-P and EuroQol five-dimension, three-level (EQ-5D-3L) questionnaires.[38][Level of evidence A3]
  6. Darolutamide, another androgen receptor antagonist, prolonged metastasis-free survival and OS in men with nonmetastatic castration-resistant prostate cancer.[39,40] A distinguishing characteristic of darolutamide is its low penetration of the blood-brain barrier. The U.S. Food and Drug Administration (FDA) approved darolutamide specifically for nonmetastatic castration-resistant prostate cancer, a more limited label compared with enzalutamide and apalutamide.

    A randomized controlled trial included 1,509 men with nonmetastatic castration-resistant prostate cancer, a rising PSA, and a castrate testosterone level. Patients were randomly assigned in a 2:1 ratio to receive darolutamide or placebo while continuing ADT.[39,40]

    • The 3-year OS rate was 83% for patients who received darolutamide (95% CI, 80%–86%) and 77% for patients who received placebo (95% CI, 72%–81%).[39,40][Level of evidence A1]
    • The darolutamide arm was also associated with longer metastasis-free survival (HR, 0.41; 95% CI, 0.34–0.50).
    • Patient-reported QOL was similar in the two arms and differences favored the darolutamide arm. There were statistically significant differences favoring darolutamide for measures of pain, well-being, and urinary symptoms, but the differences did not reach clinically meaningful levels.
    • In contrast to studies of enzalutamide and apalutamide, darolutamide was not associated with a higher incidence of falls or fractures, hypertension, or central nervous system–related adverse effects when compared with placebo.

Evidence (hormonal approaches for progressive disease with previous chemotherapy):

  1. Men with metastatic prostate cancer who had biochemical or clinical progression after treatment with docetaxel (N = 1,195) were randomly assigned in a 2:1 ratio to receive either abiraterone acetate (1,000 mg) (n = 797) or placebo (n = 398) by mouth every day (COU-AA-301 [NCT00638690]). Both groups received prednisone (5 mg PO bid).[41][Level of evidence A1]
    • After a median follow-up of 12.8 months, the trial was stopped when an interim analysis showed an OS advantage in the abiraterone group. The final report of the trial was published after a median follow-up of 20.2 months.
    • Median OS was 15.8 months in the abiraterone group versus 11.2 months in the placebo group (HRdeath, 0.74; 95% CI, 0.64–0.86; P < .0001).
    • Compared with placebo, abiraterone was also associated with a delay in median time to deterioration in the FACT-P QOL score (59.9 weeks vs. 36.1 weeks, P < .0001) and a clinically important improvement in QOL in men with functional status impairment at baseline (48% vs. 32%, P < .0001).[42][Level of evidence A3]
  2. Enzalutamide increased survival in patients with progressive prostate cancer who previously received ADT and docetaxel. In a double-blind, placebo-controlled trial, 1,129 men were randomly assigned in a 2:1 ratio to receive enzalutamide (160 mg PO qd) versus placebo.[4346][Levels of evidence A1 and A3]
    • After a median follow-up of 14.4 months, the study was stopped at the single-planned interim analysis because improved OS, the primary end point, occurred in the enzalutamide study group (median OS, 18.4 months; 95% CI, 17.3–not-yet-reached vs. 13.6 months; 95% CI, 11.3–15.8; HRdeath, 0.63; 95% CI, 0.53–0.75; P < .001). In addition, QOL, measured by the FACT-P questionnaire, was superior in the enzalutamide arm, as was time to first skeletal-related event.[44,46]
    • A seizure was reported in 5 of the 800 men in the enzalutamide study group versus none in the placebo group; however, the relationship to enzalutamide is not clear. Of the reported seizures, two patients had brain metastases, one patient had just received intravenous (IV) lidocaine, and one seizure was not witnessed.

Prevention of bone metastases

Painful bone metastases can be a major problem for patients with prostate cancer. Many strategies have been studied for palliation, including:[4751]

  • External-beam radiation therapy (EBRT).
  • Bone-seeking radionuclides (strontium chloride Sr 89 [89Sr]).
  • Denosumab (a monoclonal antibody that inhibits osteoclast function).
  • Pain medication.
  • Corticosteroids.
  • Bisphosphonates.

For more information, see Cancer Pain.

Evidence (palliation for bone metastases using radiation therapy):

  1. EBRT can be very useful for palliation of bone pain. A single fraction of 8 Gy has been shown to have similar benefits on bone pain relief and QOL as multiple fractions (3 Gy × 10), as in the RTOG-9714 trial (NCT00003162).[52,53][Level of evidence A3]

Evidence (palliation for bone metastases using strontium chloride):

The use of radioisotopes such as 89Sr has been effective as palliative treatment of some patients with osteoblastic metastases. As a single agent, 89Sr has been reported to decrease bone pain in 80% of patients treated.[54]

  1. A multicenter randomized trial of a single IV dose of 89Sr (150 MBq: 4 mCi) versus palliative EBRT was done in men with painful bone metastases from prostate cancer despite hormone treatment.[55][Level of evidence A1]; [56]
    • Similar subjective pain response rates were shown in both groups: 34.7% for 89Sr versus 33.3% for EBRT alone.
    • OS was better in the EBRT group than in the 89Sr group (P = .046; median survival, 11.0 months vs. 7.2 months).
    • No statistically significant differences in time to subjective progression or in PFS were seen.
    • When used as an adjunct to EBRT, 89Sr was shown to slow disease progression and to reduce analgesic requirements, compared with EBRT alone.

Evidence (palliation or prevention of bone metastases using denosumab):

  1. A placebo-controlled randomized trial (NCT00321620) compared denosumab with zoledronic acid for the prevention of skeletal events (pathological fractures, spinal cord compression, or the need for palliative bone radiation or surgery) in men with hormonal therapy-resistant prostate cancer with at least one bone metastasis.[47]
    • The median time to first on-study skeletal event was 20.7 months in the denosumab group and 17.1 months in the zoledronic acid group (HR, 0.82; 95% CI, 0.71–0.95).
    • Serious adverse events were reported in 63% of patients who received denosumab versus 60% in patients who received zoledronic acid. The cumulative incidence of osteonecrosis of the jaw was low in both study arms (2% in the denosumab arm vs. 1% in the zoledronic acid arm). There was grade 3 to 4 toxicity and no difference in survival. The incidence of hypocalcemia was higher in the denosumab arm (13% vs. 6%).[57]
  2. A randomized placebo-controlled trial included 1,432 men with castration-resistant prostate cancer with no evidence of any metastases. Patients were given denosumab (120 mg administered subcutaneously every 4 weeks) to prevent the first evidence of bone metastasis (whether symptomatic or not).[57][Level of evidence B1]
    • After a median follow-up of 20 months, median bone metastasis-free survival was 29.5 versus 25.2 months in the denosumab versus placebo arms (HR, 0.85; 95% CI, 0.73–0.98; P = .028).
    • Symptomatic bone metastases were reported in 69 (10%) denosumab patients versus 96 (13%) placebo patients (HR, 0.67; 95% CI, 0.49–0.92; P = .01).
    • There were no differences in OS between the two groups.
    • Osteonecrosis occurred in 33 (5%) of men on the denosumab arm versus none on the placebo arm. Hypocalcemia occurred in 12 (2%) versus 2 (<1%) men, and urinary retention in 54 (8%) of men on denosumab versus 31 (4%) of men on placebo.

Treatment Options for Recurrent Prostate Cancer

Treatment options for patients with recurrent prostate cancer include:

Chemotherapy for hormone-sensitive or hormone-resistant prostate cancer

Evidence (chemotherapy for hormone-sensitive or hormone-resistant prostate cancer):

  1. A randomized trial showed improved pain control in patients with hormone-resistant prostate cancer treated with mitoxantrone plus prednisone compared with those treated with prednisone alone.[58] Differences in OS or measured global QOL between the two treatments were not statistically significant.
  2. Docetaxel has been shown to improve OS compared with mitoxantrone. In a randomized trial involving patients with hormone-refractory prostate cancer, docetaxel (75 mg/m2 every 3 weeks) and docetaxel (30 mg/m2 weekly for 5 out of every 6 weeks) were compared with mitoxantrone (12 mg/m2 every 3 weeks). All patients received oral prednisone (5 mg bid). Patients in the docetaxel arms also received high-dose dexamethasone pretreatment for each docetaxel administration (8 mg given at 12 hours, 3 hours, and 1 hour before the 3-week regimen; 8 mg given at 1 hour before the 5 out-of-every-6 weeks’ regimen).[59]
    • OS at 3 years was statistically significantly better in the 3-weekly docetaxel arm (18.6%) than in the mitoxantrone arm (13.5%, HRdeath, 0.79; 95% CI, 0.67–0.93).
    • However, the OS rate for the 5 out-of-every-6 weeks docetaxel regimen was 16.8%, which was not statistically significantly better than mitoxantrone.
    • QOL was also superior in the docetaxel arms compared with mitoxantrone (P = .009).[60][Levels of evidence A1 and A3]
  3. In another randomized trial involving patients with hormone-refractory prostate cancer, a 3-week regimen of estramustine (280 mg PO tid for days 1 to 5, plus daily warfarin and 325 mg aspirin to prevent vascular thrombosis), and docetaxel (60 mg/m2 IV on day 2, preceded by dexamethasone [20 mg × 3 starting the night before]) was compared with mitoxantrone (12 mg/m2 IV every 3 weeks) plus prednisone (5 mg qd).[61][Level of evidence A1]
    • After a median follow-up of 32 months, median OS was 17.5 months in the estramustine/docetaxel arm versus 15.6 months in the mitoxantrone arm (HRdeath, 0.80; 95% CI, 0.67–0.97; P = .02).
    • Global QOL and pain palliation measures were similar in the two treatment arms.[62][Level of evidence A3]
  4. A 2-weekly regimen of docetaxel has been compared with a 3-weekly regimen. OS appeared to be better in the 2-week regimen, and hematologic toxicity was less.[63][Level of evidence A1]
    • In the trial, 361 men with metastatic hormone-resistant prostate cancer were randomly assigned to receive docetaxel either in a 2-weekly regimen (50 mg/m2 IV) or a 3-weekly regimen (75 mg/m2 IV) until progression. All patients were also to receive prednisolone (10 mg PO qd) and dexamethasone (7.5–8.0 mg qd), starting the day before and continuing for 1 to 2 days after each docetaxel dose. Fifteen randomly assigned patients (4.2%) were deemed ineligible in retrospect or withdrew consent, and they were dropped from the analysis.
    • With a median follow-up of 18 months, there was a small difference in time to treatment failure, the primary end point of the study (5.6 months [95% CI, 5.0–6.2] vs. 4.9 months [95% CI, 4.5–5.4]; P = .014). However, there was a larger difference in median OS, a secondary end point, in favor of the 2-week regimen (19.5 months [95% CI, 15.9–23.1] vs. 17.0 months [95% CI, 15.0 –19.1]; P = .02).
    • There was a lower rate of grade 3 to 4 neutropenia with the 2-week regimen (36% vs. 53%; P < .0001) and a lower rate of febrile neutropenia (4% vs. 14%; P = .001).
  5. In patients with mCRPC and no previous chemotherapy, cabazitaxel and docetaxel appeared to provide similar results with respect to OS.[64]
    • In the FIRSTANA trial (NCT01308567), 1,168 men with mCRPC were randomly assigned in a 1:1:1 ratio to receive cabazitaxel 20 mg/m2, cabazitaxel 25 mg/m2, or docetaxel 75 mg/m2 IV every 3 weeks (plus prednisone 10 mg PO qd) until disease progression. Median OS was similar across all three study arms and not statistically significantly different (24.5 vs. 25.2 vs. 24.3 months, respectively), with virtually overlapping survival curves.[64][Level of evidence A1]
    • However, toxicities varied across the study arms, with adverse event rates of 41.2%, 60.1%, and 46.0%, respectively, which required urgent treatment.
  6. In patients with mCRPC whose disease progressed during or after treatment with docetaxel, cabazitaxel was shown to improve survival compared with mitoxantrone in a randomized trial (NCT00417079).[65] In this trial, 755 such men were treated with prednisone (10 mg PO qd) and randomly assigned to receive either cabazitaxel (25 mg/m2 IV) or mitoxantrone (12 mg/m2 IV) every 3 weeks.[65][Level of evidence A1]
    • Median OS was 15.1 months in the cabazitaxel arm and 12.7 months in the mitoxantrone study arm (HRdeath, 0.70; 95% CI, 0.59–0.83; P < .0001).
  7. A noninferiority-design randomized trial compared cabazitaxel (20 mg/m2 IV every 3 weeks) with cabazitaxel (25 mg/m2 IV every 3 weeks) in a similar population of 1,200 men with mCRPC who had received previous docetaxel. The lower dose of cabazitaxel fulfilled noninferiority criteria with respect to OS (HRdeath, 1.024; upper boundary of CI, 1.184), but with less toxicity.[66][Level of evidence A1]

Other chemotherapy regimens reported to produce subjective improvement in symptoms and reduction in PSA level include:[67][Level of evidence C2]; [68]

  • Paclitaxel.
  • Estramustine/etoposide.
  • Estramustine/vinblastine.
  • Estramustine/paclitaxel.

A study suggested that tumors that exhibit neuroendocrine differentiation are more responsive to chemotherapy.[69]

Immunotherapy

Sipuleucel-T, an active cellular immunotherapy, has increased OS in patients with hormone-refractory metastatic prostate cancer. Sipuleucel-T consists of autologous peripheral blood mononuclear cells that have been exposed ex vivo to a recombinant fusion protein (PA2024) composed of prostatic acid phosphatase fused to granulocyte-macrophage colony-stimulating factor.

Side effects are generally consistent with cytokine release and include chills, fever, headache, myalgia, sweating, and influenza-like symptoms, usually within the first 24 hours of infusion. No increase in autoimmune disorders or secondary malignancies have been noted.[70]

Evidence (immunotherapy):

  1. In the largest trial (Immunotherapy for Prostate Adenocarcinoma Treatment: IMPACT trial [NCT00065442]), 512 patients with hormone-refractory metastatic disease were randomly assigned in a 2:1 ratio to receive sipuleucel-T (n = 341) versus placebo (n = 171) by IV in a 60-minute infusion every 2 weeks for a total of 3 doses.[71] Patients with visceral metastases, pathological bone fractures, or ECOG performance status worse than 0–1 were excluded from the study. At documented disease progression, patients in the placebo group could receive, at the physician’s discretion, infusions manufactured with the same specifications as sipuleucel-T but using cells that had been cryopreserved at the time that the placebo was prepared (63.7% of the placebo patients received these transfusions). Time to disease progression and time to development of disease-related pain were the initial primary end points, but the primary end point was changed before unblinding based upon survival differences in two previous trials of similar design (described below).[71][Level of evidence A1]
    • After a median follow-up of 34.1 months, the overall mortality was 61.6% in the sipuleucel-T group versus 70.8% in the placebo group (HRdeath, 0.78; 95% CI, 0.61–0.98; P = .03). However, the improved survival was not accompanied by measurable antitumor effects.
    • There was no difference between the study groups in rate of disease progression. In 2011, the estimated price of sipuleucel-T was $93,000 for a 1-month course of therapy. This translates into an estimated cost of about $276,000 per year-of-life saved.[72]
  2. The same investigators previously performed two smaller trials (D9901 and D9902A [NCT00005947]) of nearly identical design to the IMPACT trial.[73,74]
    • The combined results of the two smaller trials, involving a total of 225 patients randomly assigned in a 2:1 ratio of sipuleucel-T to placebo were like those in the IMPACT trial. The HRdeath was 0.67 (95% CI, 0.49–0.91), but the time-to-progression rates were not statistically significantly different.

Low-dose prednisone may palliate symptoms in some patients.[75]

Evidence (low-dose prednisone for palliation):

  1. A randomized comparison of prednisone (5 mg qid) with flutamide (250 mg tid) was conducted in patients with disease progression after androgen ablative therapy (castration or LH-RH agonist).[76]

Ongoing clinical trials continue to explore the value of chemotherapy for these patients.[1013,58,6769]

Radiopharmaceutical therapy

Alpha emitter radiation therapy

Radium Ra 223 (223Ra) emits alpha particles (i.e., two protons and two neutrons bound together, identical to a helium nucleus) with a half-life of 11.4 days. It is administered by IV and selectively taken up by newly formed bone stroma. The high-energy alpha particles have a short range of <100 mcM. 223Ra improved OS in patients with prostate cancer metastatic to the bone.

Evidence (alpha emitter radiation):

  1. In a placebo-controlled trial, 921 men with symptomatic castration-resistant prostate cancer, two or more bone metastases, and no known visceral metastases, were randomly assigned in a 2:1 ratio to receive 223Ra at a dose of 50kBq per kg body weight every 4 weeks for six injections versus placebo. All study participants had already received docetaxel, were not healthy enough to receive it, or declined it.[77,78]
    • Median OS was 14.9 months in the 223Ra study group versus 11.3 months in the placebo groups (HRmortality, 0.70; 95% CI, 0.58–0.83; P < .001).[77][Level of evidence A1]
    • The rates of symptomatic skeletal events (33% vs. 38%) and spinal cord compression (4% vs. 7%) were also statistically significantly improved.
    • Prospectively measured, QOL was also better in the 223Ra study group (25% vs. 16% had a ≥10 point improvement on a scale of 0 to 156; P = .02).[77][Level of evidence A3]
    • With administration of 223Ra at a dose of 50kBq per kg of body weight every 4 weeks for 6 injections, the side effects were like those of a placebo.
Beta emitter radiation therapy

Lutetium Lu 177 vipivotide tetraxetan (177Lu-PSMA-617) emits beta radiation. It is a therapeutic agent linked to a moiety that binds to PSMA. It is given IV at a dose of 7.4 GBq (200 mCi) every 6 weeks for up to six doses.

Evidence (beta emitter radiation):

  1. The phase III, international, open label VISION study (NCT03511664) enrolled 831 patients with mCRPC previously treated with androgen receptor-directed therapy as well as taxane-based chemotherapy. Eligible patients were required to have at least one PSMA-positive lesion without a dominant PSMA-negative metastatic lesion, using approved PSMA imaging agents. Patients were randomly assigned in a 2:1 ratio to receive either 177Lu-PSMA-617 every 6 weeks for four to six cycles plus protocol-permitted standard care or standard care alone. Standard care included abiraterone, enzalutamide, bisphosphonates, radiation therapy, denosumab, and/or glucocorticoids and excluded chemotherapy, immunotherapy, 223Ra, and investigational drugs when the trial was designed (e.g., olaparib). Alternate primary end points included image-based PFS and OS.[79]
    • The median follow-up was 20.9 months. The median image-based PFS was 8.7 months in the 177Lu-PSMA-617-plus-standard care group and 3.4 months in the standard care-alone group (HRprogression or death, 0.40; 99.2% CI, 0.29–0.57; P < .001). The median OS was 15.3 months in the 177Lu-PSMA-617-plus-standard care group and 11.3 months in the standard care-alone group (HRdeath, 0.62; 95% CI, 0.52–0.74; P < .001).[79][Level of evidence A1]
    • All key secondary end points significantly favored the 177Lu-PSMA-617-plus-standard care group, including median time to first symptomatic skeletal event or death (11.5 months vs. 6.8 months; HR, 0.50; 95% CI, 0.40–0.62; P < .001).
    • The most common adverse events in the 177Lu-PSMA-617-plus-standard care group were fatigue, dry mouth, and nausea, nearly all of which were grade 1 or 2 in severity. Grade 3 or higher adverse events occurred in 52.7% of patients in the 177Lu-PSMA-617-plus-standard care group and 38% of patients in the standard care-alone group. The most common grade 3 or higher adverse event in the 177Lu-PSMA-617-plus-standard care group was anemia (12.9% vs. 4.9% in the standard care-alone group).
    • There was delayed worsening of heath-related QOL in the 177Lu-PSMA-617-plus-standard care group versus the standard care-alone group, including FACT-P scores (HR, 0.54; 0.45–0.66), BPI-SF pain intensity scores (HR, 0.52; 0.42–0.63), and EQ-5D-5L utility scores (HR, 0.65; 0.54–0.78).[80]

Evidence supports the use of 177Lu-PSMA-617 after taxanes and after androgen therapy. Its benefit is also being evaluated in other settings.

PARP inhibitors for men with mCRPC and BRCA1, BRCA2, or ATM variants

Olaparib

Evidence (olaparib):

  1. The PARP inhibitor olaparib was tested in an open-label, phase III, randomized controlled trial in men with mCRPC and variants in one of 15 prespecified homologous recombination repair genes, including BRCA1 or BRCA2. The men had previously received enzalutamide, abiraterone, or both, with or without previous taxane chemotherapy.[81] The trial enrolled 387 men and randomly assigned them in a 2:1 ratio to receive olaparib (300 mg twice daily) or physician’s choice of enzalutamide or abiraterone plus prednisone.

    Cohort A included 245 patients with at least one variant in BRCA1, BRCA2, or ATM. Cohort B included 142 patients with at least one variant in one of the other 12 prespecified genes.

    • The median OS in cohort A was 19.1 months for patients who received olaparib and 14.7 months for patients who received the control regimen (HR, 0.69; 95% CI, 0.50–0.97). A sensitivity analysis adjusting for crossover to olaparib in the control arm reported an HR of 0.42 (95% CI, 0.19–0.91).
    • There was no significant OS benefit in cohort B.
    • There was no significant OS benefit in the overall population.
    • The most common adverse events for patients who received olaparib were anemia (50%), nausea (43%), and fatigue or asthenia (42%).

Hormone therapy with PARP inhibitors for men with mCRPC and BRCA1, BRCA2, or ATM variants

PARP inhibitors as first-line therapy for men with mCRPC and BRCA1 or BRCA2 variants

Evidence (olaparib with abiraterone and prednisone [or prednisolone]):

  1. The phase III, randomized, double-blinded, PROpel trial (NCT03732820) studied the PARP inhibitor olaparib with abiraterone and prednisone (or prednisolone) as first-line treatment in patients with mCRPC. In the trial, 796 patients were randomly assigned in a 1:1 ratio to receive either (1) olaparib (300 mg twice daily) with abiraterone (1,000 mg once daily) and prednisone or prednisolone (5 mg twice daily) or (2) placebo with abiraterone (1,000 mg once daily) and prednisone or prednisolone (5 mg twice daily). Prior systemic therapy for mCRPC was excluded, but prior docetaxel for metastatic hormone-sensitive prostate cancer was allowed. The presence of variants in tumor homologous recombination repair genes (including BRCA) was determined retrospectively using both tumor tissue and circulating tumor DNA (ctDNA). The study design did not prospectively evaluate variants in homologous recombination repair genes or BRCA, nor did it stratify randomization by biomarker status. The primary end point was investigator-assessed radiographic PFS.[82]
    • In the intent-to-treat (ITT) population, the median radiographic PFS was 24.8 months in the olaparib group and 16.6 months in the placebo group (HR, 0.66; 95% CI, 0.54–0.81).
    • In an exploratory analysis of the subset of patients with BRCA-altered disease (n = 85, 11% of the ITT population), the observed median radiographic PFS was not reached in the olaparib group and was 8 months in the placebo group (HRradiographic PFS,0.24; 95% CI, 0.12–0.45; and HROS, 0.30; 95% CI, 0.74–1.14).[82,83][Level of evidence B1]
    • Data from the exploratory analysis suggested that the radiographic PFS benefit in the ITT population was primarily attributable to BRCA-altered status. Therefore, the FDA has only approved this drug for patients with BRCA-altered disease.
    • OS, a key secondary end point, was not significantly different between treatment groups at the final prespecified analysis. Median OS was 42.1 months in the olaparib group and 36.5 months in the placebo group (HR, 0.81; 95% CI, 0.67–1.00; P = .054).[84]
    • Grade 3 or higher adverse events occurred in 41% of patients in the olaparib group and 34% of patients in the placebo group. Anemia was the most common grade 3 or higher adverse event (occurring in 3% of patients in the olaparib group and 16% of patients in the placebo group). Of the patients with anemia who required at least one blood transfusion, 18% were in the olaparib group and 4% were in the placebo group.
    • FACT-P questionnaire scores were similar between treatment groups, indicating no significant detriment to patients’ health-related QOL with the addition of olaparib with abiraterone.
PARP inhibitors as first-line therapy for men with mCRPC and variants in homologous recombination repair genes

Evidence (talazoparib with enzalutamide):

  1. The combination of a PARP inhibitor, talazoparib, with enzalutamide was tested in the phase III, double-blind, randomized, multicohort TALAPRO-2 study (NCT03395197) as first-line therapy in men with mCRPC. The trial enrolled two cohorts in which patients were prospectively assessed for variants in homologous recombination repair genes (ATM, ATR, BRCA1, BRCA2, CDK12, CHEK2, FANCA, MLH1, MRE11, NBN, PALB2, and RAD51C) in tumor tissue and/or ctDNA. Patients were randomly assigned in a 1:1 ratio to receive either talazoparib (0.5 mg once daily) or placebo with enzalutamide (160 mg once daily). Prior systemic therapy for mCRPC was excluded. Prior docetaxel and abiraterone for metastatic castration-sensitive prostate cancer was permitted. Results from combined cohorts of the homologous recombination repair gene-altered population included 399 patients. The primary end point was radiographic PFS.[85,86]
    • The median radiographic PFS was not reached in the talazoparib-with-enzalutamide group and was 13.8 months in the placebo-with-enzalutamide group (HR, 0.45; 95% CI, 0.33–0.61; P < .0001). In patients with BRCA-altered mCRPC (n = 155) the HRradiographic PFS was 0.20 (95% CI, 0.11–0.36). The median follow-up for radiographic PFS was 17.5 months in the talazoparib group and 16.8 months in the placebo group.[85,86][Level of evidence B1]
    • Grade 3 or higher adverse events occurred in 68% of patients in the talazoparib-with-enzalutamide group and 40% of patients in the placebo-with-enzalutamide group.
    • The most common grade 3 or higher adverse event was anemia (41% in the talazoparib group and 5% in the placebo group). Thirty-nine percent of patients in the talazoparib group required a blood transfusion.
    • Talazoparib with enzalutamide significantly prolonged time to definitive, clinically meaningful deterioration versus placebo with enzalutamide (HR, 0.69; 95% CI, 0.49–0.97; P = .032).

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Trock BJ, Han M, Freedland SJ, et al.: Prostate cancer-specific survival following salvage radiotherapy vs observation in men with biochemical recurrence after radical prostatectomy. JAMA 299 (23): 2760-9, 2008. [PUBMED Abstract]
  2. Ray GR, Bagshaw MA, Freiha F: External beam radiation salvage for residual or recurrent local tumor following radical prostatectomy. J Urol 132 (5): 926-30, 1984. [PUBMED Abstract]
  3. Carter GE, Lieskovsky G, Skinner DG, et al.: Results of local and/or systemic adjuvant therapy in the management of pathological stage C or D1 prostate cancer following radical prostatectomy. J Urol 142 (5): 1266-70; discussion 1270-1, 1989. [PUBMED Abstract]
  4. Freeman JA, Lieskovsky G, Cook DW, et al.: Radical retropubic prostatectomy and postoperative adjuvant radiation for pathological stage C (PcN0) prostate cancer from 1976 to 1989: intermediate findings. J Urol 149 (5): 1029-34, 1993. [PUBMED Abstract]
  5. Shipley WU, Seiferheld W, Lukka HR, et al.: Radiation with or without Antiandrogen Therapy in Recurrent Prostate Cancer. N Engl J Med 376 (5): 417-428, 2017. [PUBMED Abstract]
  6. M

Prostate Cancer Treatment (PDQ®)–Patient Version

Prostate Cancer Treatment (PDQ®)–Patient Version

General Information About Prostate Cancer

Key Points

  • Prostate cancer is a type of cancer that forms in the tissues of the prostate.
  • Signs of prostate cancer include a weak flow of urine or frequent urination.
  • Tests that examine the prostate and blood are used to diagnose prostate cancer.
  • A biopsy is done to diagnose prostate cancer and find out the grade of the cancer (Gleason score).
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Prostate cancer is a type of cancer that forms in the tissues of the prostate.

The prostate is a gland in the male reproductive system. It lies just below the bladder (the organ that collects and empties urine) and in front of the rectum (the lower part of the intestine). It is about the size of a walnut and surrounds part of the urethra (the tube that empties urine from the bladder). The prostate gland makes fluid that is part of the semen.

EnlargeDrawing of the male reproductive system and urinary system anatomy showing the front and side views of the ureters, bladder, prostate gland, vas deferens, urethra, penis, and testicles. A side view of the seminal vesicle and ejaculatory duct is also shown. The drawing also shows front and side views of the rectum and lymph nodes in the pelvis.
Anatomy of the male reproductive and urinary systems showing the ureters, bladder, prostate gland, urethra, penis, testicles, and other organs.

Prostate cancer is most common in older men. In the United States, about one out of eight men will be diagnosed with prostate cancer.

Signs of prostate cancer include a weak flow of urine or frequent urination.

These and other signs and symptoms may be caused by prostate cancer or by other conditions. Check with your doctor if you have:

  • Trouble starting the flow of urine.
  • Frequent urination (especially at night).
  • Trouble emptying the bladder completely.
  • Weak or interrupted (“stop-and-go”) flow of urine.

When prostate cancer is detected in an advanced stage, symptoms may include:

  • Pain in the back, hips, or pelvis that doesn’t go away.
  • Shortness of breath, feeling very tired, fast heartbeat, dizziness, or pale skin caused by anemia.

Other conditions may cause the same symptoms. As men age, the prostate may get bigger and block the urethra or bladder. This may cause trouble urinating or sexual problems. The condition is called benign prostatic hyperplasia (BPH), and although it is not cancer, surgery may be needed. The symptoms of benign prostatic hyperplasia or of other problems in the prostate may be like symptoms of prostate cancer.

EnlargeTwo-panel drawing shows normal male reproductive and urinary anatomy and benign prostatic hyperplasia (BPH). Panel on the left shows the normal prostate and flow of urine from the bladder through the urethra. Panel on the right shows an enlarged prostate pressing on the bladder and urethra, blocking the flow of urine.
Normal prostate and benign prostatic hyperplasia (BPH). A normal prostate does not block the flow of urine from the bladder. An enlarged prostate presses on the bladder and urethra and blocks the flow of urine.

Tests that examine the prostate and blood are used to diagnose prostate cancer.

In addition to asking about your personal and family health history and doing a physical exam, your doctor may perform the following tests and procedures:

  • Digital rectal exam (DRE): An exam of the rectum. The doctor or nurse inserts a lubricated, gloved finger into the rectum and feels the prostate through the rectal wall for lumps or abnormal areas.
    EnlargeDigital rectal exam; drawing shows a side view of the male reproductive anatomy and the urinary anatomy, including the prostate, rectum, and bladder. Also shown is a gloved, lubricated finger inserted into the rectum to feel the rectum, anus, and prostate.
    Digital rectal exam (DRE). The doctor inserts a gloved, lubricated finger into the rectum and feels the rectum, anus, and prostate (in males) to check for anything abnormal.
  • Prostate-specific antigen (PSA) test: A test that measures the level of PSA in the blood. PSA is a substance made by the prostate that may be found in higher than normal amounts in the blood of men who have prostate cancer. PSA levels may also be high in men who have an infection or inflammation of the prostate or BPH (an enlarged, but noncancerous, prostate).
  • PSMA PET scan: An imaging procedure that is used to help find prostate cancer cells that have spread outside of the prostate, into bone, lymph nodes, or other organs. For this procedure, a cell-targeting molecule linked to a radioactive substance is injected into the body and travels through the blood. It attaches to a protein called prostate-specific membrane antigen (PSMA) that is found on the surface of prostate cancer cells. A PET scanner detects high concentrations of the radioactive molecule and shows where the prostate cancer cells are in the body. A PSMA PET scan may be used to help diagnose prostate cancer that may have come back or spread to other parts of the body. It may also be used to help plan treatment.
  • Transrectal ultrasound: A procedure in which a probe that is about the size of a finger is inserted into the rectum to check the prostate. The probe is used to bounce high-energy sound waves (ultrasound) off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. Transrectal ultrasound may be used during a biopsy procedure. This is called transrectal ultrasound guided biopsy.
    EnlargeTransrectal ultrasound; drawing shows a side view of the male reproductive and urinary system anatomy, including the bladder and prostate. Also shown is the rectum and anus. There is also an ultrasound probe inserted into the rectum to check the prostate. An inset shows a provider inserting the ultrasound probe into the patient's rectum while viewing an image of the ultrasound on a computer screen. The patient is lying on their back on a table.
    Transrectal ultrasound. An ultrasound probe is inserted into the rectum to check the prostate. The probe bounces sound waves off body tissues to make echoes that form a sonogram (computer picture) of the prostate.
  • Transrectal magnetic resonance imaging (MRI): A procedure that uses a strong magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. A probe that gives off radio waves is inserted into the rectum near the prostate. This helps the MRI machine make clearer pictures of the prostate and nearby tissue. A transrectal MRI is done to find out if the cancer has spread outside the prostate into nearby tissues. This procedure is also called nuclear magnetic resonance imaging (NMRI). Transrectal MRI may be used during a biopsy procedure. This is called transrectal MRI guided biopsy.

A biopsy is done to diagnose prostate cancer and find out the grade of the cancer (Gleason score).

A transrectal biopsy is used to diagnose prostate cancer. A transrectal biopsy is the removal of tissue from the prostate by inserting a thin needle through the rectum and into the prostate. This procedure may be done using transrectal ultrasound or transrectal MRI to help guide where samples of tissue are taken from. A pathologist views the tissue under a microscope to look for cancer cells.

EnlargeTransrectal biopsy; drawing shows a side view of the prostate, bladder, and rectum. Drawing also shows an ultrasound probe with a needle inserted into the rectum to remove a tissue sample from the prostate.
Transrectal biopsy. An ultrasound probe is inserted into the rectum to show where the tumor is. Then a needle is inserted through the rectum into the prostate to remove tissue from the prostate.

Sometimes a biopsy is done using a sample of tissue that was removed during a transurethral resection of the prostate (TURP) to treat benign prostatic hyperplasia.

If cancer is found, the pathologist will give the cancer a grade. The grade of the cancer describes how abnormal the cancer cells look under a microscope and how quickly the cancer is likely to grow and spread. The grade of the cancer is called the Gleason score.

To give the cancer a grade, the pathologist checks the prostate tissue samples to see how much the tumor tissue is like the normal prostate tissue and to find the two main cell patterns. The primary pattern describes the most common tissue pattern, and the secondary pattern describes the next most common pattern. Each pattern is given a grade from 3 to 5, with grade 3 looking the most like normal prostate tissue and grade 5 looking the most abnormal. The two grades are then added to get a Gleason score.

The Gleason score can range from 6 to 10. The higher the Gleason score, the more likely the cancer will grow and spread quickly. A Gleason score of 6 is a low-grade cancer; a score of 7 is a medium-grade cancer; and a score of 8, 9, or 10 is a high-grade cancer. For example, if the most common tissue pattern is grade 3 and the secondary pattern is grade 4, it means that most of the cancer is grade 3 and less of the cancer is grade 4. The grades are added for a Gleason score of 7, and it is a medium-grade cancer. The Gleason score may be written as 3+4=7, Gleason 7/10, or combined Gleason score of 7.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis and treatment options depend on:

  • The stage of the cancer (level of PSA, Gleason score, Grade Group, how much of the prostate is affected by the cancer, and whether the cancer has spread to other places in the body).
  • The patient’s age.
  • Whether the cancer has just been diagnosed or has recurred (come back).

Treatment options also may depend on:

  • Whether the patient has other health problems.
  • The expected side effects of treatment.
  • Past treatment for prostate cancer.
  • The wishes of the patient.

Most men diagnosed with prostate cancer do not die of it.

Stages of Prostate Cancer

Key Points

  • After prostate cancer has been diagnosed, tests are done to find out if cancer cells have spread within the prostate or to other parts of the body.
  • There are three ways that cancer spreads in the body.
  • Cancer may spread from where it began to other parts of the body.
  • The Grade Group and PSA level are used to stage prostate cancer.
  • The following stages are used for prostate cancer:
    • Stage I
    • Stage II
    • Stage III
    • Stage IV
  • Prostate cancer may recur (come back) after it has been treated.

After prostate cancer has been diagnosed, tests are done to find out if cancer cells have spread within the prostate or to other parts of the body.

The process used to find out if cancer has spread within the prostate or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of the tests used to diagnose prostate cancer are often also used to stage the disease. (See the General Information section.) In prostate cancer, staging tests may not be done unless the patient has symptoms or signs that the cancer has spread, such as bone pain, a high PSA level, or a high Gleason score.

The following tests and procedures also may be used in the staging process:

  • Bone scan: A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner.
    EnlargeBone scan; drawing shows patient lying on a table that slides under the scanner, a technician operating the scanner, and a monitor that will show images made during the scan.
    Bone scan. A small amount of radioactive material is injected into the patient’s bloodstream and collects in abnormal cells in the bones. As the patient lies on a table that slides under the scanner, the radioactive material is detected and images are made on a computer screen or film.
  • MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • Pelvic lymphadenectomy: A surgical procedure to remove the lymph nodes in the pelvis. A pathologist views the tissue under a microscope to look for cancer cells.
  • Seminal vesicle biopsy: The removal of fluid from the seminal vesicles (glands that make semen) using a needle. A pathologist views the fluid under a microscope to look for cancer cells.
  • ProstaScint scan: A procedure to check for cancer that has spread from the prostate to other parts of the body, such as the lymph nodes. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material attaches to prostate cancer cells and is detected by a scanner. The radioactive material shows up as a bright spot on the picture in areas where there are a lot of prostate cancer cells.

There are three ways that cancer spreads in the body.

Cancer can spread through tissue, the lymph system, and the blood:

  • Tissue. The cancer spreads from where it began by growing into nearby areas.
  • Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body.
  • Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.

Cancer may spread from where it began to other parts of the body.

When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood.

  • Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body.
  • Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body.

The metastatic tumor is the same type of cancer as the primary tumor. For example, if prostate cancer spreads to the bone, the cancer cells in the bone are actually prostate cancer cells. The disease is metastatic prostate cancer, not bone cancer.

Denosumab, a monoclonal antibody, may be used to prevent bone metastases.

Many cancer deaths are caused when cancer moves from the original tumor and spreads to other tissues and organs. This is called metastatic cancer. This animation shows how cancer cells travel from the place in the body where they first formed to other parts of the body.

The Grade Group and PSA level are used to stage prostate cancer.

The stage of the cancer is based on the results of the staging and diagnostic tests, including the prostate-specific antigen (PSA) test and the Grade Group. The tissue samples removed during the biopsy are used to find out the Gleason score. The Gleason score ranges from 2 to 10 and describes how different the cancer cells look from normal cells under a microscope and how likely it is that the tumor will spread. The lower the number, the more cancer cells look like normal cells and are likely to grow and spread slowly.

The Grade Group depends on the Gleason score. See the General Information section for more information about the Gleason score.

  • Grade Group 1 is a Gleason score of 6 or less.
  • Grade Group 2 or 3 is a Gleason score of 7.
  • Grade Group 4 is a Gleason score 8.
  • Grade Group 5 is a Gleason score of 9 or 10.

The PSA test measures the level of PSA in the blood. PSA is a substance made by the prostate that may be found in an increased amount in the blood of men who have prostate cancer.

The following stages are used for prostate cancer:

Stage I

EnlargeTwo panel drawing of stage I prostate cancer; the top panel shows cancer in less than one-half of the right side of the prostate found by needle biopsy. The bottom panel shows cancer in less than one-half of the left side of the prostate found by digital rectal exam. In both panels, the PSA level is less than 10 and the Grade Group is 1. The bladder, rectum, and urethra are also shown.
Stage I prostate cancer. Cancer is found in the prostate only. The cancer is not felt during a digital rectal exam and is found by needle biopsy done for high prostate-specific antigen (PSA) level or in a sample of tissue removed during surgery for other reasons. The PSA level is less than 10 and the Grade Group is 1; OR the cancer is felt during a digital rectal exam and is found in one-half or less of one side of the prostate. The PSA level is less than 10 and the Grade Group is 1.

In stage I, cancer is found in the prostate only. The cancer:

Stage II

In stage II, cancer is more advanced than in stage I, but has not spread outside the prostate. Stage II is divided into stages IIA, IIB, and IIC.

EnlargeTwo-panel drawing of stage IIA prostate cancer; the top panel shows cancer in one-half or less of one side of the prostate. The PSA level is at least 10 but less than 20 and the Grade Group is 1. The bottom panel shows cancer in more than one-half of one side of the prostate. The PSA level is less than 20 and the Grade Group is 1. In both panels, the bladder, rectum, and urethra are also shown.
Stage IIA prostate cancer. Cancer is found in the prostate only. Cancer is found in one-half or less of one side of the prostate. The prostate-specific antigen (PSA) level is at least 10 but less than 20 and the Grade Group is 1; OR cancer is found in more than one-half of one side of the prostate or in both sides of the prostate. The PSA level is less than 20 and the Grade Group is 1.

In stage IIA, cancer:

  • is found in one-half or less of one side of the prostate. The PSA level is at least 10 but lower than 20 and the Grade Group is 1; or
  • is found in more than one-half of one side of the prostate or in both sides of the prostate. The PSA level is lower than 20 and the Grade Group is 1.
EnlargeStage IIB prostate cancer; drawing shows cancer in one side of the prostate. The PSA level is less than 20 and the Grade Group is 2. Also shown are the bladder, rectum, and urethra.
Stage IIB prostate cancer. Cancer is found in the prostate only. Cancer is found in one or both sides of the prostate. The prostate-specific antigen level is less than 20 and the Grade Group is 2.

In stage IIB, cancer:

EnlargeStage IIC prostate cancer; drawing shows cancer in both sides of the prostate. The PSA level is less than 20 and the Grade Group is 3 or 4. Also shown are the bladder, rectum, and urethra.
Stage IIC prostate cancer. Cancer is found in the prostate only. Cancer is found in one or both sides of the prostate. The prostate-specific antigen level is less than 20 and the Grade Group is 3 or 4.

In stage IIC, cancer:

  • is found in one or both sides of the prostate. The PSA level is lower than 20 and the Grade Group is 3 or 4.

Stage III

Stage III is divided into stages IIIA, IIIB, and IIIC.

EnlargeStage IIIA prostate cancer; drawing shows cancer in one side of the prostate. The PSA level is at least 20 and the Grade Group is 1, 2, 3, or 4. Also shown are the bladder, rectum, and urethra.
Stage IIIA prostate cancer. Cancer is found in the prostate only. Cancer is found in one or both sides of the prostate. The prostate-specific antigen level is at least 20 and the Grade Group is 1, 2, 3, or 4.

In stage IIIA, cancer:

  • is found in one or both sides of the prostate. The PSA level is at least 20 and the Grade Group is 1, 2, 3, or 4.
EnlargeStage IIIB prostate cancer; drawing shows cancer that has spread from the prostate to the seminal vesicles and to nearby tissue. The PSA can be any level and the Grade Group is 1, 2, 3, or 4. Also shown are the pelvic wall, bladder, and rectum.
Stage IIIB prostate cancer. Cancer has spread from the prostate to the seminal vesicles or to nearby tissue or organs, such as the rectum, bladder, or pelvic wall. The prostate-specific antigen can be any level and the Grade Group is 1, 2, 3, or 4.

In stage IIIB, cancer:

EnlargeStage IIIC prostate cancer; drawing shows cancer in one side of the prostate. The PSA can be any level and the Grade Group is 5. Also shown are the bladder, rectum, and urethra.
Stage IIIC prostate cancer. Cancer is found in one or both sides of the prostate and may have spread to the seminal vesicles or to nearby tissue or organs, such as the rectum, bladder, or pelvic wall. The prostate-specific antigen can be any level and the Grade Group is 5.

In stage IIIC, cancer:

Stage IV

Stage IV is divided into stages IVA and IVB.

EnlargeStage IVA prostate cancer; drawing shows cancer in one side of the prostate and in nearby lymph nodes. The PSA can be any level and the Grade Group is 1 ,2, 3, 4, or 5. Also shown are the bladder, rectum, and urethra.
Stage IVA prostate cancer. Cancer is found in one or both sides of the prostate and may have spread to the seminal vesicles or to nearby tissue or organs, such as the rectum, bladder, or pelvic wall. Cancer has spread to nearby lymph nodes. The prostate-specific antigen can be any level and the Grade Group is 1, 2, 3, 4, or 5.

In stage IVA, cancer:

EnlargeStage IVB prostate cancer; drawing shows other parts of the body where prostate cancer may spread, including the distant lymph nodes and bones. An inset shows cancer cells spreading from the prostate, through the blood and lymph system, to another part of the body where metastatic cancer has formed.
Stage IVB prostate cancer. Cancer has spread to other parts of the body, such as the bones or distant lymph nodes.

In stage IVB, cancer:

Prostate cancer may recur (come back) after it has been treated.

The cancer may come back in the prostate or in other parts of the body.

Treatment Option Overview

Key Points

  • There are different types of treatment for people with prostate cancer.
  • The following types of treatment are used:
    • Watchful waiting or active surveillance
    • Surgery
    • Radiation therapy and radiopharmaceutical therapy
    • Hormone therapy
    • Chemotherapy
    • Targeted therapy
    • Immunotherapy
    • Bisphosphonate therapy
  • There are treatments for bone pain caused by bone metastases or hormone therapy.
  • New types of treatment are being tested in clinical trials.
    • Cryosurgery
    • High-intensity focused ultrasound therapy
    • Proton beam radiation therapy
    • Photodynamic therapy
  • Treatment for prostate cancer may cause side effects.
  • Patients may want to think about taking part in a clinical trial.
  • Patients can enter clinical trials before, during, or after starting their cancer treatment.
  • Follow-up care may be needed.

There are different types of treatment for people with prostate cancer.

Different types of treatment are available for patients with prostate cancer. Some treatments are standard (the currently used treatment), and some are being tested in clinical trials. A treatment clinical trial is a research study meant to help improve current treatments or obtain information on new treatments for patients with cancer. When clinical trials show that a new treatment is better than the standard treatment, the new treatment may become the standard treatment. Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

The following types of treatment are used:

Watchful waiting or active surveillance

Watchful waiting and active surveillance are treatments used for older men who do not have signs or symptoms or have other medical conditions and for men whose prostate cancer is found during a screening test.

Watchful waiting is closely monitoring a patient’s condition without giving any treatment until signs or symptoms appear or change. Treatment is given to relieve symptoms and improve quality of life.

Active surveillance is closely following a patient’s condition without giving any treatment unless there are changes in test results. It is used to find early signs that the condition is getting worse. In active surveillance, patients are given certain exams and tests, including digital rectal exam, PSA test, transrectal ultrasound, and transrectal needle biopsy, to check if the cancer is growing. When the cancer begins to grow, treatment is given to cure the cancer.

Other terms that are used to describe not giving treatment to cure prostate cancer right after diagnosis are observation, watch and wait, and expectant management.

Surgery

Patients in good health whose tumor is in the prostate gland only may be treated with surgery to remove the tumor. The following types of surgery are used:

  • Radical prostatectomy: A surgical procedure to remove the prostate, surrounding tissue, and seminal vesicles. Removal of nearby lymph nodes may be done at the same time. The main types of radical prostatectomy include:
    • Open radical prostatectomy: An incision (cut) is made in the retropubic area (lower abdomen) or the perineum (the area between the anus and scrotum). Surgery is performed through the incision. It is harder for the surgeon to spare the nerves near the prostate or to remove nearby lymph nodes with the perineum approach.
    • Radical laparoscopic prostatectomy: Several small incisions (cuts) are made in the wall of the abdomen. A laparoscope (a thin, tube-like instrument with a light and lens for viewing) is inserted through one opening to guide the surgery. Surgical instruments are inserted through the other openings to do the surgery.
    • Robot-assisted laparoscopic radical prostatectomy: Several small cuts are made in the wall of the abdomen, as in regular laparoscopic prostatectomy. The surgeon inserts an instrument with a camera through one of the openings and surgical instruments through the other openings using robotic arms. The camera gives the surgeon a 3-dimensional view of the prostate and surrounding structures. The surgeon uses the robotic arms to do the surgery while sitting at a computer monitor near the operating table.
    EnlargeTwo panel drawing showing two ways of doing a radical prostatectomy; in the first panel, dotted line shows where incision is made through the wall of the abdomen for a retropubic prostatectomy; in the second panel, dotted line shows where incision is made in area between the scrotum and the anus for a perineal prostatectomy.
    Two types of radical prostatectomy. In a retropubic prostatectomy, the prostate is removed through an incision in the wall of the abdomen. In a perineal prostatectomy, the prostate is removed through an incision in the area between the scrotum and the anus.
  • Pelvic lymphadenectomy: A surgical procedure to remove the lymph nodes in the pelvis. A pathologist views the tissue under a microscope to look for cancer cells. If the lymph nodes contain cancer, the doctor will not remove the prostate and may recommend other treatment.
  • Transurethral resection of the prostate (TURP): A surgical procedure to remove tissue from the prostate using a resectoscope (a thin, lighted tube with a cutting tool) inserted through the urethra. This procedure is done to treat benign prostatic hypertrophy and it is sometimes done to relieve symptoms caused by a tumor before other cancer treatment is given. TURP may also be done in men whose tumor is in the prostate only and who cannot have a radical prostatectomy.
    EnlargeTransurethral resection of the prostate; drawing shows removal of tissue from the prostate using a resectoscope (a thin, lighted tube with a cutting tool at the end) inserted through the urethra.
    Transurethral resection of the prostate (TURP). Tissue is removed from the prostate using a resectoscope (a thin, lighted tube with a cutting tool at the end) inserted through the urethra. Prostate tissue that is blocking the urethra is cut away and removed through the resectoscope.

In some cases, the nerves that control penile erection can be saved with nerve-sparing surgery. However, this may not be possible in men with large tumors or tumors that are very close to the nerves.

Possible problems after prostate cancer surgery include:

  • Impotence.
  • Leakage of urine from the bladder or stool from the rectum.
  • Shortening of the penis (1 to 2 centimeters). The exact reason for this is not known.
  • Inguinal hernia (bulging of fat or part of the small intestine through weak muscles into the groin). Inguinal hernia may occur more often in men treated with radical prostatectomy than in men who have some other types of prostate surgery, radiation therapy, or prostate biopsy alone. It is most likely to occur within the first 2 years after radical prostatectomy.

Radiation therapy and radiopharmaceutical therapy

Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are different types of radiation therapy:

  • External radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. Conformal radiation is a type of external radiation therapy that uses a computer to make a 3-dimensional (3-D) picture of the tumor and shapes the radiation beams to fit the tumor. This allows a high dose of radiation to reach the tumor and causes less damage to nearby healthy tissue.

    Hypofractionated radiation therapy may be given because it has a more convenient treatment schedule. Hypofractionated radiation therapy is radiation treatment in which a larger than usual total dose of radiation is given once a day over a shorter period of time (fewer days) compared to standard radiation therapy. Hypofractionated radiation therapy may have worse side effects than standard radiation therapy, depending on the schedules used.

  • Internal radiation therapy uses a radioactive substance sealed in needles, seeds, wires, or catheters that are placed directly into or near the cancer. In early-stage prostate cancer, the radioactive seeds are placed in the prostate using needles that are inserted through the skin between the scrotum and rectum. The placement of the radioactive seeds in the prostate is guided by images from transrectal ultrasound or computed tomography (CT). The needles are removed after the radioactive seeds are placed in the prostate.
  • Radiopharmaceutical therapy uses a radioactive substance to treat cancer. Radiopharmaceutical therapy includes:
    • Alpha emitter radiation therapy uses a radioactive substance to treat prostate cancer that has spread to the bone. A radioactive substance called radium-223 is injected into a vein and travels through the bloodstream. The radium-223 collects in areas of bone with cancer and kills the cancer cells.

The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy, internal radiation therapy, and radiopharmaceutical therapy are used to treat prostate cancer.

Men treated with radiation therapy for prostate cancer have an increased risk of having bladder and/or gastrointestinal cancer.

Radiation therapy can cause impotence and urinary problems that may get worse with age.

Hormone therapy

Hormone therapy is a cancer treatment that removes hormones or blocks their action and stops cancer cells from growing. Hormones are substances made by glands in the body and circulated in the bloodstream. In prostate cancer, male sex hormones can cause prostate cancer to grow. Drugs, surgery, or other hormones are used to reduce the amount of male hormones or block them from working. This is called androgen deprivation therapy (ADT).

Hormone therapy for prostate cancer may include:

Hot flashes, impaired sexual function, loss of desire for sex, and weakened bones may occur in men treated with hormone therapy. Other side effects include diarrhea, nausea, and itching.

For more information, see Drugs Approved for Prostate Cancer.

Chemotherapy

Chemotherapy is a cancer treatment that uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. When chemotherapy is taken by mouth or injected into a vein or muscle, the drugs enter the bloodstream and can reach cancer cells throughout the body (systemic chemotherapy).

For more information, see Drugs Approved for Prostate Cancer.

Targeted therapy

Targeted therapy is a type of treatment that uses drugs or other substances to identify and attack specific cancer cells.

  • PARP inhibitors block an enzyme involved in many cell functions, including the repair of DNA damage. Blocking this enzyme may help keep cancer cells from repairing their damaged DNA, causing them to die. Olaparib is a PARP inhibitor used to treat patients with prostate cancer that has spread to other parts of the body and has mutations in certain genes, such as BRCA1 or BRCA2.

Immunotherapy

Immunotherapy is a treatment that uses the patient’s immune system to fight cancer. Substances made by the body or made in a laboratory are used to boost, direct, or restore the body’s natural defenses against cancer. Sipuleucel-T is a type of immunotherapy used to treat prostate cancer that has metastasized (spread to other parts of the body).

For more information, see Drugs Approved for Prostate Cancer.

Bisphosphonate therapy

Bisphosphonate drugs, such as clodronate or zoledronate, reduce bone disease when cancer has spread to the bone. Men who are treated with antiandrogen therapy or orchiectomy are at an increased risk of bone loss. In these men, bisphosphonate drugs lessen the risk of bone fracture (breaks). The use of bisphosphonate drugs to prevent or slow the growth of bone metastases is being studied in clinical trials.

There are treatments for bone pain caused by bone metastases or hormone therapy.

Prostate cancer that has spread to the bone and certain types of hormone therapy can weaken bones and lead to bone pain. Treatments for bone pain include:

For more information, see Cancer Pain.

New types of treatment are being tested in clinical trials.

This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied. Information about clinical trials is available from the NCI website.

Cryosurgery

Cryosurgery is a treatment that uses an instrument to freeze and destroy prostate cancer cells. Ultrasound is used to find the area that will be treated. This type of treatment is also called cryotherapy.

Cryosurgery can cause impotence and leakage of urine from the bladder or stool from the rectum.

High-intensity focused ultrasound therapy

High-intensity focused ultrasound therapy is a treatment that uses ultrasound (high-energy sound waves) to destroy cancer cells. To treat prostate cancer, an endorectal probe is used to make the sound waves.

Proton beam radiation therapy

Proton beam radiation therapy is a type of high-energy, external radiation therapy that uses streams of protons (tiny particles with a positive charge) to kill tumor cells. This type of treatment can lower the amount of radiation damage to healthy tissue near a tumor.

Photodynamic therapy

A cancer treatment that uses a drug and a certain type of laser light to kill cancer cells. A drug that is not active until it is exposed to light is injected into a vein. The drug collects more in cancer cells than in normal cells. Fiberoptic tubes are then used to carry the laser light to the cancer cells, where the drug becomes active and kills the cells. Photodynamic therapy causes little damage to healthy tissue. It is used mainly to treat tumors on or just under the skin or in the lining of internal organs.

Treatment for prostate cancer may cause side effects.

For information about side effects caused by treatment for cancer, visit our Side Effects page.

Patients may want to think about taking part in a clinical trial.

For some patients, taking part in a clinical trial may be the best treatment choice. Clinical trials are part of the cancer research process. Clinical trials are done to find out if new cancer treatments are safe and effective or better than the standard treatment.

Many of today’s standard treatments for cancer are based on earlier clinical trials. Patients who take part in a clinical trial may receive the standard treatment or be among the first to receive a new treatment.

Patients who take part in clinical trials also help improve the way cancer will be treated in the future. Even when clinical trials do not lead to effective new treatments, they often answer important questions and help move research forward.

Patients can enter clinical trials before, during, or after starting their cancer treatment.

Some clinical trials only include patients who have not yet received treatment. Other trials test treatments for patients whose cancer has not gotten better. There are also clinical trials that test new ways to stop cancer from recurring (coming back) or reduce the side effects of cancer treatment.

Clinical trials are taking place in many parts of the country. Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

Follow-up care may be needed.

As you go through treatment, you will have follow-up tests or check-ups. Some tests that were done to diagnose or stage the cancer may be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back).

Treatment of Stage I Prostate Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage I prostate cancer may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage II Prostate Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage II prostate cancer may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage III Prostate Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage III prostate cancer may include:

Treatment to control cancer that is in the prostate and lessen urinary symptoms may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage IV Prostate Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of stage IV prostate cancer may include:

Treatment to control cancer that is in the prostate and lessen urinary symptoms may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Recurrent Hormone-Sensitive or Hormone-Resistant Prostate Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of recurrent hormone-sensitive or hormone-resistant prostate cancer may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

To Learn More About Prostate Cancer

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the treatment of prostate cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Prostate Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/prostate/patient/prostate-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389353]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Breast Cancer Screening (PDQ®)–Health Professional Version

Breast Cancer Screening (PDQ®)–Health Professional Version

Overview

Note: The Overview section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.

Other PDQ summaries with information related to breast cancer screening include the following:

Mammography is the most widely used screening modality for the detection of breast cancer. There is evidence that it decreases breast cancer mortality in women aged 50 to 69 years and that it is associated with harms, including the detection of clinically insignificant cancers that pose no threat to life (overdiagnosis). The benefit of mammography for women aged 40 to 49 years is uncertain.[1,2] Randomized trials in India, Iran, and Egypt have studied the use of clinical breast examination (CBE) as a screening test . Some of these studies suggested a shift in late-stage disease; however, there is still insufficient evidence to conclude a mortality benefit.[38]Breast self-examination has been shown to have no mortality benefit .

Technologies such as ultrasound, magnetic resonance imaging, and molecular breast imaging are being evaluated, usually as adjuncts to mammography. They are not primary screening tools in the average population.

Shared decision making is increasingly recommended for individuals who are considering cancer screening. Many different types and formats of decision aids have been studied. For more information, see Cancer Screening Overview.

Screening With Mammography

Benefits

Randomized controlled trials (RCTs) initiated 50 years ago provide evidence that screening mammography reduces breast cancer–specific mortality for women aged 60 to 69 years (solid evidence) and women aged 50 to 59 years (fair evidence). Population-based studies done more recently raise questions about the benefits for populations who participate in screening for longer time periods.

Magnitude of Effect: Based on a meta-analysis of RCTs, the number of women needed to invite for screening to prevent one breast cancer death depends on the woman’s age: for women aged 39 to 49 years, 1,904 women needed (95% confidence interval [CI], 929–6,378); for women aged 50 to 59 years, 1,339 women needed (95% CI, 322–7,455); and for women aged 60 to 69 years, 377 women needed (95% CI, 230–1,050).[9]

  • Study Design: RCTs, population-based evidence.
  • Internal Validity: Variable, but meta-analysis of RCTs is good.
  • Consistency: Poor.
  • External Validity: Uncertain.

The validity of meta-analyses of RCT demonstrating a mortality benefit is limited by improvements in medical imaging and treatment in the decades since their completion. The 25-year follow-up from the Canadian National Breast Screening Study (CNBSS),[10] completed in 2014, showed no mortality benefit associated with screening mammograms.

Harms

Based on solid evidence, screening mammography may lead to the following harms:

  • Overdiagnosis and Resulting Treatment of Insignificant Cancers: Some screen-detected cancers are life threatening and others are not, with no definitive way of discriminating between them. Therefore, standard cancer therapies, including surgery, radiation, endocrine therapy, chemotherapy, and therapies targeting the HER2 receptor, are recommended for all cases, even for patients who will not benefit.
    • Magnitude of Effect: Between 20% and 50% of screen-detected cancers represent overdiagnosis based on patient age, life expectancy, and tumor type (ductal carcinoma in situ and/or invasive).[11,12] These estimates are based on two imperfect analytic methods:[11,13]
      1. Long-term follow-up of RCTs of screening.
      2. The calculation of excess incidence in large screening programs.[11,12]
    • Study Design: RCTs, descriptive, population-based comparisons, autopsy series, and series of mammary reduction specimens.
  • False-Positives With Additional Testing and Anxiety.
    • Magnitude of Effect: In the United States, approximately 10% of women are recalled for further testing after a screening examination. However, only 0.5% of tested women have cancer. Thus, approximately 9.5% of tested women have a false-positive exam.[14,15] Approximately 50% of women screened annually for 10 years in the United States experience a false-positive exam; of these, 7% to 17% will undergo biopsies.[16,17] Additional testing is less likely when prior mammograms are available for comparison.
    • Study Design: Descriptive, population-based.
  • False-Negatives With False Sense of Security and Potential Delay in Cancer Diagnosis.
    • Magnitude of Effect: Invasive breast cancer is present but undetected by mammography (false-negative) in 6% to 46% of exams. False-negative exams are more likely for mucinous and lobular types of cancer and for rapidly growing interval tumors, which become detectable between regular mammograms and in dense breasts, which are common in younger women.[1820]
    • Study Design: Descriptive, population-based.
  • Radiation-Induced Breast Cancer: Radiation-induced mutations occur with radiation doses higher than those used in a single mammography examination, so the exposure associated with a typical two-view mammogram is extremely unlikely to cause cancer.[21,22]
    • Magnitude of Effect: Theoretically, annual mammograms in women aged 40 to 80 years may cause up to one breast cancer per 1,000 women.[21,22]
    • Study Design: Descriptive, population-based.

For all of these conclusions regarding potential harms from screening mammography, internal validity, consistency, and external validity are good.

Clinical Breast Examination (CBE)

Benefits

The CNBSS trial did not study the efficacy of CBE versus no screening. Ongoing randomized trials, two in India and one in Egypt, are designed to assess the efficacy of screening CBE but have not reported mortality data.[38]Thus, the efficacy of screening CBE cannot be assessed yet.

  • Magnitude of Effect: The current evidence is insufficient to assess the additional benefits and harms of CBE. The single RCT comparing high-quality CBE with screening mammography showed equivalent benefit. CBE accuracy in the community setting might be lower than in the RCT.[36]
  • Study Design: Single RCT, population cohort studies.
  • Internal Validity: Good.
  • Consistency and External Validity: Poor.

Harms

Screening by CBE may lead to the following harms:

  • False-Positives With Additional Testing and Anxiety.
    • Magnitude of Effect: Specificity in women aged 50 to 59 years was 88% to 99%, yielding a false-positive rate of 1% to 12% for all women screened.[23]
    • Study Design: Descriptive, population based.
    • Internal Validity, Consistency, and External Validity: Good.
  • False-Negatives With Potential False Reassurance and Delay in Cancer Diagnosis.
    • Magnitude of Effect: Of women with cancer, 17% to 43% have a negative CBE. Sensitivity is higher with longer duration and higher quality of the examination by trained personnel.
    • Study Design: Descriptive, population based.
    • Internal and External Validity: Good.
    • Consistency: Fair.

Breast Self-Examination (BSE)

Benefits

BSE has been compared with no screening and has been shown to have no benefit in reducing breast cancer mortality.

  • Magnitude of Effect: No effect.[24,25]
  • Study Design: Two RCTs.
  • Internal Validity and Consistency: Fair.
  • External Validity: Poor.

Harms

There is solid evidence that formal instruction and encouragement to perform BSE leads to more breast biopsies and more diagnoses of benign breast lesions.

  • Magnitude of Effects on Health Outcomes: Biopsy rate was 1.8% among the study population, compared with 1.0% among the control group.[24]
  • Study Design: Two RCTs, cohort studies.
  • Internal Validity: Good.
  • Consistency: Fair.
  • External Validity: Poor.
References
  1. Moss SM, Cuckle H, Evans A, et al.: Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years’ follow-up: a randomised controlled trial. Lancet 368 (9552): 2053-60, 2006. [PUBMED Abstract]
  2. Moss SM, Wale C, Smith R, et al.: Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years’ follow-up: a randomised controlled trial. Lancet Oncol 16 (9): 1123-32, 2015. [PUBMED Abstract]
  3. Hassan LM, Mahmoud N, Miller AB, et al.: Evaluation of effect of self-examination and physical examination on breast cancer. Breast 24 (4): 487-90, 2015. [PUBMED Abstract]
  4. Anderson BO, Bevers TB, Carlson RW: Clinical Breast Examination and Breast Cancer Screening Guideline. JAMA 315 (13): 1403-4, 2016. [PUBMED Abstract]
  5. Yen AM, Tsau HS, Fann JC, et al.: Population-Based Breast Cancer Screening With Risk-Based and Universal Mammography Screening Compared With Clinical Breast Examination: A Propensity Score Analysis of 1 429 890 Taiwanese Women. JAMA Oncol 2 (7): 915-21, 2016. [PUBMED Abstract]
  6. Myers ER, Moorman P, Gierisch JM, et al.: Benefits and Harms of Breast Cancer Screening: A Systematic Review. JAMA 314 (15): 1615-34, 2015. [PUBMED Abstract]
  7. Mittra I, Mishra GA, Singh S, et al.: A cluster randomized, controlled trial of breast and cervix cancer screening in Mumbai, India: methodology and interim results after three rounds of screening. Int J Cancer 126 (4): 976-84, 2010. [PUBMED Abstract]
  8. Sankaranarayanan R, Ramadas K, Thara S, et al.: Clinical breast examination: preliminary results from a cluster randomized controlled trial in India. J Natl Cancer Inst 103 (19): 1476-80, 2011. [PUBMED Abstract]
  9. Nelson HD, Tyne K, Naik A, et al.: Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med 151 (10): 727-37, W237-42, 2009. [PUBMED Abstract]
  10. Miller AB, Wall C, Baines CJ, et al.: Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ 348: g366, 2014. [PUBMED Abstract]
  11. Welch HG, Black WC: Overdiagnosis in cancer. J Natl Cancer Inst 102 (9): 605-13, 2010. [PUBMED Abstract]
  12. Bleyer A, Welch HG: Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367 (21): 1998-2005, 2012. [PUBMED Abstract]
  13. Yen MF, Tabár L, Vitak B, et al.: Quantifying the potential problem of overdiagnosis of ductal carcinoma in situ in breast cancer screening. Eur J Cancer 39 (12): 1746-54, 2003. [PUBMED Abstract]
  14. Jørgensen KJ, Gøtzsche PC: Overdiagnosis in publicly organised mammography screening programmes: systematic review of incidence trends. BMJ 339: b2587, 2009. [PUBMED Abstract]
  15. Rosenberg RD, Yankaskas BC, Abraham LA, et al.: Performance benchmarks for screening mammography. Radiology 241 (1): 55-66, 2006. [PUBMED Abstract]
  16. Elmore JG, Barton MB, Moceri VM, et al.: Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338 (16): 1089-96, 1998. [PUBMED Abstract]
  17. Hubbard RA, Kerlikowske K, Flowers CI, et al.: Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med 155 (8): 481-92, 2011. [PUBMED Abstract]
  18. Rosenberg RD, Hunt WC, Williamson MR, et al.: Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology 209 (2): 511-8, 1998. [PUBMED Abstract]
  19. Kerlikowske K, Grady D, Barclay J, et al.: Likelihood ratios for modern screening mammography. Risk of breast cancer based on age and mammographic interpretation. JAMA 276 (1): 39-43, 1996. [PUBMED Abstract]
  20. Porter PL, El-Bastawissi AY, Mandelson MT, et al.: Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 91 (23): 2020-8, 1999. [PUBMED Abstract]
  21. Ronckers CM, Erdmann CA, Land CE: Radiation and breast cancer: a review of current evidence. Breast Cancer Res 7 (1): 21-32, 2005. [PUBMED Abstract]
  22. Goss PE, Sierra S: Current perspectives on radiation-induced breast cancer. J Clin Oncol 16 (1): 338-47, 1998. [PUBMED Abstract]
  23. Fenton JJ, Rolnick SJ, Harris EL, et al.: Specificity of clinical breast examination in community practice. J Gen Intern Med 22 (3): 332-7, 2007. [PUBMED Abstract]
  24. Thomas DB, Gao DL, Ray RM, et al.: Randomized trial of breast self-examination in Shanghai: final results. J Natl Cancer Inst 94 (19): 1445-57, 2002. [PUBMED Abstract]
  25. Semiglazov VF, Manikhas AG, Moiseenko VM, et al.: [Results of a prospective randomized investigation [Russia (St.Petersburg)/WHO] to evaluate the significance of self-examination for the early detection of breast cancer]. Vopr Onkol 49 (4): 434-41, 2003. [PUBMED Abstract]

Description of the Evidence

Breast Cancer Incidence and Mortality

Breast cancer is the most common noncutaneous cancer in U.S. women, with an estimated 316,950 cases of invasive disease, 59,080 cases of in situ disease, and 42,170 deaths expected in 2025.[1] Women with inherited risk, including BRCA1 and BRCA2 gene carriers, make up approximately 5% to 10% of breast cancer cases.[2] Men account for about 1% of breast cancer cases and breast cancer deaths.[1]

The biggest risk factor for breast cancer is being female followed by advancing age. Other risk factors include hormonal aspects (such as early menarche, late menopause, nulliparity, late first pregnancy, and postmenopausal hormone therapy use), alcohol consumption, and exposure to ionizing radiation.

Breast cancer incidence is higher in White women than in Black women, although Black women have a lower survival rate for every stage of disease.[3] This disparity may reflect differences in screening quality, timeliness of follow-up after abnormal screening results, quality of breast cancer treatment, and tumor type.[4] Hispanic women, Asian or Pacific Islander women, and American Indian or Alaska Native women have lower incidence and mortality rates than White or Black women.[5]

Breast cancer incidence depends on reproductive issues (such as early vs. late pregnancy, multiparity, and breastfeeding), participation in screening, and postmenopausal hormone usage. The incidence of breast cancer (especially ductal carcinoma in situ [DCIS]) increased dramatically after mammography was widely adopted in the United States and the United Kingdom.[6] Widespread use of postmenopausal hormone therapy was associated with a dramatic increase in breast cancer incidence, a trend that reversed when its use decreased.[7]

In any population, the adoption of screening is not followed by a decline in the incidence of advanced-stage cancer.

Evaluation of Breast Symptoms

Women with breast symptoms undergo diagnostic mammography as opposed to screening mammography, which is done in asymptomatic women. In a 10-year study of breast symptoms prompting medical attention, a breast mass led to a cancer diagnosis in 10.7% of cases, whereas pain was associated with cancer in only 1.8% of cases.[8]

Pathological Evaluation of Breast Tissue

Invasive breast cancer

Breast cancer can be diagnosed when breast tissue cells removed during a biopsy are studied microscopically. The breast tissue to be sampled can be identified by an abnormality on an imaging study or because it is palpable. Breast biopsies can be performed with a thin needle attached to a syringe (fine-needle aspirate), a larger needle (core biopsy), or by excision (excisional biopsy). Image guidance can improve accuracy. Needle biopsies sample an abnormal area large enough to make a diagnosis. Excisional biopsies aim to remove the entire region of abnormality.

Ductal carcinoma in situ (DCIS)

DCIS is a noninvasive condition that can be associated with, or evolve into, invasive cancer, with variable frequency and time course.[9] Some authors include DCIS with invasive breast cancer statistics, but others argue that it would be better if the term were replaced with ductal intraepithelial neoplasia, similar to the terminology used for cervical and prostate precursor lesions, and that excluding DCIS from breast cancer statistics should be considered.

DCIS is most often diagnosed by mammography. In the United States, only 4,900 women were diagnosed with DCIS in 1983 before the adoption of mammography screening, compared with approximately 59,080 women who are expected to be diagnosed in 2025.[1,9,10] The Canadian National Breast Screening Study-2, which evaluated women aged 50 to 59 years, found a fourfold increase in DCIS cases in women screened by clinical breast examination (CBE) plus mammography, compared with those screened by CBE alone, with no difference in breast cancer mortality.[11] For more information, see Breast Cancer Treatment.

The natural history of DCIS is poorly understood because nearly all DCIS cases are detected by screening and nearly all are treated. Development of breast cancer after treatment of DCIS depends on the pathological characteristics of the lesion and on the treatment. In a randomized trial, 13.4% of women whose DCIS was excised by lumpectomy developed ipsilateral invasive breast cancer within 90 months, compared with 3.9% of those treated by both lumpectomy and radiation.[12] Among women diagnosed and treated for DCIS, the percentage of women who died of breast cancer is lower than that for the age-matched population at large.[13,14] This favorable outcome may reflect the benign nature of the condition, the benefits of treatment, or the volunteer effect (i.e., women who undergo breast cancer screening are generally healthier than those who do not do so).

Atypia

Atypia, which is a risk factor for breast cancer, is found in 4% to 10% of breast biopsies.[15,16] Atypia is a diagnostic classification with considerable variation among practicing pathologists.[17]

Variability of pathologists’ diagnoses on the interpretation of breast biopsy specimens

The range of pathologists’ diagnoses of breast tissue includes benign without atypia, atypia, DCIS, and invasive breast cancer. The incidence of atypia and DCIS breast lesions has increased over the past three decades as a result of widespread mammography screening, although atypia is generally mammographically occult.[18,19] Misclassification of breast lesions may contribute to either overtreatment or undertreatment of lesions—with variability especially in the diagnoses of atypia and DCIS.[17,2024]

The largest study on this topic, the B-Path study, involved 115 practicing U.S. pathologists who interpreted a single-breast biopsy slide per case, and it compared their interpretations with an expert consensus-derived reference diagnosis.[17] While the overall agreement between the individual pathologists’ interpretations and the expert reference diagnoses was highest for invasive carcinoma, there were markedly lower levels of agreement for DCIS and atypia.[17] As the B-Path study included higher proportions of cases of atypia and DCIS than typically seen in clinical practice, the authors expanded their work by applying Bayes’ theorem to estimate how diagnostic variability affects accuracy from the perspective of a U.S. woman aged 50 to 59 years having a breast biopsy.[20] At the U.S. population level, it is estimated that 92.3% (95% confidence interval [CI], 91.4%–93.1%) of breast biopsy diagnoses would be verified by an expert reference consensus diagnosis, with 4.6% (95% CI, 3.9%–5.3%) of initial breast biopsies estimated to be overinterpreted and 3.2% (95% CI, 2.7%–3.6%) under interpreted. Figure 1 shows the predicted outcomes per 100 breast biopsies, overall and by diagnostic category.

EnlargeCharts showing the predicted outcomes for 100 breast biopsies, overall and by diagnostic category.
Figure 1. Predicted outcomes per 100 breast biopsies, overall and by diagnostic category. From Annals of Internal Medicine, Elmore JG, Nelson HD, Pepe MS, Longton GM, Tosteson AN, Geller B, Onega T, Carney PA, Jackson SL, Allison KH, Weaver DL, Variability in Pathologists’ Interpretations of Individual Breast Biopsy Slides: A Population Perspective, Volume 164, Issue 10, Pages 649–55, Copyright © 2016 American College of Physicians. All Rights Reserved. Reprinted with the permission of American College of Physicians, Inc.

To address the high rates of discordance in breast tissue diagnosis, laboratory policies that require second opinions are becoming more common. A national survey of 252 breast pathologists participating in the B-Path study found that 65% of respondents reported having a laboratory policy that requires second opinions for all cases initially diagnosed as invasive disease. Additionally, 56% of respondents reported policies that require second opinions for initial diagnoses of DCIS, while 36% of respondents reported mandatory second opinion policies for cases initially diagnosed as atypical ductal hyperplasia.[25] In this same survey, pathologists overwhelmingly agreed that second opinions improved diagnostic accuracy (96%).

A simulation study that used B-Path study data evaluated 12 strategies for obtaining second opinions to improve interpretation of breast histopathology.[26] Accuracy improved significantly with all second-opinion strategies, except for the strategy limiting second opinions only to cases of invasive cancer. Accuracy improved regardless of the pathologists’ confidence in their diagnosis or their level of experience. While the second opinions improved accuracy, they did not completely eliminate diagnostic variability, especially in the challenging case of breast atypia.

Special Populations

Women at increased risk who may benefit more from screening

Women with BRCA1 and BRCA2 genetic mutations

Women with an increased risk of breast cancer caused by a BRCA1 or BRCA2 genetic mutation might benefit from increased screening. For more information, see BRCA1 and BRCA2: Cancer Risks and Management.

Recipients of thoracic radiation

Women with Hodgkin and non-Hodgkin lymphoma who were treated with mantle irradiation have an increased risk of breast cancer, starting 10 years after completing therapy and continuing life-long. Therefore, screening mammography has been advocated, even though it may begin at a relatively young age.[27,28]

Black women

Women who self-identify as Black in the United States have a lower overall lifetime risk of developing breast cancer than White women, although they have a slightly higher breast cancer incidence in their 30s and 40s. However, Black women have a 40% higher breast cancer mortality than White women, a finding that is attributed to multiple factors, such as delayed follow-up of abnormal mammograms, later stage at diagnosis, inferior breast cancer treatment, and more aggressive tumor types.

To inform the U.S. Preventive Services Task Force (USPSTF) 2024 breast cancer screening recommendations, a modeling study was commissioned. This study used the six Cancer Intervention and Surveillance Modeling Network (CISNET) models to assess the benefits and harms of mammography screening at different starting ages and frequencies in the average-risk population of U.S. women, overall, and for Black women, specifically. The models incorporated race-specific data on breast cancer incidence, tumor subtypes, stage distribution, treatment quality/effectiveness, and mortality. Because of Black women’s inferior breast cancer outcomes, the models found that Black women experienced a slightly greater absolute benefit (i.e., more breast cancer deaths prevented) from mammography screening compared with the general population.[29] For example, the models estimated that screening 1,000 women in the general population every 2 years between the ages of 50 years and 74 years (as recommended by previous USPSTF guidelines) would avert an estimated 6.7 breast cancer deaths, while biennial screening starting at age 40 years would avert an additional 1.3 breast cancer deaths. Among Black women, screening every 2 years between the ages of 50 years and 74 years would avert an estimated 9.2 breast cancer deaths per 1,000 women screened, while biennial screening starting at age 40 years would avert an additional 1.8 breast cancer deaths. (See Table 1.)

In response to these findings and to address inequities in breast cancer outcomes, the USPSTF recommended that all average-risk women initiate screening at age 40 years (instead of at age 50 years, as previously recommended) and be screened every 2 years until age 74 years. Although this approach may result in additional lives saved, the models demonstrate that earlier screening also increases the likelihood of harm from mammography screening. In the general population of women, biennial screening from age 40 to 74 years, rather than age 50 to 74 years, would result in 503 additional false-positive results, 65 additional biopsies, and 2 additional overdiagnosed breast cancers per 1,000 women screened. Among Black women specifically, biennial screening starting at age 40 years, rather than at age 50 years, would result in 439 additional false-positive results, 75 additional biopsies, and 2 additional overdiagnosed breast cancers per 1,000 women screened. (See Table 1.)

Although mathematical modeling is increasingly used to estimate mammography’s benefits and harms, it has a number of limitations, as described later in this summary. Limitations include models’ reliance on multiple assumptions and their inability to predict and incorporate factors that are as highly dynamic as breast cancer diagnosis and treatment. The assumptions and methods used by mathematical models are difficult for nonmodelers to understand. Therefore, it can be risky to base policy decisions on the findings of mathematical models. Further, as the USPSTF has noted, to address higher breast cancer mortality in Black women, systematic approaches are needed to address existing inequities in screening quality, diagnostic processes, and treatment quality. It is not clear whether earlier screening initiation in the general population will improve outcomes among Black women without dedicated efforts to address such documented inequities.

Table 1. Lifetime Benefits and Harms of Screening 1,000 Women With Digital Breast Tomosynthesis Every 2 Years in Black Women Versus all Women, From CISNET Modeling Study to Inform the USPSTF 2024 Breast Cancer Screening Recommendationsa
Screening Group No. of Mammograms No. of Breast Cancer Deaths Averted No. of False Positives No. of Unnecessary Biopsies No. of Overdiagnosed Breast Cancers
CISNET = Cancer Intervention and Surveillance Modeling Network; No. = number; USPSTF = U.S. Preventive Services Task Force.
aAdapted from Trentham-Dietz et al.[29]
All Women  
Age 50–74 y (biennial) 11,192 6.7 873 136 12
Age 40–74 y (biennial) 16,116 8.2 1,376 201 14
Black Women  
Age 50–74 y (biennial) 10,905 9.2 814 158 16
Age 40–74 y (biennial) 15,801 10.7 1,253 233 18

Individuals who benefit less from screening

Women with limited life expectancy

The potential benefits of screening mammography occur well after the examination, often many years later, whereas the harms occur immediately. Therefore, women with limited life expectancy and comorbidities who suffer harms may do so without benefit. Nonetheless, many of these women undergo screening mammography.[30] In one study, approximately 9% of women with advanced cancer underwent cancer screening tests.[31]

Older women

Screening mammography may yield cancer diagnoses in approximately 1% of women aged 66 to 79 years, but most of these cancers are low risk.[32] The question remains whether the diagnosis and treatment of localized breast cancer in older women is beneficial.

Young women

There is no evidence of benefit in performing screening mammography in average-risk women younger than 40 years.

Men

Approximately 1% of all breast cancers occur in men.[33] Most cases are diagnosed during the evaluation of palpable lesions, which are generally easy to detect. Treatment consists of surgery, radiation, and systemic adjuvant hormone therapy or chemotherapy. For more information, see Male Breast Cancer Treatment. In this population, screening is unlikely to be beneficial.

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Kurian AW, Griffith KA, Hamilton AS, et al.: Genetic Testing and Counseling Among Patients With Newly Diagnosed Breast Cancer. JAMA 317 (5): 531-534, 2017. [PUBMED Abstract]
  3. Ellington TD, Henley SJ, Wilson RJ, et al.: Trends in breast cancer mortality by race/ethnicity, age, and US census region, United States─1999-2020. Cancer 129 (1): 32-38, 2023. [PUBMED Abstract]
  4. Jatoi I, Sung H, Jemal A: The Emergence of the Racial Disparity in U.S. Breast-Cancer Mortality. N Engl J Med 386 (25): 2349-2352, 2022. [PUBMED Abstract]
  5. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed December 30, 2024.
  6. Johnson A, Shekhdar J: Breast cancer incidence: what do the figures mean? J Eval Clin Pract 11 (1): 27-31, 2005. [PUBMED Abstract]
  7. Haas JS, Kaplan CP, Gerstenberger EP, et al.: Changes in the use of postmenopausal hormone therapy after the publication of clinical trial results. Ann Intern Med 140 (3): 184-8, 2004. [PUBMED Abstract]
  8. Barton MB, Elmore JG, Fletcher SW: Breast symptoms among women enrolled in a health maintenance organization: frequency, evaluation, and outcome. Ann Intern Med 130 (8): 651-7, 1999. [PUBMED Abstract]
  9. Allegra CJ, Aberle DR, Ganschow P, et al.: National Institutes of Health State-of-the-Science Conference statement: Diagnosis and Management of Ductal Carcinoma In Situ September 22-24, 2009. J Natl Cancer Inst 102 (3): 161-9, 2010. [PUBMED Abstract]
  10. Virnig BA, Tuttle TM, Shamliyan T, et al.: Ductal carcinoma in situ of the breast: a systematic review of incidence, treatment, and outcomes. J Natl Cancer Inst 102 (3): 170-8, 2010. [PUBMED Abstract]
  11. Miller AB, To T, Baines CJ, et al.: Canadian National Breast Screening Study-2: 13-year results of a randomized trial in women aged 50-59 years. J Natl Cancer Inst 92 (18): 1490-9, 2000. [PUBMED Abstract]
  12. Fisher B, Dignam J, Wolmark N, et al.: Lumpectomy and radiation therapy for the treatment of intraductal breast cancer: findings from National Surgical Adjuvant Breast and Bowel Project B-17. J Clin Oncol 16 (2): 441-52, 1998. [PUBMED Abstract]
  13. Ernster VL, Barclay J, Kerlikowske K, et al.: Mortality among women with ductal carcinoma in situ of the breast in the population-based surveillance, epidemiology and end results program. Arch Intern Med 160 (7): 953-8, 2000. [PUBMED Abstract]
  14. Welch HG, Prorok PC, O’Malley AJ, et al.: Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. N Engl J Med 375 (15): 1438-1447, 2016. [PUBMED Abstract]
  15. Weaver DL, Rosenberg RD, Barlow WE, et al.: Pathologic findings from the Breast Cancer Surveillance Consortium: population-based outcomes in women undergoing biopsy after screening mammography. Cancer 106 (4): 732-42, 2006. [PUBMED Abstract]
  16. Rubin E, Visscher DW, Alexander RW, et al.: Proliferative disease and atypia in biopsies performed for nonpalpable lesions detected mammographically. Cancer 61 (10): 2077-82, 1988. [PUBMED Abstract]
  17. Elmore JG, Longton GM, Carney PA, et al.: Diagnostic concordance among pathologists interpreting breast biopsy specimens. JAMA 313 (11): 1122-32, 2015. [PUBMED Abstract]
  18. Bleyer A, Welch HG: Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367 (21): 1998-2005, 2012. [PUBMED Abstract]
  19. Hall FM: Identification, biopsy, and treatment of poorly understood premalignant, in situ, and indolent low-grade cancers: are we becoming victims of our own success? Radiology 254 (3): 655-9, 2010. [PUBMED Abstract]
  20. Elmore JG, Nelson HD, Pepe MS, et al.: Variability in Pathologists’ Interpretations of Individual Breast Biopsy Slides: A Population Perspective. Ann Intern Med 164 (10): 649-55, 2016. [PUBMED Abstract]
  21. Rosai J: Borderline epithelial lesions of the breast. Am J Surg Pathol 15 (3): 209-21, 1991. [PUBMED Abstract]
  22. Schnitt SJ, Connolly JL, Tavassoli FA, et al.: Interobserver reproducibility in the diagnosis of ductal proliferative breast lesions using standardized criteria. Am J Surg Pathol 16 (12): 1133-43, 1992. [PUBMED Abstract]
  23. Wells WA, Carney PA, Eliassen MS, et al.: Statewide study of diagnostic agreement in breast pathology. J Natl Cancer Inst 90 (2): 142-5, 1998. [PUBMED Abstract]
  24. Della Mea V, Puglisi F, Bonzanini M, et al.: Fine-needle aspiration cytology of the breast: a preliminary report on telepathology through Internet multimedia electronic mail. Mod Pathol 10 (6): 636-41, 1997. [PUBMED Abstract]
  25. Geller BM, Nelson HD, Carney PA, et al.: Second opinion in breast pathology: policy, practice and perception. J Clin Pathol 67 (11): 955-60, 2014. [PUBMED Abstract]
  26. Elmore JG, Tosteson AN, Pepe MS, et al.: Evaluation of 12 strategies for obtaining second opinions to improve interpretation of breast histopathology: simulation study. BMJ 353: i3069, 2016. [PUBMED Abstract]
  27. Mariscotti G, Belli P, Bernardi D, et al.: Mammography and MRI for screening women who underwent chest radiation therapy (lymphoma survivors): recommendations for surveillance from the Italian College of Breast Radiologists by SIRM. Radiol Med 121 (11): 834-837, 2016. [PUBMED Abstract]
  28. Allen SD, Wallis MG, Cooke R, et al.: Radiologic features of breast cancer after mantle radiation therapy for Hodgkin disease: a study of 230 cases. Radiology 272 (1): 73-8, 2014. [PUBMED Abstract]
  29. Trentham-Dietz A, Chapman CH, Jayasekera J, et al.: Collaborative Modeling to Compare Different Breast Cancer Screening Strategies: A Decision Analysis for the US Preventive Services Task Force. JAMA 331 (22): 1947-1960, 2024. [PUBMED Abstract]
  30. Walter LC, Lindquist K, Covinsky KE: Relationship between health status and use of screening mammography and Papanicolaou smears among women older than 70 years of age. Ann Intern Med 140 (9): 681-8, 2004. [PUBMED Abstract]
  31. Sima CS, Panageas KS, Schrag D: Cancer screening among patients with advanced cancer. JAMA 304 (14): 1584-91, 2010. [PUBMED Abstract]
  32. Smith-Bindman R, Kerlikowske K, Gebretsadik T, et al.: Is screening mammography effective in elderly women? Am J Med 108 (2): 112-9, 2000. [PUBMED Abstract]
  33. Fentiman IS, Fourquet A, Hortobagyi GN: Male breast cancer. Lancet 367 (9510): 595-604, 2006. [PUBMED Abstract]

Mammography

Description and Background

Mammography uses ionizing radiation to image breast tissue. The examination is performed by compressing the breast firmly between two plates, which spreads out overlapping tissues and reduces the amount of radiation needed for the image. For routine screening in the United States, examinations are taken in both mediolateral oblique and craniocaudal projections.[1] Both views will include breast tissue from the nipple to the pectoral muscle. Radiation exposure is 4 to 24 mSv per standard two-view screening examination. Two-view examinations have a lower recall rate than single-view examinations because they reduce concern about abnormalities caused by superimposition of normal breast structures.[2] Two-view exams have lower interval cancer rates than single-view exams.[3]

Under the Mammography Quality Standards Act (MQSA) enacted by Congress in 1992, all U.S. facilities that perform mammography must be certified by the U.S. Food and Drug Administration (FDA) to ensure the use of standardized training for personnel and a standardized mammography technique utilizing a low radiation dose.[4] (See the FDA’s web page on Mammography Facility Surveys, Mammography Equipment Evaluations, and Medical Physicist Qualification Requirement under MQSA.) The 1998 MQSA Reauthorization Act requires that patients receive a written lay-language summary of mammography results.

The following Breast Imaging Reporting and Data System (BI-RADS) categories are used for reporting mammographic results:[5]

  • 0: Incomplete—needs additional image evaluation and/or prior mammograms for comparison.
  • 1: Negative; the risk of cancer diagnosis within 1 year is 1%.
  • 2: Benign; the risk of cancer diagnosis within 1 year is 1%.
  • 3: Probably benign; the risk of cancer diagnosis within 1 year is 2%.
  • 4: Suspicious; the risk of cancer diagnosis within 1 year is 2%–95%.
    • 4a: 2%–10%.
    • 4b: 10%–50%.
    • 4c: 50%–95%.
  • 5: Highly suggestive of malignancy; the risk of cancer diagnosis within 1 year is 95%.
  • 6: Known biopsy—proven malignancy.

Most screening mammograms are interpreted as negative or benign (BI-RADS 1 or 2, respectively); about 10% of women in the United States are asked to return for additional evaluation.[6] The percentage of women asked to return for additional evaluation varies not only by the inherent characteristics of each woman but also by the mammography facility and radiologist.

Tumor detection has not been validated as a proper surrogate outcome measure for breast cancer mortality, and novel screening methods that simply increase tumor detection rates may not necessarily reduce the risk of dying from breast cancer. Nonetheless, there are numerous studies demonstrating improvements in breast tumor detection rates with modern imaging technology, with the absence of mortality data. Between 1963 and 1990, screening mammography was assessed in nine randomized trials with breast cancer-specific mortality as the primary end point, and screening mammography recommendations were largely based on the results of these trials. However, in more recent years, novel breast screening technologies have often been assessed in clinical trials and observational studies with end points that have not been validated as proper surrogate outcome measures for breast cancer mortality.[7]

A systematic review of studies with a total of 488,099 patients compared digital breast tomosynthesis (DBT) alone, combined DBT and digital mammography (DM), and DM alone. DBT alone and combined DBT and DM were more sensitive than DM alone for breast cancer detection, but there appeared to be no significant difference in diagnostic accuracy between DBT alone and the combination of DBT and DM. A subsequent systematic review and meta-analysis by the same authors seemed to support the replacement of DM by synthetic 2-dimensional mammography (S2D) combined with DBT for breast cancer screening, as combining S2D and DBT improved tumor detection rates, and reduced recall rates, radiation dose, and overall costs.[79]

Digital Mammography and Computer-Aided Detection

DM is more expensive than screen-film mammography (SFM) but is more amenable to data storage and sharing. Performance of both SFM and DM for cancer detection rate, sensitivity, specificity, and positive predictive value (PPV) has been compared directly in several trials, with similar results in most patient groups.

The Digital Mammographic Imaging Screening Trial (DMIST) compared the findings of digital and film mammograms in 42,760 women at 33 U.S. centers. Although DM detected more cancers in women younger than 50 years (area under the curve [AUC] of 0.84 +/- 0.03 for digital; AUC of 0.69 +/- 0.05 for film; P = .002), there was no difference in breast cancer detection overall.[10] A second DMIST report found a trend toward higher AUC for film mammography than for DM in women aged 65 years and older.[11]

Another large U.S. cohort study [12] also found slightly better sensitivity for film mammography for women younger than 50 years with similar specificity.

A Dutch study compared the findings of 1.5 million digital versus 4.5 million screen-film screening mammograms performed between 2004 and 2010. A higher recall and cancer detection rate was observed for the digital screens.[13] A meta-analysis [14] of 10 studies, including the DMIST [10,11] and the U.S. cohort study,[12] compared DM and film mammography in 82,573 women who underwent both types of the exam. In a random-effects model, there was no statistically significant difference in cancer detection between the two types of mammography (AUC of 0.92 for film and AUC of 0.91 for digital). For women younger than 50 years, all studies found that sensitivity was higher for DM, but specificity was either the same or higher for film mammography.

Computer-aided detection (CAD) systems highlight suspicious regions, such as clustered microcalcifications and masses,[15] generally increasing sensitivity, decreasing specificity,[16] and increasing detection of ductal carcinoma in situ (DCIS).[17] Several CAD systems are in use. One large population-based study that compared recall rates and breast cancer detection rates before and after the introduction of CAD systems, found no change in either rate.[15,18] Another large study noted an increase in recall rate and increased DCIS detection but no improvement in invasive cancer detection rate.[17,19] Another study, using a large database and DM in women aged 40 to 89 years, found that CAD did not improve sensitivity, specificity, or detection of interval cancers, but it did detect more DCIS.[20]

The use of new screening mammography modalities by more than 270,000 women aged 65 years and older in two time periods, 2001 to 2002 and 2008 to 2009, was examined, relying on a Surveillance, Epidemiology, and End Results (SEER)–Medicare-linked database. DM increased from 2% to 30%, CAD increased from 3% to 33%, and spending increased from $660 million to $962 million. CAD was used in 74% of screening mammograms paid for by Medicare in 2008, almost twice as many screening mammograms as in 2004. There was no difference in detection rates of early-stage (DCIS or stage I) or late-stage (stage IV) tumors.[21]

Digital Breast Tomosynthesis

DBT is a mammographic technique, which was approved by the FDA (April 2018).[22] Like conventional mammography, DBT compresses the breast and uses x-rays to create images. In DBT, an x-ray tube moves in an arc around the compressed breast, taking multiple images at different angles, which are then reconstructed or synthesized into a set of 3-dimensional images by a computer. Some cancers are better seen with this method than on conventional DM or ultrasound.

DBT has rapidly become a prominent method of breast cancer screening in the United States, especially in higher-income regions with larger White populations. Use of DBT for breast cancer screening increased from 13% in 2015 to over 40% in 2017.[23] Seventy-three percent of facilities now report use of DBT.[22]

Observational data from eight screening facilities in Vermont compared the findings from 86,379 DBT and 97,378 full-field DM screening examinations performed between 2012 and 2016. Women were included if they had no history of breast cancer or breast implants. Demographic and risk factor information was obtained by questionnaire, and pathology for all biopsies was obtained through the Vermont Breast Cancer Surveillance System. Recall rate was lower with DBT than with DM (7.9% vs. 10.9%; odds ratio [OR], 0.81; 95% confidence interval [CI], 0.77–0.85), but there was no difference in the rates of biopsy or the detection of benign or malignant disease.[24]

The Oslo Tomosynthesis Screening Trial was conducted between November 2010 and December 2012 and included 24,301 women with 281 cancers. The trial compared the sensitivity of DM with DM plus DBT and with DM plus computer-aided detection and of DM plus DBT with synthesized 2-dimensional mammography plus DBT. Researchers report that DBT plus DM detected more breast cancers than DM alone (230 vs. 177, a 22.7% relative increase [95% CI, 17%–28.6%]). The trial also reported somewhat fewer false-positive findings on DBT plus DM compared with DM alone (2,081 vs. 2,466, a 0.8% relative reduction [95% CI, -1.03 to -0.57]), except in women with extremely dense breasts.[25] Difference between CAD plus DM and DM alone were not statistically significant.

The Tomosynthesis Trial in Bergen (To-Be) compared DBT plus synthesized mammography (SM) with conventional DM in population-based screening, including all women aged 50 to 69 years who were invited for breast cancer screening in Bergen, Norway. Screening was performed with two-view DBT plus SM or two-view conventional DM. A pool of eight radiologists independently double read the screening mammograms. Interim results from the first year of the trial showed:[26]

  1. Longer interpretation times for DBT plus SM (71 vs. 41 seconds).
  2. Equivalent mean glandular radiation dose.
  3. Lower overall recall rate for DBT plus SM (3.6% vs. 3.0%), despite an equivalent recall rate for women with dense breasts (3.6%).

The primary outcome results were published later.[27] The authors suggested explanations for the difference between these results and those from previous studies. First, SM may produce inferior quality images when compared with conventional DM, including poor visualization of microcalcifications. Second, the eight radiologists had wide variations in experience (ranging from 0–19 years) reading screen film and/or DM and DBT in population-based breast cancer screening.

Another study used three different Cancer Intervention and Surveillance Modeling Network (CISNET) breast cancer models and incorporated DBT screening performance data into the models to determine the cost and benefits of DBT versus DM. The study concluded that the use of DBT screening instead of DM reduced false-positives and recall rates and was projected to reduce breast cancer deaths (0–0.21 deaths per 1,000 women) and increased quality-adjusted life-years (QALYs) (1.97–3.27 per 1,000 women). However, these improvements were generally small and were associated with high costs relative to benefits: cost-effectiveness ratios ranged from $195,026 to $270,135 per QALY gained. These are greater than commonly accepted thresholds of $50,000 to $150,000 per QALY.[28]

An important limitation of the available studies and statistical modeling is lack of evidence of the clinical significance of the additional breast cancers detected by DBT (with or without DM) versus DM alone. The extent to which DBT may contribute to overdiagnosis of non–life-threatening lesions or lesions that would have still been detected in an asymptomatic woman at the time of a future DM is unknown. To date, there are no studies of DBT that show a reduction in metastatic disease or other late-stage disease.

Five ongoing randomized controlled trials with a combined recruitment of 430,000 women in Europe, the United Kingdom, and the United States are expected to provide information about clinical breast cancer outcomes of mammographic screening using DBT compared with DM.[25,29]

The randomized TOSYMA trial assessed DBT plus synthesized mammography versus digital screening mammography alone for the detection of breast cancer. The primary end points were detection of invasive breast cancer and the interval invasive cancer detection rate at 24 months. However, neither of these end points has been validated as proper surrogate outcome measures for mortality. The detection of greater numbers of early-stage cancers may confer no mortality benefit, as many of these cancers may fail to progress or progress so slowly that they pose no threat to the patient’s life (i.e., result in overdiagnosis). Moreover, if the detection of nonlethal cancers substantially increases, then the interval cancer detection rates may decrease with no subsequent reduction in mortality.[7]

A cohort study comparing DBT with DM found that the two modalities were not associated with a significant difference in risk of interval invasive cancer. However, DBT was associated with a significantly lower risk of advanced breast cancer among women with extremely dense breasts at high risk of developing breast cancer.[30] Better clarification on this issue may come from the ongoing Tomosynthesis Mammographic Imaging Screening Trial (TMIST), in which women are randomly assigned to either standard digital breast imaging or DBT, and the primary outcome is rate of advanced cancers, a composite end point that includes distant metastases.

Characteristics of Cancers Detected by Breast Imaging

Regardless of stage, nodal status, and tumor size, screen-detected cancers have a better prognosis than those diagnosed outside of screening.[2] This suggests that they are biologically less lethal (perhaps slower growing and less likely to invade locally and metastasize). This is consistent with the length bias effect associated with screening. That is, screening is more likely to detect indolent (i.e., slow-growing) breast cancers, while the more aggressive cancers are detected in the intervals between screening sessions.

A 10-year follow-up study of 1,983 Finnish women with invasive breast cancer demonstrated that the method of cancer detection is an independent prognostic variable. When controlled for age, nodal status, and tumor size, screen-detected cancers had a lower risk of relapse and better overall survival. For women whose cancers were detected outside of screening, the hazard ratio (HR) for death was 1.90 (95% CI, 1.15–3.11), even though they were more likely to receive adjuvant systemic therapy.[31]

Similarly, an examination of the breast cancers found in three randomized screening trials (Health Insurance Plan, National Breast Screening Study [NBSS]-1, and NBSS-2) accounted for stage, nodal status, and tumor size and determined that patients whose cancer was found via screening had a more favorable prognosis. The relative risks (RRs) for death were 1.53 (95% CI, 1.17–2.00) for interval and incident cancers, compared with screen-detected cancers; and 1.36 (95% CI, 1.10–1.68) for cancers in the control group, compared with screen-detected cancers.[32]

A third study compared the outcomes of 5,604 English women with screen-detected cancers to those with symptomatic breast cancers diagnosed between 1998 and 2003. After controlling for tumor size, nodal status, grade, and patient age, researchers found that the women with screen-detected cancers fared better. The HR for survival of the symptomatic women was 0.79 (95% CI, 0.63–0.99).[31,33]

The findings of these studies are also consistent with the evidence that some screen-detected cancers are low risk and represent overdiagnosis.

Screening biases–concepts

Numerous uncontrolled trials and retrospective series have documented the ability of mammography to diagnose small, early-stage breast cancers, which have a favorable clinical course.[34] Individuals whose cancer is detected by screening show a higher survival rate than those whose cancers are not detected by screening even when screening has not prolonged any lives. This concept is explained by the following four types of statistical bias:

  1. Lead-time bias: Cancer detected by screening earlier than the cancer would have been detected based on symptoms does nothing but advance the date of diagnosis. Earlier detection and treatment do not alter the natural disease progression. The 5-year survival rate from the time of diagnosis is longer for a cancer caught early even when the screening has made no difference in how long the person lives.
  2. Length bias: Screening mammography detects slowly growing cancers that have a better prognosis than cancers presenting clinically (detected by the doctor or the person when he or she gets ill). Adding these nonprogressive cancers to the life-threatening cancers (whose outcome is not affected by earlier treatment) increases the 5-year survival rate, even though screening has made no difference in how many lives are saved.
  3. Overdiagnosis bias: Screening detects cancers that would never cause symptoms or death and will increase survival rates without changing length of life.
  4. Healthy volunteer bias: Those who volunteer to participate in screening may be the healthiest, and the most health-conscious women in the general population. Therefore, their outcomes will be better than those of women who are neither healthy nor health-conscious, regardless of possible benefits of early diagnosis. One study identified that women who accept invitations to screening are more health-conscious, have better access to health care, and have lower mortality from causes other than breast cancer.[35]

The impact of these biases is not known. A new randomized controlled trial (RCT) with cause-specific mortality as the end point is needed to determine both survival benefit and impact of overdiagnosis, lead time, length time, and healthy volunteer biases. This is not achievable; randomly assigning patients to screen and nonscreen groups would be unethical, and at least three decades of follow-up would be needed, during which time changes in treatment and imaging technology would invalidate the results. Decisions must therefore be based on available RCTs, despite their limitations, and on ecological or cohort studies with adequate control groups and adjustment for confounding. For more information, see Cancer Screening Overview.

Assessment of performance and accuracy

Performance benchmarks for screening mammography in the United States are described on the Breast Cancer Surveillance Consortium (BCSC) website. For more information, see Cancer Screening Overview.

Sensitivity

The sensitivity of mammography is the percentage of women with breast cancers detected by mammographic screening. Sensitivity depends on tumor size, conspicuity, hormone sensitivity, breast tissue density, patient age, timing within the menstrual cycle, overall image quality, and interpretive skill of the radiologist. Overall sensitivity is approximately 79% but is lower in younger women and in those with dense breast tissue (see the BCSC website).[3638] Sensitivity is not the same as benefit because some woman with possible breast cancer are harmed by overdiagnosis. According to the Physician’s Insurance Association of America (PIAA), delay in diagnosis of breast cancer and errors in diagnosis are common causes of medical malpractice litigation. PIAA data from 2002 through 2011 note that the largest total indemnity payments for breast cancer claims are for errors in diagnosis.[39]

Specificity and false-positive rate

The specificity of mammography is the percentage of all women without breast cancer whose mammograms are negative. The false-positive rate is the likelihood of a positive test in women without breast cancer. Low specificity and high rate of false-positives result in unnecessary follow-up examinations and procedures. Because specificity includes all women without cancer in the denominator, even a small percentage of false-positives turns out to be a large number in absolute terms. Thus—in screening—a good specificity must be very high. Even 95% specificity is quite low for a screening test.

Interval cancers

Interval cancers are cancers that are diagnosed in the interval between a normal screening examination and the anticipated date of the next screening mammogram. One study found interval cancers occurred more often in women younger than 50 years, and had mucinous or lobular histology, high histological grade, high proliferative activity with relatively benign mammographic features, and no calcifications. Conversely, screen-detected cancers often had tubular histology, small size, low stage, hormone sensitivity, and a major component of DCIS.[40] Overall, interval cancers have characteristics of rapid growth,[40,41] are diagnosed at an advanced stage, and carry a poor prognosis.[42]

Analysis of mammography screening length bias preferentially detects indolent cancers that grow more slowly (e.g., exist for a longer length of time in the preclinical phase). In contrast, the more aggressive cancers grow faster (e.g., spend a shorter length of time in the preclinical phase) and are often detected clinically in the intervals between screening sessions. For a more detailed explanation of length and lead-time bias in cancer screening, see Cancer Screening Overview.

In recent years, novel breast cancer screening technologies have been assessed in clinical trials with the interval cancer detection rate as the primary outcome of interest, and newer screening methods recommended on the basis of reductions in interval cancer detection rates. However, the interval cancer detection rate has not been validated as a proper surrogate for breast cancer mortality, and its use as a surrogate outcome measure in breast cancer screening trials remains controversial.

In breast cancer screening programs, screen-detected breast cancers tend to have a better prognosis than cancers detected during the intervals between screening sessions (interval breast cancers). This was confirmed in a registry-based cohort study from Manitoba in which interval breast cancers were more likely than were screen-detected breast cancers to be high-grade and estrogen receptor–negative, and associated with greater than a threefold increased risk of breast cancer death.[43]

The Nova Scotia Breast Screening Program defined missed cancers as those that were false-negatives on the previous screening exam, occurring less often than 1 per 1,000 women. It concluded that interval cancers occurred in approximately 1 per 1,000 women aged 40 to 49 years, and 3 per 1,000 women aged 50 to 59 years.[44]

Conversely, a larger trial found that interval cancers were more prevalent in women aged 40 to 49 years. Those appearing within 12 months of a negative screening mammogram were usually attributable to greater breast density. Those appearing within a 24-month interval were related to decreased mammographic sensitivity caused by greater breast density or to rapid tumor growth.[45]

Variables Associated With Accuracy

Patient characteristics

The accuracy of mammography has been noted to vary with patient characteristics, such as a woman’s age, breast density, whether it is her first or subsequent exam, and the time since her last mammogram. Younger women have lower sensitivity and higher false-positive rates than do older women.

The Million Women Study in the United Kingdom found decreased sensitivity and specificity in women aged 50 to 64 years if they used postmenopausal hormone therapy, had prior breast surgery, or had a body mass index below 25.[46] Increased time since the last mammogram increases sensitivity, recall rate, and cancer detection rate and decreases specificity.[47]

The United Kingdom Age Trial assessed the efficacy of mammography screening for women younger than 50 years. After a median follow-up of 22.8 years, there was no difference in breast cancer mortality between women randomly assigned to initiate screening at age 39 to 41 years until entry into the National Health Service (NHS) breast screening program at age 50 to 52 years, versus the group that did not initiate mammography screening until entry into the NHS breast screening program (RR, 0.98; 95% CI, 0.79–1.22; P = .86).[48]

Sensitivity may be improved by scheduling the exam after the initiation of menses or during an interruption from hormone therapy.[49] Obese women have more than a 20% increased risk of having false-positive mammography, although sensitivity is unchanged.[50]

Breast density

Dense breasts may obscure the detection of small masses on mammography, thereby reducing the sensitivity of mammography.[12] For women of all ages, high breast density is associated with 10% to 29% lower sensitivity.[37] High breast density is also associated with a modestly increased risk of developing breast cancer.[51] High breast density does not confer a higher risk of breast cancer death.

High breast density is an inherent trait, which can be inherited [52,53] or affected by age; endogenous [54] and exogenous [55,56] hormones;[57] selective estrogen receptor modulators, such as tamoxifen;[58] and diet.[59] Hormone therapy is associated with increased breast density, lower mammographic sensitivity, and an increased rate of interval cancers.[60]

Dense breast tissue is not abnormal. Breast density describes the proportion of dense versus fatty tissue in a mammographic image.[61] The American College of Radiology’s BI-RADS classifies breast density as follows:

  1. Almost entirely fatty.
  2. Scattered fibroglandular densities.
  3. Heterogeneously dense.
  4. Extremely dense.

The latter two categories are considered dense breast tissue, a description affecting 43% of women aged 40 to 74 years.[62] A radiologist’s assignment of breast density is subjective and may vary over time in any woman.[62,63]

There is limited high-quality evidence to guide optimal breast cancer screening in individuals with dense breasts. For dense breasts, digital breast tomosynthesis has improved sensitivity and modestly lowers false-positive rates compared with conventional digital mammography.[64]

Supplemental imaging with ultrasonography or breast magnetic resonance imaging (MRI) has been suggested by some groups for screening women with dense breasts, but there are no data showing that this strategy results in lower breast cancer mortality. The potential harm of adding these supplemental screening tests is the likelihood of producing more false-positives, leading to additional imaging and breast biopsies, with resultant anxiety and cost.[65] Supplemental screening may also increase overdiagnosis of breast cancer with resultant overtreatment.

A study examining cancer detection end points in women with dense breasts undergoing supplemental screening (e.g., ultrasound, MRI, digital resources) showed higher breast cancer detection, but it is not known if that translates into cancer protection.[66] An RCT of supplemental MRI versus mammography only in 40,373 individuals aged 50 to 75 years with extremely dense breasts in the Netherlands was performed.[67] The study showed lower incidence of interval cancers at 2 years of follow-up in the MRI group (2.5 per 1,000 screenings in the group invited to receive MRI, 0.8 per 1,000 in the group that actually received MRI, and 5.0 per 1,000 in the group that received mammography only). This finding suggests that at least some of the excess cancers detected by MRI in the MRI group were earlier diagnoses of cancers that would have become clinically apparent. However, whether earlier diagnoses facilitated by MRI resulted in improved clinical outcomes has not been shown. As would be expected, cancers detected by MRI were more likely to have favorable tumor characteristics than interval cancers. MRI screening was associated with 79.8 false-positive results per 1,000 screenings.[67]

A prospective multicenter study, known as the Dense Breast Tomosynthesis Ultrasound Screening Trial (DBTUST), investigated whether ultrasound improved cancer detection after DBT in women with dense breasts.[68] Between December 2015 and June 2021, 6,179 women at three Pennsylvania locations underwent three rounds of annual screening with DBT and technologist-performed handheld ultrasounds. The images were interpreted by two radiologists at baseline, 12 months, and 24 months. The study concluded that technologist-performed ultrasound screening modestly improved detection of cancer in women with dense breasts by 1.3 cases per 1,000 in year 1 and by 1 case per 1,000 in years 2 to 3. This screening also increased the false-positive recall rate. In 3 years, 1,007 (16.3%) women had a false-positive recall based on DBT, and an additional 761 (12.3%) women had a false-positive recall based on ultrasound.

The FDA mandates that mammography facilities report breast density to patients and suggest that patients speak with their primary care clinician about supplemental screening.[69] However, limited evidence, inconsistent guidelines, and wording of breast density reports have generated confusion and anxiety among patients and health care providers.[70]

Tumor characteristics

Mucinous and lobular cancers are more easily detected by mammography. Rapidly growing cancers can sometimes be mistaken for normal breast tissue (e.g., medullary carcinomas, an uncommon type of invasive ductal breast cancer that is often associated with the BRCA1 mutation and aggressive characteristics, but that may demonstrate comparatively favorable responses to treatment).[40,71] Some other cancers associated with BRCA1/2 mutations, which may appear indolent, can also be missed.[72,73]

Physician characteristics

Radiologists’ performance is variable, affected by levels of experience and the volume of mammograms they interpret.[74] Biopsy recommendations of radiologists in academic settings have a higher positive PPV than do community radiologists.[75] Fellowship training in breast imaging may improve detection.[10]

Performance also varies by facility. Mammographic screening accuracy was higher at facilities offering only screening examinations than at those also performing diagnostic tests. Accuracy was also better at facilities with a breast imaging specialist on staff, performing single rather than double readings, and reviewing performance audits two or more times each year.[76]

False-positive rates are higher at facilities where concern about malpractice is high and at facilities serving vulnerable women (racial or ethnic minority women and women with less education, limited household income, or rural residence).[77] These populations may have a higher cancer prevalence and a lack of follow-up.[78]

Artificial intelligence algorithms

Artificial intelligence (AI) algorithms are being developed to interpret screening mammograms and breast biopsy specimens.[7981] While such tools may improve interpretive speed and reproducibility in the future, it is unknown if they will exacerbate overdiagnosis [82] and how they might influence physicians’ final assessments.

International comparisons

International comparisons of screening mammography have found higher specificity in countries with more highly centralized screening systems and national quality assurance programs.[83,84]

The recall rate in the United States is twice that of the United Kingdom, with no difference in the rate of cancer detection.[83]

Prevalent versus subsequent examination and the interval between exams

The likelihood of diagnosing cancer is highest with the prevalent (first) screening examination, ranging from 9 to 26 cancers per 1,000 screens, depending on the woman’s age. The likelihood decreases for follow-up examinations, ranging from 1 to 3 cancers per 1,000 screens.[85]

The optimal interval between screening mammograms is unknown; there is little variability across the trials despite differences in protocols and screening intervals. A prospective U.K. trial randomly assigned women aged 50 to 62 years to receive mammograms annually or triennially. Although tumor grade and nodal status were similar in the two groups, more cancers of slightly smaller size were detected in the annual screening group than in the triennial screening group.[86]

A large observational study found a slightly increased risk of late-stage disease at diagnosis for women in their 40s who were adhering to a 2-year versus a 1-year schedule (28% vs. 21%; OR, 1.35; 95% CI, 1.01–1.81), but no difference was seen for women in their 50s or 60s based on schedule difference.[87,88]

A Finnish study of 14,765 women aged 40 to 49 years randomly assigned women to receive either annual screens or triennial screens. There were 18 deaths from breast cancer in 100,738 life-years in the triennial screening group and 18 deaths from breast cancer in 88,780 life-years in the annual screening group (HR, 0.88; 95% CI, 0.59–1.27).[89]

Benefit of Mammographic Screening on Breast Cancer Mortality

Randomized controlled trials (RCTs)

RCTs that studied the effect of screening mammography on breast cancer mortality were performed between 1963 and 2015, with participation by over half-a-million women in four countries. One trial, the Canadian NBSS-2, compared mammography plus clinical breast examination (CBE) to CBE alone; the other trials compared screening mammography with or without CBE to usual care. For a detailed description of the trials, see the Appendix of Randomized Controlled Trials section.

The trials differed in design, recruitment of participants, interventions (both screening and treatment), management of the control group, compliance with assignment to screening and control groups, and analysis of outcomes. Some trials used individual randomization, while others used cluster randomization in which cohorts were identified and then offered screening; one trial used nonrandomized allocation by day of birth in any given month. Cluster randomization sometimes led to imbalances between the intervention and control groups. Age differences have been identified in several trials, although the differences had no major effect on the trial outcome.[90] In the Edinburgh Trial, socioeconomic status, which correlates with the risk of breast cancer mortality, differed markedly between the intervention and control groups, rendering the results uninterpretable.

Breast cancer mortality was the major outcome parameter for each of these trials, so the attribution of cause of death required scrupulous attention. The use of a blinded monitoring committee (New York) and a linkage to independent data sources, such as national mortality registries (Swedish trials), were incorporated but could not ensure impartial attributions of cancer death for women in the screening or control arms. Possible misclassification of breast cancer deaths in the Two-County Trial biasing the results in favor of screening has been suggested.[91]

There were also differences in the methodology used to analyze the results of these trials. Four of the five Swedish trials were designed to include a single screening mammogram in the control group and were timed to correspond with the end of the series of screening mammograms in the study group. The initial analysis of these trials used an evaluation analysis, tallying only the breast cancer deaths that occurred in women whose cancer was discovered at or before the last study mammogram. In some of the trials, a delay occurred in the performance of the end-of-study mammogram, resulting in more time for members of the control group to develop or be diagnosed with breast cancer. Other trials used a follow-up analysis, which counts all deaths attributed to breast cancer, regardless of the time of diagnosis. This type of analysis was used in a meta-analysis of four of the five Swedish trials as a response to concerns about the evaluation analyses.[91]

The accessibility of the data for international audits and verification also varied, with a formal audit having been undertaken only in the Canadian trials. Other trials have been audited to varying degrees, but with less rigor.[92]

All of these studies were designed to study breast cancer mortality rather than all-cause mortality because breast cancer deaths contribute only a small proportion of total mortality in any given population. When all-cause mortality in these trials was examined retrospectively, only the Edinburgh Trial showed a difference attributable to the previously noted socioeconomic differences in the study groups. The meta-analysis (follow-up methods) of the four Swedish trials also showed a small improvement in all-cause mortality.

The relative improvement in breast cancer mortality attributable to screening is approximately 15% to 20%, and the absolute improvement at the individual level is much less. The potential benefit of breast cancer screening can be expressed as the number of lives extended because of early breast cancer detection.[93,94]

The RCT results represent experiences in a defined period of regular examinations, but in practice, women undergo 20 to 30 years of screening throughout their lifetimes.[88,95]

There are several problems with using these RCTs that were performed up to 50 years ago to estimate the current benefits of screening on breast cancer mortality. These problems include the following:

  1. Improvements in mammography technology, with the ability to identify increasingly subtle abnormalities.
  2. Enhanced breast cancer awareness in the general population, with women seeking evaluation and treatment earlier.
  3. Changes in the risk factors for breast cancer in the population (including age at menarche, age at first pregnancy, obesity, and use of postmenopausal hormone treatment).
  4. Improvements in breast cancer treatment, such that larger, more advanced cancers have higher cure rates than in the past.
  5. Applying results of short-term RCTs (e.g., 5 to 10 years) to make estimates of lifetime effects of breast cancer screening.

For these reasons, estimates of the breast cancer mortality reduction resulting from current screening are based on well-conducted cohort and ecological studies in addition to the RCTs.

Effectiveness of population-based screening programs

An estimate of screening effectiveness can be obtained from nonrandomized controlled studies of screened versus nonscreened populations, case-control studies of screening in real communities, and modeling studies that examine the impact of screening on large populations. These studies must be designed to minimize or exclude the effects of unrelated trends influencing breast cancer mortality such as improved treatment and heightened awareness of breast cancer in the community.

Three population-based, observational studies from Sweden compared breast cancer mortality in the presence and absence of screening mammography programs. One study compared two adjacent time periods in 7 of the 25 counties in Sweden and found a statistically significant breast cancer mortality reduction of 18% to 32% attributable to screening.[96] The most important bias in this study is that the advent of screening in these counties occurred over a period during which dramatic improvements in the effectiveness of adjuvant breast cancer therapy were being made, changes that were not addressed by the study authors. The second study considered an 11-year period comparing seven counties with screening programs with five counties without them.[97] There was a trend in favor of screening, but again, the authors did not consider the effect of adjuvant therapy or differences in geography (urban vs. rural) that might affect treatment practices.

The third study attempted to account for the effects of treatment by using a detailed analysis by county. It found screening had little impact, a conclusion weakened by several flaws in design and analysis.[98]

In Nijmegen, the Netherlands, where a population-based screening program was undertaken in 1975, a case-cohort study found that screened women had decreased mortality compared with unscreened women (OR, 0.48).[99] However, a subsequent study comparing Nijmegen breast cancer mortality rates with neighboring Arnhem in the Netherlands, which had no screening program, showed no difference in breast cancer mortality.[100]

A community-based case-control study of screening in high-quality U.S. health care systems between 1983 and 1998 found no association between previous screening and reduced breast cancer mortality, but the mammography screening rates were generally low.[101]

A well-conducted ecological study compared three pairs of neighboring European countries that were matched on similarity in health care systems and population structure, one of which had started a national screening program some years earlier than the others. The investigators found that each country had experienced a reduction in breast cancer mortality, with no difference between matched pairs that could be attributed to screening. The authors suggested that improvements in breast cancer treatment and/or health care organizations were more likely responsible for the reduction in mortality than was screening.[102]

A systematic review of ecological and large cohort studies published through March 2011 compared breast cancer mortality in large populations of women, aged 50 to 69 years, who started breast cancer screening at different times. Seventeen studies met inclusion criteria, but all studies had methodological problems, including control group dissimilarities, insufficient adjustment for differences between areas in breast cancer risk and breast cancer treatment, and problems with similarity of measurement of breast cancer mortality between compared areas. There was great variation in results among the studies, with four studies finding a relative reduction in breast cancer mortality of 33% or more (with wide CIs) and five studies finding no reduction in breast cancer mortality. Because only a part of the overall reduction in breast cancer mortality could possibly be attributed to screening, the review concluded that any relative reduction in breast cancer mortality resulting from screening would likely be no more than 10%.[103]

A U.S. ecological analysis conducted between 1976 and 2008 examined the incidence of early-stage versus late-stage breast cancer for women aged 40 years and older. To assess a screening effect, the authors compared the magnitude of increase in early-stage cancer with the magnitude of an expected decrease in late-stage cancer. Over the study, the absolute increase in the incidence of early-stage cancer was 122 cancers per 100,000 women, while the absolute decrease in late-stage cancers was 8 cases per 100,000 women. After adjusting for changes in incidence resulting from hormone therapy and other undefined causes, the authors concluded (1) the benefit of screening on breast cancer mortality was small, (2) between 22% and 31% of diagnosed breast cancers represented overdiagnosis, and (3) the observed improvement in breast cancer mortality was probably attributable to improved treatment rather than screening.[104]

An analytic approach was used to approximate the contributions of screening versus treatment to breast cancer mortality reduction and the magnitude of overdiagnosis.[105] The shift in the size distribution of breast cancers in the United States (before the introduction of mammography) to 2012 (after its widespread dissemination), was investigated using SEER data in women aged 40 years and older. The rate of clinically meaningful breast cancer was assumed to be stable during this time. The authors documented a lower incidence of larger (≥2 cm) tumors as well as a reduction in breast cancer case fatality. The lower mortality for women with larger tumors was attributed to improvements in therapy. Two-thirds of the decline in size-specific case fatality was ascribed to improved treatment.

EnlargeChart showing the temporal relationship between the introduction of screening mammography and increased incidence of invasive breast cancer.
Figure 2. Screening mammography and increased incidence of invasive breast cancer. Shown are the incidences of overall invasive breast cancer and metastatic breast cancer among women 40 years of age or older at nine sites of the Surveillance, Epidemiology, and End Results (SEER) program, during the period from 1975 through 2012. From New England Journal of Medicine, Welch HG, Prorok PC, O’Malley AJ, Kramer BS, Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness, Volume 375, Issue 15, Pages 1438-47, Copyright © 2016 Massachusetts Medical Society. Reprinted with permission from Massachusetts Medical Society.

A prospective cohort study of community-based screening programs in the United States found that annual compared with biennial screening mammography did not reduce the proportion of unfavorable breast cancers detected in women aged 50 to 74 years or in women aged 40 to 49 years without extremely dense breasts. Women aged 40 to 49 years with extremely dense breasts did have a reduction in cancers larger than 2.0 cm with annual screening (OR, 2.39; 95% CI, 1.37–4.18).[106]

An observational study of women aged 40 to 74 years conducted in 7 of 12 Canadian screening programs compared breast cancer mortality in those participants screened at least once between 1990 and 2009 (85% of the population) with those not screened (15% of the population). The abstract reported a 40% average breast cancer mortality among participants; however, it was likely intended to report a 40% reduction in breast cancer mortality on the basis of language used in the Discussion section.[107]

Limitations of this study included the lack of all-cause mortality data, the extent of screening, screening outside of the study, screening prior to the study, the method used for calculating expected mortality and the referent rates of nonparticipants, nonparticipant survival, province-specific population differences, the extent to which limitations of the database prevented correcting for age and other differences between participants, the generalizability of the substudy data of a single province (British Columbia), and the potentially large impact of selection bias. Overall, the study lacked important data and had limitations in methodology and data analysis.

Statistical modeling of breast cancer incidence and mortality in the United States

The optimal screening interval has been addressed by modelers. Modeling makes assumptions that may not be correct; however, the credibility of modeling is greater when the model produces overall results that are consistent with randomized trials and when the model is used to interpolate or extrapolate. For example, if a model’s output agrees with RCT outcomes for annual screening, it has greater credibility to compare the relative effectiveness of biennial versus annual screening.

In 2000, the National Cancer Institute formed a consortium of modeling groups (Cancer Intervention and Surveillance Modeling Network [CISNET]) to address the relative contribution of screening and adjuvant therapy to the observed decline in breast cancer mortality in the United States.[108] These models predicted reductions in breast cancer mortality similar to those expected in the circumstances of the RCTs but updated to the use of modern adjuvant therapy. In 2009, CISNET modelers addressed several questions related to the harms and benefits of mammography, including comparing annual versus biennial screening.[88] Women aged 50 to 74 years received most of the mortality benefit of annual screening by having a mammogram every 2 years. The reduction in breast cancer deaths that was maintained because of the move from annual to biennial screening ranged across the six models from 72% to 95%, with a median of 80%.

Data are limited as to how much of the reduction in mortality, seen over time from 1990 onward, is attributable to advances in imaging techniques for screening and as to how much is the result of the improved effectiveness of therapy. In one CISNET study of six simulation models, about one-third of the decrease in breast cancer mortality in 2012 was attributable to screening, with the balance attributed to treatment.[109] In this CISNET study, the mean estimated reduction in overall breast cancer mortality rate was 49% (model range, 39%–58%), relative to the estimated baseline rate in 2012 if there was no screening or treatment; 37% (model range, 26%–51%) of this reduction was associated with screening, and 63% (model range, 49%–74%) of this reduction was associated with treatment.

Harms of Mammographic Screening

The negative effects of screening mammography are overdiagnosis (true positives that will not become clinically significant), false-positives (related to the specificity of the test), false-negatives (related to the sensitivity of the test), discomfort associated with the test, radiation risk, psychological harm, financial stress, and opportunity costs.

Table 2 provides an overview of the estimated benefits and harms of screening mammography for 10,000 women who underwent annual screening mammography over a 10-year period.[110]

Table 2. Estimated Benefits and Harms of Mammography Screening for 10,000 Women Who Underwent Annual Screening Mammography During a 10-Year Perioda
Age, y No. of Breast Cancer Deaths Averted With Mammography Screening During the Next 15 yb No. (95% CI) With ≥1 False-Positive Result During the 10 yc No. (95% CI) With ≥1 False-Positive Resulting in a Biopsy During the 10 yc No. of Breast Cancers or DCIS Diagnosed During the 10 y That Would Never Become Clinically Important (Overdiagnosis)d
No. = number; CI = confidence interval; DCIS = ductal carcinoma in situ.
aAdapted from Pace and Keating.[110]
bNumber of deaths averted are from Welch and Passow.[111] The lower bound represents breast cancer mortality reduction if the breast cancer mortality relative risk were 0.95 (based on minimal benefit from the Canadian trials [112,113]), and the upper bound represents the breast cancer mortality reduction if the relative risk were 0.64 (based on the Swedish 2-County Trial [114]).
cFalse-positive and biopsy estimates and 95% confidence intervals are 10-year cumulative risks reported in Hubbard et al. [115] and Braithwaite et al.[116]
dThe number of overdiagnosed cases are calculated by Welch and Passow.[111] The lower bound represents overdiagnosis based on results from the Malmö trial,[117] whereas the upper bound represents the estimate from Bleyer and Welch.[104]
eThe lower-bound estimate for overdiagnosis reported by Welch and Passow [111] came from the Malmö study.[117] The study did not enroll women younger than 50 years.
40 1–16 6,130 (5,940–6,310) 700 (610–780) ?–104e
50 3–32 6,130 (5,800–6,470) 940 (740–1,150) 30–137
60 5–49 4,970 (4,780–5,150) 980 (840–1,130) 64–194

Overdiagnosis

Overdiagnosis occurs when screening procedures detect cancers that would never become clinically apparent in the absence of screening. It is a special concern because identification of the cancer does not benefit the individual, while the side effects of diagnostic procedures and cancer treatment may cause significant harm. The magnitude of overdiagnosis is debated, particularly regarding DCIS, a cancer precursor whose natural history is unknown. By reason of this inability to predict confidently the tumor behavior at time of diagnosis, standard treatment for invasive cancers and DCIS can cause overtreatment. The related harms include treatment-related side effects and the number of harms associated with a cancer diagnosis, which are immediate. Conversely, a mortality benefit would occur at an uncertain point in the future.

One approach to understanding overdiagnosis is to examine the prevalence of occult cancer in women who died of noncancer causes. In an overview of seven autopsy studies, the median prevalence of occult invasive breast cancer was 1.3% (range, 0%–1.8%) and of DCIS was 8.9% (range, 0%–14.7%).[118,119]

Overdiagnosis can be indirectly measured by comparing breast cancer incidence in screened versus unscreened populations. These comparisons can be confounded by differences in the populations, such as time, geography, health behaviors, and hormone usage. The calculations of overdiagnosis can vary in their adjustment for lead-time bias.[120,121] An overview of 29 studies found calculated rates of overdiagnosis to be 0%–54%, with rates from randomized studies between 11% and 22%.[122] In Denmark, where screened and unscreened populations existed concurrently, the rate of overdiagnosis of invasive cancer was calculated to be 14% and 39%, using two different methodologies. If DCIS cases were included, the overdiagnosis rates were 24% and 48%. The second methodology accounts for regional differences in women younger than the screening age and is likely more accurate.[123]

Theoretically, in a given population, the detection of more breast cancers at an early stage would result in a subsequent reduction in the incidence of advanced-stage cancers. This has not occurred in any of the populations studied to date. Thus, the detection of more early-stage cancers likely represents overdiagnosis. A population-based study in the Netherlands showed that about one-half of all screen-detected breast cancers, including DCIS, would represent overdiagnosis and is consistent with other studies, which showed substantial rates of overdiagnosis associated with screening.[124]

A cohort study in Norway compared the increase in cancer incidence in women who were eligible for screening with the cancer incidence in younger women who were not eligible for screening, eligibility was based on age and residence. Eligible women experienced a 60% increase in incidence of localized cancers (RR, 1.60; 95% CI, 1.42–1.79), while the incidence of advanced cancers remained similar in the two groups (RR, 1.08; 95% CI, 0.86–1.35).[125]

A population study that compared different counties in the United States showed that higher rates of screening mammography use were associated with higher rates of breast cancer diagnoses, yet there was no corresponding decrease in 10-year breast cancer mortality.[126] The strengths of this study include its very large size (16 million women) and the strength and consistency of correlation observed across counties. The limitations of this study include the self-reporting of mammograms, the use of a 2-year window to estimate screening prevalence, and the period of analysis (when menopausal hormone use was present).[126]

The extent of overdiagnosis has been estimated in the Canadian NBSS, a randomized clinical trial. At the end of the five screening rounds, 142 more invasive breast cancer cases were diagnosed in the mammography arm, compared with the control arm.[127] At 15 years, the excess number of cancer cases in the mammography arm versus the control arm was 106, representing an overdiagnosis rate of 22% for the 484 screen-detected invasive cancers.[127]

As a consequence of screening mammography, greater numbers of breast cancers with indolent behavior are now identified, resulting in potential overtreatment. In a secondary analysis of a randomized trial of tamoxifen versus no systemic therapy in patients with early breast cancer, the authors utilized the 70-gene MammaPrint assay and identified 15% of patients at ultra-low risk, with 20-year disease-specific survival rates of 97% in the tamoxifen group and 94% in the control group. Thus, these patients would likely have extremely good outcomes with surgery alone. The frequency of such ultra-low risk cancers in the screened population is likely around 25%. Tools such as the 70-gene MammaPrint assay might be utilized in the future to identify these cancers, and thereby, reduce the risk of overtreatment. However, additional studies are needed to confirm these findings.[128]

In 2016, the Canadian NBSS, a randomized screening trial with 25-year follow-up, re-estimated overdiagnosis of breast cancer from mammography screening by age group and concluded that approximately 30% of invasive screen-detected cancers in women aged 40 to 49 years and up to 20% of those detected in women aged 50 to 59 years were overdiagnosed. When in situ cancers are included, the estimated risks of overdiagnosis are 40% aged 40 to 49 years and 30% in women aged 50 to 59 years. Overdiagnosis was calculated as the persistent excess incidence in the screened arm versus the control arm divided by the number of screen-detected cases (excess incidence method). Requirements for adequate estimation of overdiagnosis utilizing this method included the following:

  1. Cessation of screening among participants in the screened arm when the trial screening protocol is completed.
  2. Follow-up after screening ceases needs to be as long as the longest lead time (the time between the identification of a screen-detected cancer until symptomatic diagnosis of that cancer in the absence of screening) among the screen-detected cases.
  3. The comparison population for the cancer incidence during screening and after screening cessation in the screened arm needs to comprise individuals with comparable cancer risk in the absence of screening, as in a randomized control arm.
  4. Compliance with screening is high in the screened arm during the trial protocol screening phase, and contamination (nonprotocol screening) in the control arm is low.

These conditions were largely met in the CNBSS because population-based screening did not become available throughout Canada until a minimum of 2 years later and in most instances 5 to 10 years later (thereby, allowing for cessation of screening after the trial screening period and follow-up longer than most estimates of lead time), because contamination is documented to have been minimal, and because individual randomization resulted in 44 almost identically distributed demographic factors and risk factors between the two trial arms.

Since the conclusion of the trial screening period in 1988, differences in screening quality, intensity, invited age range, and biopsy thresholds decrease the generalizability of these results. These factors and improved imaging technique/quality and low threshold for biopsy, likely contribute to lower estimates of overdiagnosis of in situ cancer than that of invasive cancer.[129]

Table 2 shows results from a 10-year period of screening 10,000 women, estimating the number of women with breast cancer or DCIS that would never become clinically important (overdiagnosis). There was likely no overdiagnosis in the Health Insurance Plan study, which used old-technology mammography and CBE. Overdiagnosis has become more prominent in the era of improved-technology mammography. The improved technology has not, however, been shown to make further reductions in mortality than the original technology. In summary, breast cancer overdiagnosis is a complex topic. Studies that used many different methods reported a wide range of estimates, and there is currently no way to assess whether new cancer cases are overdiagnosed or are of real harm to patients.[110]

False-positives leading to additional interventions

Because fewer than 5 per 1,000 women screened have breast cancer, most abnormal mammograms are false-positives, even given the 90% specificity of mammography (i.e., 90% of all women without breast cancer will have a negative mammogram).[85]

This high false-positive rate of mammography is underestimated and can seem counterintuitive because of a statistically based cognitive bias known as the base rate fallacy. Because the base rate of breast cancer is low, (5/1000), the false-positive rate vastly exceeds the true-positive rate, even when using a very accurate test.

Mammography’s true-positive rate of approximately 90% means that, of women with breast cancer, approximately 90% will test positive. The true-negative rate of 90% means that, of women without breast cancer, 90% will test negative. A 10% false-positive rate over 1,000 people means that there will be 100 false-positives in 1,000 people. If 5 in 1,000 women have breast cancer, then 4.5 women with breast cancer will have a positive test. In other words, there will approximately 100 false-positives for every 4.5 true positives.

Further, abnormal results from screening mammograms prompt additional tests and procedures, such as mammographic views of the region of concern, ultrasound, MRI, and tissue sampling (by fine-needle aspiration, core biopsy, or excisional biopsy). Overall, the harm from unnecessary tests and treatments must be weighed against the benefit of early detection.

A study of breast cancer screening in 2,400 women enrolled in a health maintenance organization found that over a decade, 88 cancers were diagnosed, 58 of which were identified by mammography. One-third of the women had an abnormal mammogram result that required additional testing: 539 additional mammograms, 186 ultrasound examinations, and 188 biopsies. The cumulative biopsy rate (the rate of true positives) resulting from mammographic findings was approximately 1 in 4 (23.6%). The PPV of an abnormal screening mammogram in this population was 6.3% for women aged 40 to 49 years, 6.6% for women aged 50 to 59 years, and 7.8% for women aged 60 to 69 years.[130] A subsequent analysis and modeling of data from the same cohort of women, estimated that the risk of having at least one false-positive mammogram was 7.4% (95% CI, 6.4%–8.5%) at the first mammogram, 26.0% (95% CI, 24.0%–28.2%) by the fifth mammogram, and 43.1% (95% CI, 36.6%–53.6%) by the ninth mammogram.[131] Cumulative risk of at least one false-positive result depended on four patient variables (younger age, higher number of previous breast biopsies, family history of breast cancer, and current estrogen use) and three radiologic variables (longer time between screenings, failure to compare the current and previous mammograms, and the individual radiologist’s tendency to interpret mammograms as abnormal). Overall, the factor most responsible for a false-positive mammogram was the individual radiologist’s tendency to read mammograms as abnormal.

A prospective cohort study of community-based screening found that a greater proportion of women undergoing annual screening had at least one false-positive screen after 10 years than did women undergoing biennial screening, regardless of breast density. For women with scattered fibroglandular densities, the difference was 68.9% (annual) versus 46.3% (biennial) for women in their 40s. For women aged 50 to 74 years, the difference for this density group was 49.8% (annual) versus 30.7% (biennial).[106]

As shown in Table 2, the estimated number of women out of 10,000 who underwent annual screening mammography during a 10-year period with at least one false-positive test result is 6,130 for women aged 40 to 50 years and 4,970 for women aged 60 years. The number of women with a false-positive test that results in a biopsy is estimated to range from 700 to 980, depending on age.[110]

Relationship between prior screening results and subsequent breast cancer diagnosis

A longitudinal Norwegian study correlated benign abnormal screening results with long-term breast cancer outcomes. Women with any abnormal screening examination had an increased risk of subsequent breast cancer, despite a negative evaluation (see Table 3). The features of the subsequent breast cancer were more favorable for the women who had prior screening abnormalities, possibly because the preexisting breast abnormality was a marker for slow-growing premalignant disease.[132]

Table 3. Relationship Between Prior Screening Results and Subsequent Breast Cancer Diagnosis
Screening Result Absolute Risk per 1,000 Women-Years Relative Risk vs. Women Who Screened Negative
Benign with additional imaging 4.4 1.8
Negative biopsy 4.7 2.0
Atypia 6.9 2.9
In situ cancer 9.5 3.8

False-negatives leading to a false sense of security

The sensitivity of mammography ranges from 70% to 90%, depending on characteristics of the interpreting radiologist (level of experience) and characteristics of the woman (age, breast density, hormone status, and diet). Assuming an average sensitivity of 80%, mammograms will miss approximately 20% of the breast cancers that are present at the time of screening (false-negatives). Many of these missed cancers are high risk, with adverse biological characteristics. If a normal mammogram dissuades or postpones a woman or her doctor from evaluating breast symptoms, she may suffer adverse consequences. Thus, a negative mammogram should never dissuade a woman or her physician from additional evaluation of breast symptoms.

Discomfort

Positioning of the woman and breast compression reduce motion artifact and improve mammogram image quality. Pain and/or discomfort was reported by 90% of women undergoing mammography, with 12% of women rating the sensation as intense or intolerable.[133] A systematic review of 22 studies investigating mammography-associated pain and discomfort found wide variations, some of which were associated with menstrual cycle stage, anxiety, and premammography anticipation of pain.[134]

Radiation exposure

The major risk factors for radiation-associated breast cancer are young age at exposure and dose; however, rarely there are women with an inherited susceptibility to radiation-induced damage who must avoid radiation exposure at any age.[135,136] For many women older than 40 years, the likely benefits of screening mammography outweigh the risks.[137,135,138] Standard two-view screening mammography exposes the breasts to a mean dose of 4 mSv, and the whole body to 0.29 mSv.[136,139] Thus, up to one breast cancer may be induced per 1,000 women undergoing annual mammograms from ages 40 to 80 years. Such risk is doubled in women with large breasts who require increased radiation doses and in women with breast augmentation who require additional views. Radiation-induced breast cancers may be reduced fivefold for women who begin biennial screening at age 50 years rather than annually at age 40 years.[140]

Psychological harms of false-positives

A telephone survey of 308 women performed 3 months after screening mammography revealed that about one-fourth of the 68 women recalled for additional testing were still experiencing worry that affected their mood or functioning, even though that testing had ruled out cancer.[141] Research into whether the psychological impact of a false-positive test is long-standing yields mixed results. A cohort study in Spain in 2002 found immediate psychological impact to a woman after receiving a false-positive mammogram, but these results dissipated within a few months.[142] A cohort study in Denmark in 2013 that measured the psychological effects of a false-positive test result several years after the event found long-term negative psychological consequences.[143] Several studies have shown that the anxiety after evaluation of a false-positive test leads to increased participation in future screening examinations.[144147]

Financial strain and opportunity costs

These potential harms of screening have not been well researched, but it is clear that they exist.

References
  1. Siu AL; U.S. Preventive Services Task Force: Screening for Breast Cancer: U.S. Preventive Services Task Force Recommendation Statement. Ann Intern Med 164 (4): 279-96, 2016. [PUBMED Abstract]
  2. Sickles EA: Findings at mammographic screening on only one standard projection: outcomes analysis. Radiology 208 (2): 471-5, 1998. [PUBMED Abstract]
  3. Dibden A, Offman J, Parmar D, et al.: Reduction in interval cancer rates following the introduction of two-view mammography in the UK breast screening programme. Br J Cancer 110 (3): 560-4, 2014. [PUBMED Abstract]
  4. Lillie-Blanton M: Mammography Quality Standards Act : X-ray Quality Improved, Access Unaffected, but Impact on Health Outcomes Unknown: Testimony Before the Subcommittee on Health and the Environment, Committee on Commerce, House of Representatives. Washington, D.C.: Committee on Commerce, 1998. Available online. Last accessed April 9, 2025.
  5. Magny SJ, Skikhman R, Keppke AL: Breast Imaging Reporting and Data System. StatPearls Publishing, 2025. Also available online. Last accessed April 10, 2025.
  6. Rosenberg RD, Yankaskas BC, Abraham LA, et al.: Performance benchmarks for screening mammography. Radiology 241 (1): 55-66, 2006. [PUBMED Abstract]
  7. Jatoi I, Pinsky PF: Breast Cancer Screening Trials: Endpoints and Overdiagnosis. J Natl Cancer Inst 113 (9): 1131-1135, 2021. [PUBMED Abstract]
  8. Alabousi M, Zha N, Salameh JP, et al.: Digital breast tomosynthesis for breast cancer detection: a diagnostic test accuracy systematic review and meta-analysis. Eur Radiol 30 (4): 2058-2071, 2020. [PUBMED Abstract]
  9. Alabousi M, Wadera A, Kashif Al-Ghita M, et al.: Performance of Digital Breast Tomosynthesis, Synthetic Mammography, and Digital Mammography in Breast Cancer Screening: A Systematic Review and Meta-Analysis. J Natl Cancer Inst 113 (6): 680-690, 2021. [PUBMED Abstract]
  10. Pisano ED, Gatsonis C, Hendrick E, et al.: Diagnostic performance of digital versus film mammography for breast-cancer screening. N Engl J Med 353 (17): 1773-83, 2005. [PUBMED Abstract]
  11. Pisano ED, Hendrick RE, Yaffe MJ, et al.: Diagnostic accuracy of digital versus film mammography: exploratory analysis of selected population subgroups in DMIST. Radiology 246 (2): 376-83, 2008. [PUBMED Abstract]
  12. Kerlikowske K, Hubbard RA, Miglioretti DL, et al.: Comparative effectiveness of digital versus film-screen mammography in community practice in the United States: a cohort study. Ann Intern Med 155 (8): 493-502, 2011. [PUBMED Abstract]
  13. van Luijt PA, Fracheboud J, Heijnsdijk EA, et al.: Nation-wide data on screening performance during the transition to digital mammography: observations in 6 million screens. Eur J Cancer 49 (16): 3517-25, 2013. [PUBMED Abstract]
  14. Souza FH, Wendland EM, Rosa MI, et al.: Is full-field digital mammography more accurate than screen-film mammography in overall population screening? A systematic review and meta-analysis. Breast 22 (3): 217-24, 2013. [PUBMED Abstract]
  15. Gur D, Sumkin JH, Rockette HE, et al.: Changes in breast cancer detection and mammography recall rates after the introduction of a computer-aided detection system. J Natl Cancer Inst 96 (3): 185-90, 2004. [PUBMED Abstract]
  16. Ciatto S, Del Turco MR, Risso G, et al.: Comparison of standard reading and computer aided detection (CAD) on a national proficiency test of screening mammography. Eur J Radiol 45 (2): 135-8, 2003. [PUBMED Abstract]
  17. Fenton JJ, Taplin SH, Carney PA, et al.: Influence of computer-aided detection on performance of screening mammography. N Engl J Med 356 (14): 1399-409, 2007. [PUBMED Abstract]
  18. Elmore JG, Carney PA: Computer-aided detection of breast cancer: has promise outstripped performance? J Natl Cancer Inst 96 (3): 162-3, 2004. [PUBMED Abstract]
  19. Fenton JJ, Xing G, Elmore JG, et al.: Short-term outcomes of screening mammography using computer-aided detection: a population-based study of medicare enrollees. Ann Intern Med 158 (8): 580-7, 2013. [PUBMED Abstract]
  20. Lehman CD, Wellman RD, Buist DS, et al.: Diagnostic Accuracy of Digital Screening Mammography With and Without Computer-Aided Detection. JAMA Intern Med 175 (11): 1828-37, 2015. [PUBMED Abstract]
  21. Killelea BK, Long JB, Chagpar AB, et al.: Evolution of breast cancer screening in the Medicare population: clinical and economic implications. J Natl Cancer Inst 106 (8): , 2014. [PUBMED Abstract]
  22. U.S. Food and Drug Administration: Mammography Quality Standards Act (MQSA) National Statistics. Silver Spring, Md: Food and Drug Administration, 2021. Available online. Last accessed April 9, 2025.
  23. Richman IB, Hoag JR, Xu X, et al.: Adoption of Digital Breast Tomosynthesis in Clinical Practice. JAMA Intern Med 179 (9): 1292-1295, 2019. [PUBMED Abstract]
  24. Fujii MH, Herschorn SD, Sowden M, et al.: Detection Rates for Benign and Malignant Diagnoses on Breast Cancer Screening With Digital Breast Tomosynthesis in a Statewide Mammography Registry Study. AJR Am J Roentgenol 212 (3): 706-711, 2019. [PUBMED Abstract]
  25. Østerås BH, Martinsen ACT, Gullien R, et al.: Digital Mammography versus Breast Tomosynthesis: Impact of Breast Density on Diagnostic Performance in Population-based Screening. Radiology 293 (1): 60-68, 2019. [PUBMED Abstract]
  26. Aase HS, Holen ÅS, Pedersen K, et al.: A randomized controlled trial of digital breast tomosynthesis versus digital mammography in population-based screening in Bergen: interim analysis of performance indicators from the To-Be trial. Eur Radiol 29 (3): 1175-1186, 2019. [PUBMED Abstract]
  27. Hofvind S, Holen ÅS, Aase HS, et al.: Two-view digital breast tomosynthesis versus digital mammography in a population-based breast cancer screening programme (To-Be): a randomised, controlled trial. Lancet Oncol 20 (6): 795-805, 2019. [PUBMED Abstract]
  28. Lowry KP, Trentham-Dietz A, Schechter CB, et al.: Long-Term Outcomes and Cost-Effectiveness of Breast Cancer Screening With Digital Breast Tomosynthesis in the United States. J Natl Cancer Inst 112 (6): 582-589, 2020. [PUBMED Abstract]
  29. Melnikow J, Fenton JJ: Digital Breast Tomosynthesis-Diffusion Into Practice Preceding Evidence. JAMA Intern Med 179 (9): 1295-1296, 2019. [PUBMED Abstract]
  30. Kerlikowske K, Su YR, Sprague BL, et al.: Association of Screening With Digital Breast Tomosynthesis vs Digital Mammography With Risk of Interval Invasive and Advanced Breast Cancer. JAMA 327 (22): 2220-2230, 2022. [PUBMED Abstract]
  31. Joensuu H, Lehtimäki T, Holli K, et al.: Risk for distant recurrence of breast cancer detected by mammography screening or other methods. JAMA 292 (9): 1064-73, 2004. [PUBMED Abstract]
  32. Shen Y, Yang Y, Inoue LY, et al.: Role of detection method in predicting breast cancer survival: analysis of randomized screening trials. J Natl Cancer Inst 97 (16): 1195-203, 2005. [PUBMED Abstract]
  33. Wishart GC, Greenberg DC, Britton PD, et al.: Screen-detected vs symptomatic breast cancer: is improved survival due to stage migration alone? Br J Cancer 98 (11): 1741-4, 2008. [PUBMED Abstract]
  34. Moody-Ayers SY, Wells CK, Feinstein AR: “Benign” tumors and “early detection” in mammography-screened patients of a natural cohort with breast cancer. Arch Intern Med 160 (8): 1109-15, 2000. [PUBMED Abstract]
  35. Walpole E, Dunn N, Youl P, et al.: Nonbreast cancer incidence, treatment received and outcomes: Are there differences in breast screening attendees versus nonattendees? Int J Cancer 147 (3): 856-865, 2020. [PUBMED Abstract]
  36. Carney PA, Miglioretti DL, Yankaskas BC, et al.: Individual and combined effects of age, breast density, and hormone replacement therapy use on the accuracy of screening mammography. Ann Intern Med 138 (3): 168-75, 2003. [PUBMED Abstract]
  37. Rosenberg RD, Hunt WC, Williamson MR, et al.: Effects of age, breast density, ethnicity, and estrogen replacement therapy on screening mammographic sensitivity and cancer stage at diagnosis: review of 183,134 screening mammograms in Albuquerque, New Mexico. Radiology 209 (2): 511-8, 1998. [PUBMED Abstract]
  38. Kerlikowske K, Grady D, Barclay J, et al.: Likelihood ratios for modern screening mammography. Risk of breast cancer based on age and mammographic interpretation. JAMA 276 (1): 39-43, 1996. [PUBMED Abstract]
  39. Lee MV, Konstantinoff K, Gegios A, et al.: Breast cancer malpractice litigation: A 10-year analysis and update in trends. Clin Imaging 60 (1): 26-32, 2020. [PUBMED Abstract]
  40. Porter PL, El-Bastawissi AY, Mandelson MT, et al.: Breast tumor characteristics as predictors of mammographic detection: comparison of interval- and screen-detected cancers. J Natl Cancer Inst 91 (23): 2020-8, 1999. [PUBMED Abstract]
  41. Hakama M, Holli K, Isola J, et al.: Aggressiveness of screen-detected breast cancers. Lancet 345 (8944): 221-4, 1995. [PUBMED Abstract]
  42. Tabár L, Faberberg G, Day NE, et al.: What is the optimum interval between mammographic screening examinations? An analysis based on the latest results of the Swedish two-county breast cancer screening trial. Br J Cancer 55 (5): 547-51, 1987. [PUBMED Abstract]
  43. Niraula S, Biswanger N, Hu P, et al.: Incidence, Characteristics, and Outcomes of Interval Breast Cancers Compared With Screening-Detected Breast Cancers. JAMA Netw Open 3 (9): e2018179, 2020. [PUBMED Abstract]
  44. Payne JI, Caines JS, Gallant J, et al.: A review of interval breast cancers diagnosed among participants of the Nova Scotia Breast Screening Program. Radiology 266 (1): 96-103, 2013. [PUBMED Abstract]
  45. Buist DS, Porter PL, Lehman C, et al.: Factors contributing to mammography failure in women aged 40-49 years. J Natl Cancer Inst 96 (19): 1432-40, 2004. [PUBMED Abstract]
  46. Banks E, Reeves G, Beral V, et al.: Influence of personal characteristics of individual women on sensitivity and specificity of mammography in the Million Women Study: cohort study. BMJ 329 (7464): 477, 2004. [PUBMED Abstract]
  47. Yankaskas BC, Taplin SH, Ichikawa L, et al.: Association between mammography timing and measures of screening performance in the United States. Radiology 234 (2): 363-73, 2005. [PUBMED Abstract]
  48. Duffy SW, Vulkan D, Cuckle H, et al.: Effect of mammographic screening from age 40 years on breast cancer mortality (UK Age trial): final results of a randomised, controlled trial. Lancet Oncol 21 (9): 1165-1172, 2020. [PUBMED Abstract]
  49. American Cancer Society: Breast Density and Your Mammogram Report. Atlanta, Ga: American Cancer Society, 2017. Available online. Last accessed date April 9, 2025.
  50. Elmore JG, Carney PA, Abraham LA, et al.: The association between obesity and screening mammography accuracy. Arch Intern Med 164 (10): 1140-7, 2004. [PUBMED Abstract]
  51. McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
  52. Pankow JS, Vachon CM, Kuni CC, et al.: Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J Natl Cancer Inst 89 (8): 549-56, 1997. [PUBMED Abstract]
  53. Boyd NF, Dite GS, Stone J, et al.: Heritability of mammographic density, a risk factor for breast cancer. N Engl J Med 347 (12): 886-94, 2002. [PUBMED Abstract]
  54. White E, Velentgas P, Mandelson MT, et al.: Variation in mammographic breast density by time in menstrual cycle among women aged 40-49 years. J Natl Cancer Inst 90 (12): 906-10, 1998. [PUBMED Abstract]
  55. Harvey JA, Pinkerton JV, Herman CR: Short-term cessation of hormone replacement therapy and improvement of mammographic specificity. J Natl Cancer Inst 89 (21): 1623-5, 1997. [PUBMED Abstract]
  56. Laya MB, Larson EB, Taplin SH, et al.: Effect of estrogen replacement therapy on the specificity and sensitivity of screening mammography. J Natl Cancer Inst 88 (10): 643-9, 1996. [PUBMED Abstract]
  57. Baines CJ, Dayan R: A tangled web: factors likely to affect the efficacy of screening mammography. J Natl Cancer Inst 91 (10): 833-8, 1999. [PUBMED Abstract]
  58. Brisson J, Brisson B, Coté G, et al.: Tamoxifen and mammographic breast densities. Cancer Epidemiol Biomarkers Prev 9 (9): 911-5, 2000. [PUBMED Abstract]
  59. Boyd NF, Greenberg C, Lockwood G, et al.: Effects at two years of a low-fat, high-carbohydrate diet on radiologic features of the breast: results from a randomized trial. Canadian Diet and Breast Cancer Prevention Study Group. J Natl Cancer Inst 89 (7): 488-96, 1997. [PUBMED Abstract]
  60. Crouchley K, Wylie E, Khong E: Hormone replacement therapy and mammographic screening outcomes in Western Australia. J Med Screen 13 (2): 93-7, 2006. [PUBMED Abstract]
  61. Melnikow J, Fenton JJ, Whitlock EP, et al.: Supplemental Screening for Breast Cancer in Women With Dense Breasts: A Systematic Review for the U.S. Preventive Services Task Force. Ann Intern Med 164 (4): 268-78, 2016. [PUBMED Abstract]
  62. Sprague BL, Gangnon RE, Burt V, et al.: Prevalence of mammographically dense breasts in the United States. J Natl Cancer Inst 106 (10): , 2014. [PUBMED Abstract]
  63. Ho JM, Jafferjee N, Covarrubias GM, et al.: Dense breasts: a review of reporting legislation and available supplemental screening options. AJR Am J Roentgenol 203 (2): 449-56, 2014. [PUBMED Abstract]
  64. Ho TH, Bissell MCS, Kerlikowske K, et al.: Cumulative Probability of False-Positive Results After 10 Years of Screening With Digital Breast Tomosynthesis vs Digital Mammography. JAMA Netw Open 5 (3): e222440, 2022. [PUBMED Abstract]
  65. Smetana GW, Elmore JG, Lee CI, et al.: Should This Woman With Dense Breasts Receive Supplemental Breast Cancer Screening?: Grand Rounds Discussion From Beth Israel Deaconess Medical Center. Ann Intern Med 169 (7): 474-484, 2018. [PUBMED Abstract]
  66. Comstock CE, Gatsonis C, Newstead GM, et al.: Comparison of Abbreviated Breast MRI vs Digital Breast Tomosynthesis for Breast Cancer Detection Among Women With Dense Breasts Undergoing Screening. JAMA 323 (8): 746-756, 2020. [PUBMED Abstract]
  67. Bakker MF, de Lange SV, Pijnappel RM, et al.: Supplemental MRI Screening for Women with Extremely Dense Breast Tissue. N Engl J Med 381 (22): 2091-2102, 2019. [PUBMED Abstract]
  68. Berg WA, Zuley ML, Chang TS, et al.: Prospective Multicenter Diagnostic Performance of Technologist-Performed Screening Breast Ultrasound After Tomosynthesis in Women With Dense Breasts (the DBTUST). J Clin Oncol 41 (13): 2403-2415, 2023. [PUBMED Abstract]
  69. U.S. Food and Drug Administration: Mammography Quality Standards Act. Food and Drug Administration, 2023. Available online. Last accessed April 9, 2025.
  70. DenseBreast-info: Legislation and Regulations for Dense Breast [News]. Deer Park, NY: DenseBreast-info, Inc., 2019. Available online. May 6, 2019.
  71. Wallis MG, Walsh MT, Lee JR: A review of false negative mammography in a symptomatic population. Clin Radiol 44 (1): 13-5, 1991. [PUBMED Abstract]
  72. Tilanus-Linthorst M, Verhoog L, Obdeijn IM, et al.: A BRCA1/2 mutation, high breast density and prominent pushing margins of a tumor independently contribute to a frequent false-negative mammography. Int J Cancer 102 (1): 91-5, 2002. [PUBMED Abstract]
  73. Ganott MA, Harris KM, Klaman HM, et al.: Analysis of False-Negative Cancer Cases Identified with a Mammography Audit. Breast J 5 (3): 166-175, 1999. [PUBMED Abstract]
  74. Elmore JG, Jackson SL, Abraham L, et al.: Variability in interpretive performance at screening mammography and radiologists’ characteristics associated with accuracy. Radiology 253 (3): 641-51, 2009. [PUBMED Abstract]
  75. Meyer JE, Eberlein TJ, Stomper PC, et al.: Biopsy of occult breast lesions. Analysis of 1261 abnormalities. JAMA 263 (17): 2341-3, 1990. [PUBMED Abstract]
  76. Taplin S, Abraham L, Barlow WE, et al.: Mammography facility characteristics associated with interpretive accuracy of screening mammography. J Natl Cancer Inst 100 (12): 876-87, 2008. [PUBMED Abstract]
  77. Jackson SL, Taplin SH, Sickles EA, et al.: Variability of interpretive accuracy among diagnostic mammography facilities. J Natl Cancer Inst 101 (11): 814-27, 2009. [PUBMED Abstract]
  78. Goldman LE, Walker R, Miglioretti DL, et al.: Accuracy of diagnostic mammography at facilities serving vulnerable women. Med Care 49 (1): 67-75, 2011. [PUBMED Abstract]
  79. Schaffter T, Buist DSM, Lee CI, et al.: Evaluation of Combined Artificial Intelligence and Radiologist Assessment to Interpret Screening Mammograms. JAMA Netw Open 3 (3): e200265, 2020. [PUBMED Abstract]
  80. McKinney SM, Sieniek M, Godbole V, et al.: International evaluation of an AI system for breast cancer screening. Nature 577 (7788): 89-94, 2020. [PUBMED Abstract]
  81. Mercan E, Mehta S, Bartlett J, et al.: Assessment of Machine Learning of Breast Pathology Structures for Automated Differentiation of Breast Cancer and High-Risk Proliferative Lesions. JAMA Netw Open 2 (8): e198777, 2019. [PUBMED Abstract]
  82. Adamson AS, Welch HG: Machine Learning and the Cancer-Diagnosis Problem – No Gold Standard. N Engl J Med 381 (24): 2285-2287, 2019. [PUBMED Abstract]
  83. Smith-Bindman R, Chu PW, Miglioretti DL, et al.: Comparison of screening mammography in the United States and the United kingdom. JAMA 290 (16): 2129-37, 2003. [PUBMED Abstract]
  84. Elmore JG, Nakano CY, Koepsell TD, et al.: International variation in screening mammography interpretations in community-based programs. J Natl Cancer Inst 95 (18): 1384-93, 2003. [PUBMED Abstract]
  85. Kerlikowske K, Grady D, Barclay J, et al.: Positive predictive value of screening mammography by age and family history of breast cancer. JAMA 270 (20): 2444-50, 1993. [PUBMED Abstract]
  86. The Breast Screening Frequency Trial Group: The frequency of breast cancer screening: results from the UKCCCR Randomised Trial. United Kingdom Co-ordinating Committee on Cancer Research. Eur J Cancer 38 (11): 1458-64, 2002. [PUBMED Abstract]
  87. White E, Miglioretti DL, Yankaskas BC, et al.: Biennial versus annual mammography and the risk of late-stage breast cancer. J Natl Cancer Inst 96 (24): 1832-9, 2004. [PUBMED Abstract]
  88. Mandelblatt JS, Cronin KA, Bailey S, et al.: Effects of mammography screening under different screening schedules: model estimates of potential benefits and harms. Ann Intern Med 151 (10): 738-47, 2009. [PUBMED Abstract]
  89. Parvinen I, Chiu S, Pylkkänen L, et al.: Effects of annual vs triennial mammography interval on breast cancer incidence and mortality in ages 40-49 in Finland. Br J Cancer 105 (9): 1388-91, 2011. [PUBMED Abstract]
  90. Gøtzsche PC, Olsen O: Is screening for breast cancer with mammography justifiable? Lancet 355 (9198): 129-34, 2000. [PUBMED Abstract]
  91. Gøtzsche PC, Nielsen M: Screening for breast cancer with mammography. Cochrane Database Syst Rev (4): CD001877, 2006. [PUBMED Abstract]
  92. Nyström L, Andersson I, Bjurstam N, et al.: Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 359 (9310): 909-19, 2002. [PUBMED Abstract]
  93. Kerlikowske K: Efficacy of screening mammography among women aged 40 to 49 years and 50 to 69 years: comparison of relative and absolute benefit. J Natl Cancer Inst Monogr (22): 79-86, 1997. [PUBMED Abstract]
  94. Glasziou PP, Woodward AJ, Mahon CM: Mammographic screening trials for women aged under 50. A quality assessment and meta-analysis. Med J Aust 162 (12): 625-9, 1995. [PUBMED Abstract]
  95. Nelson HD, Tyne K, Naik A, et al.: Screening for breast cancer: an update for the U.S. Preventive Services Task Force. Ann Intern Med 151 (10): 727-37, W237-42, 2009. [PUBMED Abstract]
  96. Duffy SW, Tabár L, Chen HH, et al.: The impact of organized mammography service screening on breast carcinoma mortality in seven Swedish counties. Cancer 95 (3): 458-69, 2002. [PUBMED Abstract]
  97. Jonsson H, Nyström L, Törnberg S, et al.: Service screening with mammography of women aged 50-69 years in Sweden: effects on mortality from breast cancer. J Med Screen 8 (3): 152-60, 2001. [PUBMED Abstract]
  98. Autier P, Koechlin A, Smans M, et al.: Mammography screening and breast cancer mortality in Sweden. J Natl Cancer Inst 104 (14): 1080-93, 2012. [PUBMED Abstract]
  99. Broeders MJ, Peer PG, Straatman H, et al.: Diverging breast cancer mortality rates in relation to screening? A comparison of Nijmegen to Arnhem and the Netherlands, 1969-1997. Int J Cancer 92 (2): 303-8, 2001. [PUBMED Abstract]
  100. Verbeek AL, Hendriks JH, Holland R, et al.: Reduction of breast cancer mortality through mass screening with modern mammography. First results of the Nijmegen project, 1975-1981. Lancet 1 (8388): 1222-4, 1984. [PUBMED Abstract]
  101. Elmore JG, Reisch LM, Barton MB, et al.: Efficacy of breast cancer screening in the community according to risk level. J Natl Cancer Inst 97 (14): 1035-43, 2005. [PUBMED Abstract]
  102. Autier P, Boniol M, Gavin A, et al.: Breast cancer mortality in neighbouring European countries with different levels of screening but similar access to treatment: trend analysis of WHO mortality database. BMJ 343: d4411, 2011. [PUBMED Abstract]
  103. Harris R, Yeatts J, Kinsinger L: Breast cancer screening for women ages 50 to 69 years a systematic review of observational evidence. Prev Med 53 (3): 108-14, 2011. [PUBMED Abstract]
  104. Bleyer A, Welch HG: Effect of three decades of screening mammography on breast-cancer incidence. N Engl J Med 367 (21): 1998-2005, 2012. [PUBMED Abstract]
  105. Welch HG, Prorok PC, O’Malley AJ, et al.: Breast-Cancer Tumor Size, Overdiagnosis, and Mammography Screening Effectiveness. N Engl J Med 375 (15): 1438-1447, 2016. [PUBMED Abstract]
  106. Kerlikowske K, Zhu W, Hubbard RA, et al.: Outcomes of screening mammography by frequency, breast density, and postmenopausal hormone therapy. JAMA Intern Med 173 (9): 807-16, 2013. [PUBMED Abstract]
  107. Coldman A, Phillips N, Wilson C, et al.: Pan-Canadian study of mammography screening and mortality from breast cancer. J Natl Cancer Inst 106 (11): , 2014. [PUBMED Abstract]
  108. Berry DA, Cronin KA, Plevritis SK, et al.: Effect of screening and adjuvant therapy on mortality from breast cancer. N Engl J Med 353 (17): 1784-92, 2005. [PUBMED Abstract]
  109. Plevritis SK, Munoz D, Kurian AW, et al.: Association of Screening and Treatment With Breast Cancer Mortality by Molecular Subtype in US Women, 2000-2012. JAMA 319 (2): 154-164, 2018. [PUBMED Abstract]
  110. Pace LE, Keating NL: A systematic assessment of benefits and risks to guide breast cancer screening decisions. JAMA 311 (13): 1327-35, 2014. [PUBMED Abstract]
  111. Welch HG, Passow HJ: Quantifying the benefits and harms of screening mammography. JAMA Intern Med 174 (3): 448-54, 2014. [PUBMED Abstract]
  112. Miller AB, To T, Baines CJ, et al.: The Canadian National Breast Screening Study-1: breast cancer mortality after 11 to 16 years of follow-up. A randomized screening trial of mammography in women age 40 to 49 years. Ann Intern Med 137 (5 Part 1): 305-12, 2002. [PUBMED Abstract]
  113. Miller AB, To T, Baines CJ, et al.: Canadian National Breast Screening Study-2: 13-year results of a randomized trial in women aged 50-59 years. J Natl Cancer Inst 92 (18): 1490-9, 2000. [PUBMED Abstract]
  114. Tabár L, Vitak B, Chen TH, et al.: Swedish two-county trial: impact of mammographic screening on breast cancer mortality during 3 decades. Radiology 260 (3): 658-63, 2011. [PUBMED Abstract]
  115. Hubbard RA, Kerlikowske K, Flowers CI, et al.: Cumulative probability of false-positive recall or biopsy recommendation after 10 years of screening mammography: a cohort study. Ann Intern Med 155 (8): 481-92, 2011. [PUBMED Abstract]
  116. Braithwaite D, Zhu W, Hubbard RA, et al.: Screening outcomes in older US women undergoing multiple mammograms in community practice: does interval, age, or comorbidity score affect tumor characteristics or false positive rates? J Natl Cancer Inst 105 (5): 334-41, 2013. [PUBMED Abstract]
  117. Zackrisson S, Andersson I, Janzon L, et al.: Rate of over-diagnosis of breast cancer 15 years after end of Malmö mammographic screening trial: follow-up study. BMJ 332 (7543): 689-92, 2006. [PUBMED Abstract]
  118. Welch HG, Black WC: Using autopsy series to estimate the disease “reservoir” for ductal carcinoma in situ of the breast: how much more breast cancer can we find? Ann Intern Med 127 (11): 1023-8, 1997. [PUBMED Abstract]
  119. Black WC, Welch HG: Advances in diagnostic imaging and overestimations of disease prevalence and the benefits of therapy. N Engl J Med 328 (17): 1237-43, 1993. [PUBMED Abstract]
  120. Duffy SW, Lynge E, Jonsson H, et al.: Complexities in the estimation of overdiagnosis in breast cancer screening. Br J Cancer 99 (7): 1176-8, 2008. [PUBMED Abstract]
  121. Gøtzsche PC, Jørgensen KJ, Maehlen J, et al.: Estimation of lead time and overdiagnosis in breast cancer screening. Br J Cancer 100 (1): 219; author reply 220, 2009. [PUBMED Abstract]
  122. Nelson HD, Pappas M, Cantor A, et al.: Harms of Breast Cancer Screening: Systematic Review to Update the 2009 U.S. Preventive Services Task Force Recommendation. Ann Intern Med 164 (4): 256-67, 2016. [PUBMED Abstract]
  123. Jørgensen KJ, Gøtzsche PC, Kalager M, et al.: Breast Cancer Screening in Denmark: A Cohort Study of Tumor Size and Overdiagnosis. Ann Intern Med 166 (5): 313-323, 2017. [PUBMED Abstract]
  124. Autier P, Boniol M, Koechlin A, et al.: Effectiveness of and overdiagnosis from mammography screening in the Netherlands: population based study. BMJ 359: j5224, 2017. [PUBMED Abstract]
  125. Lousdal ML, Kristiansen IS, Møller B, et al.: Effect of organised mammography screening on stage-specific incidence in Norway: population study. Br J Cancer 114 (5): 590-6, 2016. [PUBMED Abstract]
  126. Harding C, Pompei F, Burmistrov D, et al.: Breast Cancer Screening, Incidence, and Mortality Across US Counties. JAMA Intern Med 175 (9): 1483-9, 2015. [PUBMED Abstract]
  127. Miller AB, Wall C, Baines CJ, et al.: Twenty five year follow-up for breast cancer incidence and mortality of the Canadian National Breast Screening Study: randomised screening trial. BMJ 348: g366, 2014. [PUBMED Abstract]
  128. Esserman LJ, Yau C, Thompson CK, et al.: Use of Molecular Tools to Identify Patients With Indolent Breast Cancers With Ultralow Risk Over 2 Decades. JAMA Oncol 3 (11): 1503-1510, 2017. [PUBMED Abstract]
  129. Baines CJ, To T, Miller AB: Revised estimates of overdiagnosis from the Canadian National Breast Screening Study. Prev Med 90: 66-71, 2016. [PUBMED Abstract]
  130. Elmore JG, Barton MB, Moceri VM, et al.: Ten-year risk of false positive screening mammograms and clinical breast examinations. N Engl J Med 338 (16): 1089-96, 1998. [PUBMED Abstract]
  131. Christiansen CL, Wang F, Barton MB, et al.: Predicting the cumulative risk of false-positive mammograms. J Natl Cancer Inst 92 (20): 1657-66, 2000. [PUBMED Abstract]
  132. Lilleborge M, Falk RS, Russnes H, et al.: Risk of breast cancer by prior screening results among women participating in BreastScreen Norway. Cancer 125 (19): 3330-3337, 2019. [PUBMED Abstract]
  133. Freitas R, Fiori WF, Ramos FJ, et al.: [Discomfort and pain during mammography]. Rev Assoc Med Bras 52 (5): 333-6, 2006 Sep-Oct. [PUBMED Abstract]
  134. Armstrong K, Moye E, Williams S, et al.: Screening mammography in women 40 to 49 years of age: a systematic review for the American College of Physicians. Ann Intern Med 146 (7): 516-26, 2007. [PUBMED Abstract]
  135. Swift M, Morrell D, Massey RB, et al.: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325 (26): 1831-6, 1991. [PUBMED Abstract]
  136. Kopans DB: Mammography and radiation risk. In: Janower ML, Linton OW, eds.: Radiation Risk: a Primer. American College of Radiology, 1996, pp 21-22.
  137. Feig SA, Ehrlich SM: Estimation of radiation risk from screening mammography: recent trends and comparison with expected benefits. Radiology 174 (3 Pt 1): 638-47, 1990. [PUBMED Abstract]
  138. Helzlsouer KJ, Harris EL, Parshad R, et al.: Familial clustering of breast cancer: possible interaction between DNA repair proficiency and radiation exposure in the development of breast cancer. Int J Cancer 64 (1): 14-7, 1995. [PUBMED Abstract]
  139. Suleiman OH, Spelic DC, McCrohan JL, et al.: Mammography in the 1990s: the United States and Canada. Radiology 210 (2): 345-51, 1999. [PUBMED Abstract]
  140. Miglioretti DL, Lange J, van den Broek JJ, et al.: Radiation-Induced Breast Cancer Incidence and Mortality From Digital Mammography Screening: A Modeling Study. Ann Intern Med 164 (4): 205-14, 2016. [PUBMED Abstract]
  141. Lerman C, Trock B, Rimer BK, et al.: Psychological side effects of breast cancer screening. Health Psychol 10 (4): 259-67, 1991. [PUBMED Abstract]
  142. Sandin B, Chorot P, Valiente RM, et al.: Adverse psychological effects in women attending a second-stage breast cancer screening. J Psychosom Res 52 (5): 303-9, 2002. [PUBMED Abstract]
  143. Brodersen J, Siersma VD: Long-term psychosocial consequences of false-positive screening mammography. Ann Fam Med 11 (2): 106-15, 2013 Mar-Apr. [PUBMED Abstract]
  144. Gram IT, Lund E, Slenker SE: Quality of life following a false positive mammogram. Br J Cancer 62 (6): 1018-22, 1990. [PUBMED Abstract]
  145. Burman ML, Taplin SH, Herta DF, et al.: Effect of false-positive mammograms on interval breast cancer screening in a health maintenance organization. Ann Intern Med 131 (1): 1-6, 1999. [PUBMED Abstract]
  146. Pisano ED, Earp J, Schell M, et al.: Screening behavior of women after a false-positive mammogram. Radiology 208 (1): 245-9, 1998. [PUBMED Abstract]
  147. Brewer NT, Salz T, Lillie SE: Systematic review: the long-term effects of false-positive mammograms. Ann Intern Med 146 (7): 502-10, 2007. [PUBMED Abstract]

Other Imaging Modalities: Ultrasound, Magnetic Resonance Imaging (MRI), and Thermography

Ultrasound

Ultrasound is used for the diagnostic evaluation of palpable or mammographically identified masses, rather than serving as a primary screening modality. A review of the literature and expert opinion by the European Group for Breast Cancer Screening concluded that “there is little evidence to support the use of ultrasound in population breast cancer screening at any age.”[1] The Japan Strategic Anti-cancer Randomized Trial (J-START) is a screening trial that randomly assigned women aged 40 to 49 years to either mammography and ultrasound screening (intervention group) or mammography screening alone (control group). The initial results of this trial indicated that supplemental screening with ultrasound (i.e., mammography + ultrasound versus mammography alone) increased the detection rate of early-stage breast cancers, but its effect on mortality is not clear at this time.[2]

Breast MRI

Breast MRI is used in women for diagnostic evaluation, including evaluating the integrity of silicone breast implants, assessing palpable masses after surgery or radiation therapy, detecting mammographically and sonographically occult breast cancer in patients with axillary nodal metastasis, and preoperative planning for some patients with known breast cancer. There is no ionizing radiation exposure with this procedure. MRI has been promoted as a screening test for breast cancer among women at elevated risk of breast cancer based on BRCA1/2 mutation carriers, a strong family history of breast cancer, or several genetic syndromes, such as Li-Fraumeni syndrome or Cowden disease.[35] Breast MRI is more sensitive but less specific than screening mammography [6,7] and is up to 35 times as expensive.[812]

Thermography

Using infrared imaging techniques, thermography of the breast identifies temperature changes in the skin as a possible indicator of an underlying tumor, displaying these changes in color patterns. Thermographic devices have been approved by the U.S. Food and Drug Administration under the 510(k) process, but no randomized trials have compared thermography to other screening modalities. Small cohort studies do not suggest any additional benefit for the use of thermography as an adjunct modality.[13,14]

References
  1. Teh W, Wilson AR: The role of ultrasound in breast cancer screening. A consensus statement by the European Group for Breast Cancer Screening. Eur J Cancer 34 (4): 449-50, 1998. [PUBMED Abstract]
  2. Ohuchi N, Suzuki A, Sobue T, et al.: Sensitivity and specificity of mammography and adjunctive ultrasonography to screen for breast cancer in the Japan Strategic Anti-cancer Randomized Trial (J-START): a randomised controlled trial. Lancet 387 (10016): 341-348, 2016. [PUBMED Abstract]
  3. Warner E, Plewes DB, Hill KA, et al.: Surveillance of BRCA1 and BRCA2 mutation carriers with magnetic resonance imaging, ultrasound, mammography, and clinical breast examination. JAMA 292 (11): 1317-25, 2004. [PUBMED Abstract]
  4. Kriege M, Brekelmans CT, Boetes C, et al.: Efficacy of MRI and mammography for breast-cancer screening in women with a familial or genetic predisposition. N Engl J Med 351 (5): 427-37, 2004. [PUBMED Abstract]
  5. Warner E, Hill K, Causer P, et al.: Prospective study of breast cancer incidence in women with a BRCA1 or BRCA2 mutation under surveillance with and without magnetic resonance imaging. J Clin Oncol 29 (13): 1664-9, 2011. [PUBMED Abstract]
  6. Lord SJ, Lei W, Craft P, et al.: A systematic review of the effectiveness of magnetic resonance imaging (MRI) as an addition to mammography and ultrasound in screening young women at high risk of breast cancer. Eur J Cancer 43 (13): 1905-17, 2007. [PUBMED Abstract]
  7. Lehman CD, Gatsonis C, Kuhl CK, et al.: MRI evaluation of the contralateral breast in women with recently diagnosed breast cancer. N Engl J Med 356 (13): 1295-303, 2007. [PUBMED Abstract]
  8. Pataky R, Armstrong L, Chia S, et al.: Cost-effectiveness of MRI for breast cancer screening in BRCA1/2 mutation carriers. BMC Cancer 13: 339, 2013. [PUBMED Abstract]
  9. Saadatmand S, Tilanus-Linthorst MM, Rutgers EJ, et al.: Cost-effectiveness of screening women with familial risk for breast cancer with magnetic resonance imaging. J Natl Cancer Inst 105 (17): 1314-21, 2013. [PUBMED Abstract]
  10. Ahern CH, Shih YC, Dong W, et al.: Cost-effectiveness of alternative strategies for integrating MRI into breast cancer screening for women at high risk. Br J Cancer 111 (8): 1542-51, 2014. [PUBMED Abstract]
  11. Pistolese CA, Ciarrapico AM, della Gatta F, et al.: Inappropriateness of breast imaging: cost analysis. Radiol Med 118 (6): 984-94, 2013. [PUBMED Abstract]
  12. Cott Chubiz JE, Lee JM, Gilmore ME, et al.: Cost-effectiveness of alternating magnetic resonance imaging and digital mammography screening in BRCA1 and BRCA2 gene mutation carriers. Cancer 119 (6): 1266-76, 2013. [PUBMED Abstract]
  13. Wishart GC, Campisi M, Boswell M, et al.: The accuracy of digital infrared imaging for breast cancer detection in women undergoing breast biopsy. Eur J Surg Oncol 36 (6): 535-40, 2010. [PUBMED Abstract]
  14. Arora N, Martins D, Ruggerio D, et al.: Effectiveness of a noninvasive digital infrared thermal imaging system in the detection of breast cancer. Am J Surg 196 (4): 523-6, 2008. [PUBMED Abstract]

Nonimaging Screening Modalities

Clinical Breast Examination

The effect of screening clinical breast examination (CBE) on breast cancer mortality has not been fully established. The Canadian National Breast Screening Study (CNBSS) compared high-quality CBE plus mammography with CBE alone in women aged 50 to 59 years. CBE, lasting 5 to 10 minutes per breast, was conducted by trained health professionals, with periodic evaluations of performance quality. The frequency of cancer diagnosis, stage, interval cancers, and breast cancer mortality were similar in the two groups and similar to outcomes with mammography alone.[1] With a mean follow-up of 13 years, breast cancer mortality was similar in the two groups (mortality rate ratio, 1.02; 95% confidence interval [CI], 0.78–1.33).[2] The investigators estimated the operating characteristics for CBE alone; for 19,965 women aged 50 to 59 years, sensitivity was 83%, 71%, 57%, 83%, and 77% for years 1, 2, 3, 4, and 5 of the trial, respectively; specificity ranged between 88% and 96%. Positive predictive value (PPV), which is the proportion of cancers detected per abnormal examination, was estimated to be 3% to 4%. For 25,620 women aged 40 to 49 years who were examined only at entry, the estimated sensitivity was 71%, specificity was 84%, and PPV was 1.5%.[3]

In clinical trials involving community clinicians, CBE-type screening had higher specificity (97%–99%) [4] and lower sensitivity (22%–36%) than that experienced by examiners.[58] A study of screening in women with a positive family history of breast cancer showed that, after a normal initial evaluation, the patient herself, or her clinician performing a CBE, identified more cancers than did mammography.[9]

Another study examined the usefulness of adding CBE to screening mammography; among 61,688 women older than 40 years and screened by mammography and CBE, sensitivity for mammography was 78%, and combined mammography-CBE sensitivity was 82%. Specificity was lower for women undergoing both screening modalities than it was for women undergoing mammography alone (97% vs. 99%).[10] Another study reported the results of a large cluster randomized controlled trial in India that assessed the efficacy of screening with CBE versus no screening on breast cancer mortality.[11] This trial recruited 151,538 women aged 35 to 64 years with no history of breast cancer. After 20 years of follow-up, there was an overall statistically nonsignificant 15% reduction in breast cancer mortality in the screening with CBE arm versus the control arm, but a post hoc subset analysis demonstrated a statistically significant 30% relative reduction in mortality attributable to screening with CBE for women older than 50 years. However, the results of the subset analysis should be interpreted with caution, as this was a cluster randomized trial with only 20 clusters, which raises concerns about potential imbalances between the control and study arms of the trial. Other international trials of CBE are under way, one in India and one in Egypt.

Breast Self-Examination (BSE)

Monthly BSE has been promoted, but there is no evidence that it reduces breast cancer mortality.[12,13] The only large, randomized clinical trial of BSE assigned 266,064 female Shanghai factory workers to either BSE instruction with reinforcement and encouragement, or instruction on the prevention of lower back pain. Neither group underwent any other breast cancer screening. After 10 to 11 years of follow-up, 135 breast cancer deaths occurred in the instruction group, and 131 cancer deaths occurred in the control group (relative risk [RR], 1.04; 95% CI, 0.82–1.33). Although the number of invasive breast cancers diagnosed in the two groups was about the same, women in the instruction group had more breast biopsies and more benign lesions diagnosed than did women in the control group.[14]

Other research results on BSE come from three trials. First, more than 100,000 Leningrad women were assigned to BSE training or control by cluster randomization; the BSE group training had more breast biopsies without improved breast cancer mortality.[15] Second, in the United Kingdom Trial of Early Detection of Breast Cancer, more than 63,500 women aged 45 to 64 years were invited to educational sessions about BSE. After 10 years of follow-up, breast cancer mortality rates were similar to the rates in centers without organized BSE education (RR, 1.07; 95% CI, 0.93–1.22).[16] Thirdly, in contrast, a case-control study nested within the CNBSS compared self-reported BSE frequency before enrollment with breast cancer mortality. Women who examined their breasts visually, used their finger pads for palpation, and used their three middle fingers had a lower breast cancer mortality rate.[17]

Tissue Sampling (Fine-Needle Aspiration, Nipple Aspirate, Ductal Lavage)

Various methods to analyze breast tissue for malignancy have been proposed to screen for breast cancer, but none have been associated with mortality reduction.

References
  1. Baines CJ: The Canadian National Breast Screening Study: a perspective on criticisms. Ann Intern Med 120 (4): 326-34, 1994. [PUBMED Abstract]
  2. Miller AB, To T, Baines CJ, et al.: Canadian National Breast Screening Study-2: 13-year results of a randomized trial in women aged 50-59 years. J Natl Cancer Inst 92 (18): 1490-9, 2000. [PUBMED Abstract]
  3. Baines CJ, Miller AB, Bassett AA: Physical examination. Its role as a single screening modality in the Canadian National Breast Screening Study. Cancer 63 (9): 1816-22, 1989. [PUBMED Abstract]
  4. Fenton JJ, Rolnick SJ, Harris EL, et al.: Specificity of clinical breast examination in community practice. J Gen Intern Med 22 (3): 332-7, 2007. [PUBMED Abstract]
  5. Fenton JJ, Barton MB, Geiger AM, et al.: Screening clinical breast examination: how often does it miss lethal breast cancer? J Natl Cancer Inst Monogr (35): 67-71, 2005. [PUBMED Abstract]
  6. Bobo JK, Lee NC, Thames SF: Findings from 752,081 clinical breast examinations reported to a national screening program from 1995 through 1998. J Natl Cancer Inst 92 (12): 971-6, 2000. [PUBMED Abstract]
  7. Oestreicher N, White E, Lehman CD, et al.: Predictors of sensitivity of clinical breast examination (CBE). Breast Cancer Res Treat 76 (1): 73-81, 2002. [PUBMED Abstract]
  8. Kolb TM, Lichy J, Newhouse JH: Comparison of the performance of screening mammography, physical examination, and breast US and evaluation of factors that influence them: an analysis of 27,825 patient evaluations. Radiology 225 (1): 165-75, 2002. [PUBMED Abstract]
  9. Gui GP, Hogben RK, Walsh G, et al.: The incidence of breast cancer from screening women according to predicted family history risk: Does annual clinical examination add to mammography? Eur J Cancer 37 (13): 1668-73, 2001. [PUBMED Abstract]
  10. Oestreicher N, Lehman CD, Seger DJ, et al.: The incremental contribution of clinical breast examination to invasive cancer detection in a mammography screening program. AJR Am J Roentgenol 184 (2): 428-32, 2005. [PUBMED Abstract]
  11. Mittra I, Mishra GA, Dikshit RP, et al.: Effect of screening by clinical breast examination on breast cancer incidence and mortality after 20 years: prospective, cluster randomised controlled trial in Mumbai. BMJ 372: n256, 2021. [PUBMED Abstract]
  12. Baxter N; Canadian Task Force on Preventive Health Care: Preventive health care, 2001 update: should women be routinely taught breast self-examination to screen for breast cancer? CMAJ 164 (13): 1837-46, 2001. [PUBMED Abstract]
  13. Humphrey LL, Helfand M, Chan BK, et al.: Breast cancer screening: a summary of the evidence for the U.S. Preventive Services Task Force. Ann Intern Med 137 (5 Part 1): 347-60, 2002. [PUBMED Abstract]
  14. Thomas DB, Gao DL, Ray RM, et al.: Randomized trial of breast self-examination in Shanghai: final results. J Natl Cancer Inst 94 (19): 1445-57, 2002. [PUBMED Abstract]
  15. Semiglazov VF, Moiseyenko VM, Bavli JL, et al.: The role of breast self-examination in early breast cancer detection (results of the 5-years USSR/WHO randomized study in Leningrad). Eur J Epidemiol 8 (4): 498-502, 1992. [PUBMED Abstract]
  16. Ellman R, Moss SM, Coleman D, et al.: Breast cancer mortality after 10 years in the UK trial of early detection of breast cancer. UK Trial of Early Detection of Breast Cancer Group. The Breast 2 (1): 13-20, 1993.
  17. Harvey BJ, Miller AB, Baines CJ, et al.: Effect of breast self-examination techniques on the risk of death from breast cancer. CMAJ 157 (9): 1205-12, 1997. [PUBMED Abstract]

Appendix of Randomized Controlled Trials

Health Insurance Plan, United States 1963 [1,2]

  • Age at entry: 40 to 64 years.
  • Randomization: Individual, but with significant imbalances in the distribution of women between assigned arms, as evidenced by menopausal status (P < .0001) and education (P = .05).
  • Sample size: 30,000 to 31,092 in study group and 30,565 to 30,765 in control group.
  • Consistency of reports: Variation in sample size reports.
  • Intervention: Annual two-view mammography (MMG) and clinical breast examination (CBE) for 3 years.
  • Control: Usual care.
  • Compliance: Nonattenders to first screening (35% of the screened population) were not reinvited.
  • Contamination: Screening MMG was not available outside the trial; frequency of CBE performance among control women is unknown.
  • Cause of death attribution: Women who died of breast cancer that had been diagnosed before entry into the study were excluded from the comparison between the screening and control groups. However, these exclusions were determined differently within the two groups. Women in the screening group were excluded based on determinations made during the study period at their initial screening visits. These women were dropped from all further consideration in the study. By design, controls did not have regular clinic visits, so the prestudy cancer status of control patients was not determined. When a control patient died and her cause of death was determined to be breast cancer, a retrospective examination was made to determine the date of diagnosis of her disease. If the date preceded the study period, the control patient was excluded from the analysis. This difference in methodology has the potential for a substantial bias when comparing breast cancer mortality between the two groups, and this bias is likely to favor screening.
  • Analysis: Follow-up.
  • External audit: No.
  • Follow-up duration: 18 years.
  • Relative risk of breast cancer death, screening versus control (95% confidence interval [CI]): 0.71 (0.55–0.93) at 10 years and 0.77 (0.61–0.97) at 15 years.
  • Comments: The MMGs were of poor quality compared with those of later trials, because of outdated equipment and techniques. The intervention consisted of both MMG and CBE. Major concerns about trial performance are the validity of the initial randomization and the differential exclusion of women with a prior history of breast cancer.

Malmo, Sweden 1976 [3,4]

  • Age at entry: 45 to 69 years.
  • Randomization: Individual, within each birth-year cohort for the first phase, MMG screening trial (MMST I). Individual for the entire birth cohort 1933 to 1945 for MMST II but with variations imposed by limited resources. Validation by analysis of age in both groups shows no significant difference.
  • Exclusions: In a Swedish meta-analysis, there were 393 women with preexisting breast cancer excluded from the intervention group and 412 from the control group. Overall, however, 86 more women were excluded from the intervention group than from the control group.
  • Sample size: 21,088 study and 21,195 control.
  • Consistency of reports: No variation in patient numbers.
  • Intervention: Two-view MMG every 18 to 24 months × 5.
  • Control: Usual care, with MMG at study end.
  • Compliance: Participants migrating from Malmo (2% per year) were not followed. The participation rate of study women was 74% for the first round and 70% for subsequent rounds.
  • Contamination: 24% of all control women had at least one MMG, as did 35% of the control women aged 45 to 49 years.
  • Cause of death attribution: 76% autopsy rate in early report, lower rate later. Cause of death assessment blinded for women with a breast cancer diagnosis. Linked to Swedish Cause of Death Registry.
  • Analysis: Evaluation, initially. Follow-up analysis, as part of the Swedish meta-analysis.[5]
  • External audit: No.
  • Follow-up duration: 12 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.81 (0.62–1.07).
  • Comments: Evaluation analysis required a correction factor for the delay in the performance of MMG in the control group. The two Malmo trials, MMST I and MMST II, have been combined for most analyses.

Östergötland (County E of Two-County Trial), Sweden 1977 [68]

  • Age at entry: 40 to 74 years.
  • Randomization: Geographic cluster, with stratification for residence (urban or rural), socioeconomic factors, and size. Baseline breast cancer incidence and mortality were comparable between the randomly assigned geographic clusters. The study women were older than the control women, P < .0001, which would not have had a major effect on the outcome of the trial.
  • Exclusions: Women with preexisting breast cancer were excluded from both groups, but the numbers were reported differently in different publications. The Swedish meta-analysis excluded all women with a prior breast cancer diagnosis, regardless of group assignment.
  • Sample size: Variably reported, ranging from 38,405 to 39,034 in the study and from 37,145 to 37,936 in the control.
  • Consistency of reports: Variable.
  • Intervention: Three single-view MMGs every 2 years for women younger than 50 years and every 33 months for women 50 years and older.
  • Control: Usual care, with MMG at study end.
  • Compliance: 89% screened.
  • Contamination: 13% of women in the Two-County trial had MMG as part of routine care, mostly in 1983 and 1984.
  • Cause of death attribution: Determined by a team of local physicians. When results were recalculated in the Swedish meta-analysis, using data from the Swedish Cause of Death Registry, there was less benefit for screening than had been previously reported.
  • Analysis: Evaluation initially, with correction for delay in control group MMG. Follow-up analysis, as part of the Swedish meta-analysis.[5]
  • External audit: No. However, breast cancer cases and deaths were adjudicated by a Swedish panel that included the trial’s investigators.[9]
  • Follow-up duration: 12 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.82 (0.64–1.05), Östergötland.
  • Comments: Concerns were raised about the randomization methodology and the evaluation analysis, which required a correction for late performance of the control group MMG. The Swedish meta-analysis resolved these questions appropriately.

Kopparberg (County W of Two-County Trial), Sweden 1977 [68]

  • Age at entry: 40 to 74 years.
  • Randomization: Geographic cluster, with stratification for residence (urban or rural), socioeconomic factors, and size. The process for randomization has not been described. The study women were older than the control women, P < .0001, but this would not have had a major effect on the outcome of the trial.
  • Exclusions: Women with preexisting breast cancer were excluded from both groups, but the numbers were reported differently in different publications.
  • Sample size: Variably reported, ranging from 38,562 to 39,051 in intervention and from 18,478 to 18,846 in control.
  • Consistency of reports: Variable.
  • Intervention: Three single-view MMGs every 2 years for women younger than 50 years and every 33 months for women aged 50 years and older.
  • Control: Usual care, with MMG at study end.
  • Compliance: 89% participation.
  • Contamination: 13% of women in the Two-County trial had MMG as part of routine care, mostly between 1983 and 1984.
  • Cause of death attribution: Determined by a team of local physicians (see Östergötland).
  • Analysis: Evaluation.
  • External audit: No. However, breast cancer cases and deaths were adjudicated by a Swedish panel that included the trial’s investigators.[9]
  • Follow-up duration: 12 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.68 (0.52–0.89).

Edinburgh, United Kingdom 1976 [10]

  • Age at entry: 45 to 64 years.
  • Randomization: Cluster by physician practices, though many randomization assignments were changed after study start. Within each practice, there was inconsistent recruitment of women, according to the physician’s judgment about each woman’s suitability for the trial. Large differences in socioeconomic status between practices were not recognized until after the study end.
  • Exclusions: More women (338) with preexisting breast cancer were excluded from the intervention group than from the control group (177).
  • Sample size: 23,226 study and 21,904 control.
  • Consistency of reports: Good.
  • Intervention: Initially, two-view MMG and CBE; then annual CBE, with single-view MMG in years 3, 5, and 7.
  • Control: Usual care.
  • Compliance: 61% screened.
  • Contamination: None.
  • Cause of death attribution: Cancer Registry Data.
  • Analysis: Follow-up.
  • External audit: No.
  • Follow-up duration: 10 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.84 (0.63–1.12).
  • Comments: Randomization process was flawed. Socioeconomic differences between study and control groups probably account for the higher all-cause mortality in control women compared with screened women. This difference in all-cause mortality was four times greater than the breast cancer mortality in the control group, and therefore, may account for the higher breast cancer mortality in the control group compared with screened women. Although a correction factor was used in the final analysis, this may not adjust the analysis sufficiently.

The study design and conduct make these results difficult to assess or combine with the results of other trials.

National Breast Screening Study (NBSS)-1, Canada 1980 [11]

  • Age at entry: 40 to 49 years.
  • Randomization: Individual volunteers, with names entered successively on allocation lists. Although criticisms of the randomization procedure have been made, a thorough independent review found no evidence of subversion and that subversion on a scale large enough to affect the results was unlikely.[12]
  • Exclusions: Few, balanced between groups.
  • Sample size: 25,214 study (100% screened after entry CBE) and 25,216 control.
  • Consistency of reports: Good.
  • Intervention: Annual two-view MMG and CBE for 4 to 5 years.
  • Control: Usual care.
  • Compliance: Initially 100%, decreased to 85.5% by screen five.
  • Contamination: 26.4% in usual care group.
  • Cause of death attribution: Death certificates, with review of questionable cases by a blinded review panel. Also linked with the Canadian Mortality Data Base, Statistics Canada.
  • Analysis: Follow-up.
  • External audit: Yes. Independent, with analysis of data by several reviewers.
  • Follow-up duration: 25 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 1.09 (0.80–1.49).
  • Comments: This is the only trial specifically designed to study women aged 40 to 49 years. Cancers diagnosed at entry in both study and control groups were included. Concerns were expressed before the completion of the trial about the technical adequacy of the MMGs, the training of the radiologists, and the standardization of the equipment, which prompted an independent external review. The primary deficiency identified by this review was the use of the mediolateral view from 1980 to 1985 instead of the mediolateral oblique view, which was used after 1985.[13] Subsequent analyses found the size and stage of the cancers detected mammographically in this trial to be equivalent to those of other trials.[14] This trial and NBSS-2 differ from the other randomized controlled trials (RCTs) in the consistent use of adjuvant hormone therapy and chemotherapy following local breast cancer therapy in women with axillary node-positive disease.

NBSS-2, Canada 1980 [15]

  • Age at entry: 50 to 59 years.
  • Randomization: Individual volunteer (see NBSS-1).
  • Exclusions: Few, balanced between groups.
  • Sample size: 19,711 study (100% screened after entry CBE) and 19,694 control.
  • Intervention: Annual two-view MMG and CBE.
  • Control: Annual CBE.
  • Compliance: Initially 100%, decreased to 86.7% by screen five in the MMG and CBE group. Initially 100%, decreased to 85.4% by screen five in the CBE only group.
  • Contamination: 16.9% of the CBE only group.
  • Cause of death attribution: Death certificates, with review of questionable cases by a blinded review panel. Also linked with the Canadian Mortality Data Base, Statistics Canada.
  • Analysis: Follow-up.
  • External audit: Yes. Independent with analysis of data by several reviewers.
  • Follow-up duration: 25 years.
  • Relative risk of breast cancer death, screening versus control: 1.02 (95% CI, 0.77–1.36)
  • Comments: This trial is unique in that it compares one screening modality to another and does not include an unscreened control. Regarding criticisms and comments about this trial, see NBSS-1.

Stockholm, Sweden 1981 [16]

  • Age at entry: 40 to 64 years.
  • Randomization: Cluster by birth date. There were two subtrials with balanced randomization in the first and a significant imbalance in the second, with 508 more women in the screened group than the control.
  • Exclusions: Inconsistently reported.
  • Sample size: Between published reports, the size declined from 40,318 to 38,525 in the intervention group and rose from 19,943 to 20,978 in the control group.
  • Consistency of reports: Variable.
  • Intervention: Single-view MMG every 28 months × 2.
  • Control: MMG at year 5.
  • Compliance: 82% screened.
  • Contamination: 25% of women entering the study had MMG in the 3 years before entry.
  • Cause of death attribution: Linked to Swedish Cause of Death Registry.
  • Analysis: Evaluation, with 1-year delay in the post-trial MMG in the control group. Follow-up analysis as part of the Swedish meta-analysis.[5]
  • External audit: No.
  • Follow-up duration: 8 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.80 (0.53–1.22).
  • Comments: Concerns exist about randomization, especially in the second subtrial, exclusions, and the delay in control group MMG. Inclusion of these data in the Swedish meta-analysis resolves many of these questions.

Gothenburg, Sweden 1982

  • Age at entry: 39 to 59 years.
  • Randomization: Complex; cluster randomly assigned within birth year by day of birth for older group (aged 50–59 years) and by individual for younger group (aged 39–49 years); ratio of study to control varied by year depending on MMG availability (randomization took place, 1982–1984).
  • Exclusions: A similar proportion of women were excluded from both groups for prior breast cancer diagnosis (1.2% each).
  • Sample size: Most recent publication: 21,650 invited; 29,961 controls.
  • Consistency of reports: Variable.
  • Intervention: Initial two-view MMG, then single-view MMG every 18 months × 4. Single-read first three rounds, then double-read.
  • Control: Control group received one screening exam approximately 3 to 8 months after the final screen in study group.
  • Cause of death attribution: Linked to Swedish Cause of Death Registry; also used an independent end point committee.
  • Analysis: Both evaluation and follow-up methods.[5]
  • External audit: No.
  • Follow-up duration: 12 to 14 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): Aged 39 to 59 years: 0.79 (0.58–1.08) [evaluation]; 0.77 (0.60–1.00) [follow-up].
  • Comments: No reduction for women aged 50 to 54 years, but similar reductions for other 5-year age groups.
  • Conclusions: Delay in the performance of MMG in the control group and unequal numbers of women in invited and control groups (complex randomization process) complicates interpretation.

AGE Trial [17,18]

  • Age at entry: 39 to 41 years.
  • Randomization: Individuals from lists of general practitioners in geographically defined areas of England, Wales, and Scotland; allocation was concealed.
  • Exclusions: Small (n = 30 in invited group and n = 51 in not invited group) number excluded in each group because individuals could not be located or were deceased.
  • Sample size: 160,921 (53,884 invited; 106,956 not invited).
  • Consistency of reports: Not applicable.
  • Intervention: Invited group aged 48 years and younger were offered annual screening by MMG (double-view first screen, then single mediolateral oblique view thereafter); 68% accepted first screening and 69% to 70% were reinvited (81% attended at least one screen).
  • Control: Those who were not invited received usual medical care, unaware of their participation, and few were screened before randomization.
  • Cause of death attribution: From the National Health Service (NHS) central register, death certificate code accepted.
  • Analysis: Follow-up method was intention-to-treat (although all women aged 50 years would be offered screening by NHS).
  • External audit: None.
  • Follow-up duration: 10.7 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.83 (0.66–1.04).
  • Conclusions: Not a statistically significant result but fits with other studies.
  • Follow-up duration: Restricted to 10 years from randomization.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.75 (0.58–0.97).
  • Conclusions: A statistically significant result.
  • Follow-up duration: Median 17.7 years.
  • Relative risk of breast cancer death, screening versus control (95% CI): 0.88 (0.74–1.04).
  • Conclusions: Not a statistically significant result.
  • Follow-up duration: Median 17.7 years.
  • Relative risk of all-cause mortality, screening versus control (95% CI): 0.98 (0.93–1.03).
  • Conclusions: Not a statistically significant result.

The United Kingdom Age Trial, a large RCT, compared the effect of mammographic screening on breast cancer mortality in women invited for annual mammography aged 40 years and older when compared with NHS screening programs that began at age 50 years. The primary end point of the AGE Trial was mortality from breast cancer diagnosed during the intervention period until immediately before participants’ first NHS screening. This trial remains the only trial designed specifically to study the effect of mammographic screening starting at age 40 years and is one of three RCTs, which the Cochrane group’s 2013 meta-analysis deemed adequately randomized.

In 2006, the AGE Trial published results of breast cancer mortality at a mean follow-up at 10.7 years: a reduction in breast cancer mortality in the intervention group, which did not reach statistical significance (105 breast cancer deaths in intervention group vs. 251 breast cancer death in control group).

In 2015, the AGE Trial published results of breast cancer mortality at a median follow-up of 17.7 years: no statistically significant reduction after more than 10 years of follow-up and no statistically significant decrease in all-cause mortality. At this time, it also published results of a reanalysis of the original data set: a small, transient, statistically significant reduction in breast cancer mortality in the intervention group during the first 10 years after randomization (83 breast cancer deaths in intervention group vs. 219 breast cancer death in control group).

In 2020, the AGE Trial published final results based on median follow-up of 22.9 years including:

  1. Positive effect in the first 10 years after randomization. The absolute difference in breast cancer mortality was -0.6 deaths per 1,667 women in the 40 to 49 years age group; 1,150 women would need to be screened to prevent one breast cancer death in this age group. A post hoc analysis showed that years of life lost caused by breast cancer mortality were 67.4 out of 1,000 women in the intervention group versus 78.9 out of 1,000 women in the control group; this is equivalent to 11.5 years of life saved per 1,000 women invited to screening in the intervention group and a total of 620 years of life saved.
  2. There was no statistically significant reduction in breast cancer mortality or all-cause mortality in the intervention group compared with the control group.
  3. In the intervention group, 18.1% of women had at least one false-positive result.

This evidence is inadequate to support the conclusion of a clinically significant breast cancer mortality reduction attributable to initiation of screening mammography among women aged 39 to 49 years. The reported mortality reduction is a small, transient reduction in breast cancer mortality based on post hoc, subset analysis, nonstandard imaging protocol, and nonstandard threshold for biopsy (microcalcifications were not biopsied). In absolute terms, the difference in breast cancer mortality was -0.6 deaths per 1,667 women in the 40 to 49 years age group based on a reanalysis of the original data set, which was not statistically significant, and the recalculation of breast cancer mortality in a subgroup restricted to 10 years of follow-up. At a median follow-up of 22.9 years, there was no statistically significant decrease in risk of breast cancer or all-cause mortality.[18]

This evidence is inadequate to make a clear determination of the magnitude of overdiagnosis. Because the evidence is based on subgroup analysis and nonstandard imaging schedule, nonstandard imaging protocol, and a nonstandard threshold for biopsy (microcalcifications were not biopsied) with uncertain relevance to the general population, it does not support the investigators’ conclusion of “at worst a small amount of overdiagnosis.”[18]

References
  1. Shapiro S, Venet W, Strax P, et al.: Ten- to fourteen-year effect of screening on breast cancer mortality. J Natl Cancer Inst 69 (2): 349-55, 1982. [PUBMED Abstract]
  2. Shapiro S: Periodic screening for breast cancer: the Health Insurance Plan project and its sequelae, 1963-1986. Johns Hopkins University Press, 1988.
  3. Andersson I, Aspegren K, Janzon L, et al.: Mammographic screening and mortality from breast cancer: the Malmö mammographic screening trial. BMJ 297 (6654): 943-8, 1988. [PUBMED Abstract]
  4. Nyström L, Rutqvist LE, Wall S, et al.: Breast cancer screening with mammography: overview of Swedish randomised trials. Lancet 341 (8851): 973-8, 1993. [PUBMED Abstract]
  5. Nyström L, Andersson I, Bjurstam N, et al.: Long-term effects of mammography screening: updated overview of the Swedish randomised trials. Lancet 359 (9310): 909-19, 2002. [PUBMED Abstract]
  6. Tabár L, Fagerberg CJ, Gad A, et al.: Reduction in mortality from breast cancer after mass screening with mammography. Randomised trial from the Breast Cancer Screening Working Group of the Swedish National Board of Health and Welfare. Lancet 1 (8433): 829-32, 1985. [PUBMED Abstract]
  7. Tabàr L, Fagerberg G, Duffy SW, et al.: Update of the Swedish two-county program of mammographic screening for breast cancer. Radiol Clin North Am 30 (1): 187-210, 1992. [PUBMED Abstract]
  8. Tabar L, Fagerberg G, Duffy SW, et al.: The Swedish two county trial of mammographic screening for breast cancer: recent results and calculation of benefit. J Epidemiol Community Health 43 (2): 107-14, 1989. [PUBMED Abstract]
  9. Holmberg L, Duffy SW, Yen AM, et al.: Differences in endpoints between the Swedish W-E (two county) trial of mammographic screening and the Swedish overview: methodological consequences. J Med Screen 16 (2): 73-80, 2009. [PUBMED Abstract]
  10. Roberts MM, Alexander FE, Anderson TJ, et al.: Edinburgh trial of screening for breast cancer: mortality at seven years. Lancet 335 (8684): 241-6, 1990. [PUBMED Abstract]
  11. Miller AB, To T, Baines CJ, et al.: The Canadian National Breast Screening Study-1: breast cancer mortality after 11 to 16 years of follow-up. A randomized screening trial of mammography in women age 40 to 49 years. Ann Intern Med 137 (5 Part 1): 305-12, 2002. [PUBMED Abstract]
  12. Bailar JC, MacMahon B: Randomization in the Canadian National Breast Screening Study: a review for evidence of subversion. CMAJ 156 (2): 193-9, 1997. [PUBMED Abstract]
  13. Baines CJ, Miller AB, Kopans DB, et al.: Canadian National Breast Screening Study: assessment of technical quality by external review. AJR Am J Roentgenol 155 (4): 743-7; discussion 748-9, 1990. [PUBMED Abstract]
  14. Fletcher SW, Black W, Harris R, et al.: Report of the International Workshop on Screening for Breast Cancer. J Natl Cancer Inst 85 (20): 1644-56, 1993. [PUBMED Abstract]
  15. Miller AB, Baines CJ, To T, et al.: Canadian National Breast Screening Study: 2. Breast cancer detection and death rates among women aged 50 to 59 years. CMAJ 147 (10): 1477-88, 1992. [PUBMED Abstract]
  16. Frisell J, Eklund G, Hellström L, et al.: Randomized study of mammography screening–preliminary report on mortality in the Stockholm trial. Breast Cancer Res Treat 18 (1): 49-56, 1991. [PUBMED Abstract]
  17. Moss SM, Cuckle H, Evans A, et al.: Effect of mammographic screening from age 40 years on breast cancer mortality at 10 years’ follow-up: a randomised controlled trial. Lancet 368 (9552): 2053-60, 2006. [PUBMED Abstract]
  18. Moss SM, Wale C, Smith R, et al.: Effect of mammographic screening from age 40 years on breast cancer mortality in the UK Age trial at 17 years’ follow-up: a randomised controlled trial. Lancet Oncol 16 (9): 1123-32, 2015. [PUBMED Abstract]

Latest Updates to This Summary (04/10/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Description of the Evidence

Updated statistics with estimated new cases and deaths for 2025 (cited American Cancer Society as reference 1).

Mammography

Added Magny et al. as reference 5.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about breast cancer screening. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Breast Cancer Screening. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/breast/hp/breast-screening-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389344]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Breast Cancer Prevention (PDQ®)–Health Professional Version

Breast Cancer Prevention (PDQ®)–Health Professional Version

Who Is at Risk?

Besides female sex, advancing age is the biggest risk factor for breast cancer. Reproductive factors that increase exposure to endogenous estrogen, such as early menarche and late menopause, increase risk, as does the use of combination estrogen-progesterone hormones after menopause. Nulliparity and alcohol consumption also are associated with increased risk.

Women with a family history or personal history of invasive breast cancer, ductal carcinoma in situ or lobular carcinoma in situ, or a history of breast biopsies that show benign proliferative disease have an increased risk of breast cancer.[14]

Increased breast density is associated with increased risk. It is often a heritable trait but is also seen more frequently in nulliparous women, women whose first pregnancy occurs late in life, and women who use postmenopausal hormones and alcohol.

Exposure to ionizing radiation, especially during puberty or young adulthood, and the inheritance of detrimental genetic mutations increase breast cancer risk.

References
  1. Kotsopoulos J, Chen WY, Gates MA, et al.: Risk factors for ductal and lobular breast cancer: results from the nurses’ health study. Breast Cancer Res 12 (6): R106, 2010. [PUBMED Abstract]
  2. Goldacre MJ, Abisgold JD, Yeates DG, et al.: Benign breast disease and subsequent breast cancer: English record linkage studies. J Public Health (Oxf) 32 (4): 565-71, 2010. [PUBMED Abstract]
  3. Kabat GC, Jones JG, Olson N, et al.: A multi-center prospective cohort study of benign breast disease and risk of subsequent breast cancer. Cancer Causes Control 21 (6): 821-8, 2010. [PUBMED Abstract]
  4. Worsham MJ, Raju U, Lu M, et al.: Risk factors for breast cancer from benign breast disease in a diverse population. Breast Cancer Res Treat 118 (1): 1-7, 2009. [PUBMED Abstract]

Overview

Note: The Overview section summarizes the published evidence on this topic. The rest of the summary describes the evidence in more detail.

Other PDQ summaries with information related to breast cancer prevention include the following:

Factors With Adequate Evidence of Increased Risk of Breast Cancer

Sex and age

Based on solid evidence, female sex and increasing age are the major risk factors for the development of breast cancer.

Magnitude of Effect: Women have a lifetime risk of developing breast cancer that is approximately 100 times the risk for men. The short-term risk of breast cancer in a 70-year-old woman is about ten times that of a 30-year-old woman.

  • Study Design: Many epidemiological trials.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Inherited risk

Based on solid evidence, women who have a family history of breast cancer, especially in a first-degree relative, have an increased risk of breast cancer.

Magnitude of Effect: Risk is doubled if a single first-degree relative is affected; risk is increased fivefold if two first-degree relatives are diagnosed.

  • Study Design: Population studies, cohort studies, and case-control studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Based on solid evidence, women who inherit gene mutations associated with breast cancer have an increased risk.

Magnitude of Effect: Variable, depending on gene mutation, family history, and other risk factors affecting gene expression.

  • Study Design: Cohort or case-control studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Breast density

Based on solid evidence, women with dense breasts have an increased risk of breast cancer. This is most often an inherent characteristic, to some extent modifiable by reproductive behavior, medications, and alcohol.[1]

Magnitude of Effect: Women with dense breasts have increased risk, proportionate to the degree of density. This increased relative risk (RR) ranges from 1.79 for women with slightly increased density to 4.64 for women with very dense breasts, compared with women who have the lowest breast density.[2]

  • Study Design: Cohort, case-control studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Modifiable Factors With Adequate Evidence of Increased Risk of Breast Cancer

Menopausal hormone therapy (MHT)

Based on solid evidence, MHT is associated with an increased risk of developing breast cancer, especially hormone-sensitive cancers. Estrogen-progesterone use significantly increases breast cancer risk starting with 1 to 4 years of usage and increases with duration of use. For estrogen use alone, the breast cancer risk is less but also significant. The excess risk persists after cessation of MHT.

  • Study Design: Randomized controlled trials (RCTs), prospective studies and ecological observations.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Combination hormone therapy

Based on solid evidence, combination hormone therapy (estrogen-progestin) is associated with an increased risk of developing breast cancer.

Magnitude of Effect: Approximately a 26% increase in incidence of invasive breast cancer; the number needed to produce one excess breast cancer is 237.

  • Study Design: RCTs and ecological observations. Furthermore, cohort and ecological studies show that cessation of combination HT is associated with a decrease in rates of breast cancer.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Estrogen therapy

Based on solid evidence, estrogen therapy that began close to the time of menopause is associated with an increased risk of breast cancer. Estrogen therapy that began at or after menopause is associated with an increased risk of endometrial cancer and total cardiovascular disease, especially stroke.

Magnitude of Effect: The increased incidence of breast cancer associated with estrogen therapy that began at the time of menopause ranged from 17% to 33%, depending on duration of use. Breast cancer incidence in women who have undergone hysterectomy is 23% lower if estrogen use began many years after menopause.[3] There is a 39% increase in stroke (RR, 1.12; 95% confidence interval [CI], 1.1–1.77) and a 12% increase in cardiovascular disease (RR, 1.12; 95% CI, 1.01–1.24).[3]

  • Study Design: RCTs and ecological observations.
  • Internal Validity: Good.
  • Consistency: Good, although in women who have undergone hysterectomy, estrogen use that began many years after menopause was associated with a decrease in breast cancer incidence.
  • External Validity: Good.

Ionizing radiation

Based on solid evidence, exposure of the breast to ionizing radiation is associated with an increased risk of developing breast cancer, starting 10 years after exposure and persisting lifelong. Risk depends on radiation dose and age at exposure, and is especially high if exposure occurs during puberty, when the breast develops.

Magnitude of Effect: Variable but approximately a sixfold increase overall.

  • Study Design: Cohort or case-control studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Obesity

Based on solid evidence, obesity is associated with an increased breast cancer risk in postmenopausal women who have not used HT. It is uncertain whether weight reduction decreases the risk of breast cancer in women with obesity.

Magnitude of Effect: The Women’s Health Initiative observational study of 85,917 postmenopausal women found body weight to be associated with breast cancer. Comparing women weighing more than 82.2 kg with those weighing less than 58.7 kg, the RR was 2.85 (95% CI, 1.81–4.49).

  • Study Design: Case-control and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Alcohol

Based on solid evidence, alcohol consumption is associated with increased breast cancer risk in a dose-dependent fashion. It is uncertain whether decreasing alcohol intake by heavy drinkers reduces the risk.

Magnitude of Effect: The RR for women consuming approximately four alcoholic drinks per day compared with nondrinkers is 1.32 (95% CI, 1.19–1.45). The RR increases by 7% (95% CI, 5.5%–8.7%) for each drink per day.

  • Study Design: Case-control and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Factors With Adequate Evidence of Decreased Risk of Breast Cancer

Early pregnancy

Based on solid evidence, women who have a full-term pregnancy before age 20 years have decreased breast cancer risk.

Magnitude of Effect: 50% decrease in breast cancer, compared with nulliparous women or women who give birth after age 35 years.

  • Study Design: Case-control and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Breast-feeding

Based on solid evidence, women who breast-feed have a decreased risk of breast cancer.

Magnitude of Effect: The RR of breast cancer is decreased 4.3% for every 12 months of breast-feeding, in addition to 7% for each birth.[4]

  • Study Design: Case-control and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Exercise

Based on solid evidence, physical exercise is associated with reduced breast cancer risk.

Magnitude of Effect: Average RR reduction association is 20% for both postmenopausal and premenopausal women and affects the risk of both hormone-sensitive and hormone-resistant cancers.

  • Study Design: Prospective observational and retrospective studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Interventions With Adequate Evidence of Decreased Risk of Breast Cancer

Selective estrogen receptor modulators (SERMs): Benefits

Based on solid evidence, tamoxifen and raloxifene reduce the incidence of breast cancer in postmenopausal women, and tamoxifen reduces the risk of breast cancer in high-risk premenopausal women. The effects observed for tamoxifen and raloxifene persist several years after active treatment is discontinued, with longer duration of effect noted for tamoxifen than for raloxifene.[5]

All fractures were reduced by SERMs, primarily noted with raloxifene but not with tamoxifen. Reductions in vertebral fractures (34% reduction) and small reductions in nonvertebral fractures (7%) were noted.[5]

Magnitude of Effect: Tamoxifen reduced the incidence of estrogen receptor–positive (ER-positive) breast cancer and ductal carcinoma in situ (DCIS) in high-risk women by about 30% to 50% over 5 years of treatment. The reduction in ER-positive invasive breast cancer was maintained for at least 16 years after starting treatment (11 years after tamoxifen cessation). Breast cancer mortality was not affected.[6]

  • Study Design: RCTs.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Selective estrogen receptor modulators: Harms

Based on solid evidence, tamoxifen increases the risk of endometrial cancer, thrombotic vascular events (i.e., pulmonary embolism, stroke, and deep venous thrombosis), and cataracts. The endometrial cancer risk persists for 5 years after tamoxifen cessation but not the risk of vascular events or cataracts. Based on solid evidence, raloxifene also increases venous pulmonary embolism and deep venous thrombosis but not endometrial cancer.

Magnitude of Effect: Meta-analysis showed RR of 2.4 (95% CI, 1.5–4.0) for endometrial cancer and 1.9 (95% CI, 1.4–2.6) for venous thromboembolic events. Meta-analysis showed the hazard ratio (HR) for endometrial cancer was 2.18 (95% CI, 1.39–3.42) for tamoxifen and 1.09 (95% CI, 0.74–1.62) for raloxifene. Overall, HR for venous thromboembolic events was 1.73 (95% CI, 1.47–2.05). Harms were significantly higher in women over 50 years than in younger women.

  • Study Design: RCTs.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Aromatase inhibitors or inactivators: Benefits

Based on solid evidence, aromatase inhibitors or inactivators (AIs) reduce breast cancer incidence in postmenopausal women who have an increased risk.

Magnitude of Effect: In postmenopausal women treated with adjuvant tamoxifen for hormone-sensitive breast cancer, subsequent therapy with AIs reduced the incidence of new primary breast cancers by 50% to 67%, compared with controls. In postmenopausal women at high risk of developing breast cancer, 3 years of exemestane treatment reduced breast cancer incidence by 65%, compared with controls. A similar trial of 5 years of anastrozole treatment reduced breast cancer incidence by 53%, an effect persisting at 11 years.[7] After a median follow-up of 35 months, women aged 35 years and older who had at least one risk factor (age >60 years, a Gail 5-year risk >1.66%, or DCIS with mastectomy) and who took 25 mg of exemestane daily had a decreased risk of invasive breast cancer (HR, 0.35; 95% CI, 0.18–0.70) compared with controls. The absolute risk reduction was 21 cancers avoided out of 2,280 participants over 35 months. The number needed to treat was about 100.[8]

  • Study Design: Multiple RCTs.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Aromatase inhibitors or inactivators: Harms

Based on fair evidence from a single RCT of 4,560 women over 35 months, exemestane is associated with hot flashes and fatigue compared with placebo.[8,9]

Magnitude of Effect: The absolute increase in hot flashes was 8% and the absolute increase in fatigue was 2%.

  • Study Design: One RCT.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good for women who meet inclusion criteria.

Prophylactic mastectomy: Benefits

Based on solid evidence, bilateral prophylactic mastectomy reduces the risk of breast cancer in women with a strong family history, and most women experience relief from anxiety about breast cancer risk. Based on strong evidence, bilateral prophylactic mastectomy reduces the risk of breast cancer in women with a strong family history of breast cancer or other factors putting them at high risk (e.g., certain previous chest-wall radiation or previous personal history of breast cancer). Most women experience relief from anxiety about breast cancer risk after undergoing prophylactic mastectomy. Although some studies have suggested a survival benefit associated with contralateral prophylactic mastectomy, these results are generally attributed to selection bias, and there are no high-quality studies demonstrating a clear survival advantage. For more information, see Genetics of Breast and Gynecologic Cancers.

Magnitude of Effect: Breast cancer risk after bilateral prophylactic mastectomy in women at high risk may be reduced as much as 90%.

  • Study Design: Evidence obtained from case-control and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Prophylactic oophorectomy or ovarian ablation: Benefits

Based on solid evidence, prophylactic oophorectomy in premenopausal women with a BRCA gene mutation is associated with decreased breast cancer incidence. Similar results are seen for oophorectomy or ovarian ablation in normal premenopausal women and in women with increased breast cancer risk resulting from thoracic irradiation.

Magnitude of Effect: Breast cancer incidence may be decreased by up to 50%.

  • Study Design: Observational, case-control, and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Prophylactic oophorectomy or ovarian ablation: Harms

Based on solid evidence, castration may cause the abrupt onset of menopausal symptoms such as hot flashes, insomnia, anxiety, and depression. Long-term effects include decreased libido, vaginal dryness, and decreased bone mineral density.

Magnitude of Effect: Nearly all women experience some sleep disturbances, mood changes, hot flashes, and bone demineralization, but the severity of these symptoms varies greatly.

  • Study Design: Observational, case-control, and cohort studies.
  • Internal Validity: Good.
  • Consistency: Good.
  • External Validity: Good.

Estrogen use by women with previous hysterectomy: Benefits

Based on fair evidence, women who have undergone a previous hysterectomy and who are treated with conjugated equine estrogen have a lower incidence of breast cancer.[3]

Magnitude of Effect: After 6.8 years, breast cancer incidence was 23% lower in women treated with estrogen in an RCT (0.27% per year, with a median of 5.9 years of use, compared with 0.35% per year among those taking a placebo). However, the risk was 30% higher in women treated with estrogen in an observational study. The difference in these results may be explained by different screening behaviors of the women in these studies.

  • Study Design: One RCT, observational studies.
  • Internal Validity: Fair.
  • Consistency: Poor.
  • External Validity: Poor.
References
  1. Boyd NF, Martin LJ, Rommens JM, et al.: Mammographic density: a heritable risk factor for breast cancer. Methods Mol Biol 472: 343-60, 2009. [PUBMED Abstract]
  2. McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
  3. Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004. [PUBMED Abstract]
  4. Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
  5. Cuzick J, Sestak I, Bonanni B, et al.: Selective oestrogen receptor modulators in prevention of breast cancer: an updated meta-analysis of individual participant data. Lancet 381 (9880): 1827-34, 2013. [PUBMED Abstract]
  6. Cuzick J, Sestak I, Cawthorn S, et al.: Tamoxifen for prevention of breast cancer: extended long-term follow-up of the IBIS-I breast cancer prevention trial. Lancet Oncol 16 (1): 67-75, 2015. [PUBMED Abstract]
  7. Batur P: In high-risk, postmenopausal women, 5 years of anastrozole reduced breast cancer incidence at 11 years. Ann Intern Med 172 (8): JC45, 2020. [PUBMED Abstract]
  8. Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011. [PUBMED Abstract]
  9. Maunsell E, Goss PE, Chlebowski RT, et al.: Quality of life in MAP.3 (Mammary Prevention 3): a randomized, placebo-controlled trial evaluating exemestane for prevention of breast cancer. J Clin Oncol 32 (14): 1427-36, 2014. [PUBMED Abstract]

Incidence and Mortality

Breast cancer is the most frequently diagnosed nonskin malignancy in U.S. women and is second only to lung cancer in cancer deaths in women.[1] Estimates for the U.S. population in 2025 are that 316,950 women will be diagnosed with breast cancer, with 42,170 deaths from this disease, and 2,800 men will be diagnosed with breast cancer, with 510 deaths from this disease.[1] Breast cancer incidence in women had been gradually increasing for many years until the early 2000s, when it decreased rapidly, coincident with a drop in postmenopausal hormone therapy use. However, since the initial decrease between 2000 and 2005, there has been a small but steady increase in incidence, approaching incidence rates seen before that decrease.[2]

According to data from the Surveillance, Epidemiology, and End Results (SEER) Program, breast cancer mortality rates declined by 44% from 1989 to 2022. However, mortality rates in Black women remain about 38% higher than in White women.[1] Incidence rates are now similar between Black and White women.

The major risk factor for breast cancer is advancing age. A 30-year-old woman has about a 1 in 175 chance of being diagnosed with breast cancer in the next 10 years, whereas a 70-year-old woman has a 1 in 9 chance over the same time period.[2]

Screening by mammography decreases breast cancer mortality by identifying cases for treatment at an earlier stage. However, screening also identifies more cases than would become symptomatic in a woman’s lifetime, so screening increases breast cancer incidence. For more information, see the Overdiagnosis section in Breast Cancer Screening.

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Surveillance Research Program, National Cancer Institute: SEER*Explorer: An interactive website for SEER cancer statistics. Bethesda, MD: National Cancer Institute. Available online. Last accessed December 30, 2024.

Etiology and Pathogenesis of Breast Cancer

Breast cancer develops when a series of genetic mutations occurs.[1] Some cancer-associated mutations are inherited, but most are somatic mutations that occur as random events during a woman’s lifetime. Initially, mutations do not change the histological appearance of the tissue, but accumulated mutations will result in hyperplasia, dysplasia, carcinoma in situ, and eventually, invasive cancer.[2] The longer a woman lives, the more somatic mutations occur, and the more likely it is that these mutations will produce populations of cells that may eventually become malignancies. Estrogen and progestin hormones, whether endogenous or exogenous, stimulate growth and proliferation of breast cells, perhaps via growth factors such as transforming growth factor-alpha.[3] The stimulation by these hormones can promote the development and proliferation of breast cancer cells.

International variation in breast cancer rates may be explained by differences in genetics, reproductive factors, diet, exercise, and screening behavior. The relative importance of these factors was demonstrated in a study of breast cancer incidence of Japanese immigrants to the United States. Whereas Japanese women in Japan had a low breast cancer incidence, Japanese women in the United States had a much higher breast cancer incidence, similar to that of American women, within two generations of migration.[46]

References
  1. Boone CW, Kelloff GJ, Freedman LS: Intraepithelial and postinvasive neoplasia as a stochastic continuum of clonal evolution, and its relationship to mechanisms of chemopreventive drug action. J Cell Biochem Suppl 17G: 14-25, 1993. [PUBMED Abstract]
  2. Kelloff GJ, Boone CW, Steele VE, et al.: Progress in cancer chemoprevention: perspectives on agent selection and short-term clinical intervention trials. Cancer Res 54 (7 Suppl): 2015s-2024s, 1994. [PUBMED Abstract]
  3. Knabbe C, Lippman ME, Wakefield LM, et al.: Evidence that transforming growth factor-beta is a hormonally regulated negative growth factor in human breast cancer cells. Cell 48 (3): 417-28, 1987. [PUBMED Abstract]
  4. Parkin DM: Cancers of the breast, endometrium and ovary: geographic correlations. Eur J Cancer Clin Oncol 25 (12): 1917-25, 1989. [PUBMED Abstract]
  5. Dunn JE: Breast cancer among American Japanese in the San Francisco Bay area. Natl Cancer Inst Monogr 47: 157-60, 1977. [PUBMED Abstract]
  6. Kliewer EV, Smith KR: Breast cancer mortality among immigrants in Australia and Canada. J Natl Cancer Inst 87 (15): 1154-61, 1995. [PUBMED Abstract]

Endogenous Estrogen

Endogenous estrogen plays a role in the development of breast cancer. Women whose menarche occurred at or before age 11 years have about a 20% greater chance of developing breast cancer than do women whose menarche occurred at or after age 14 years.[13] Women who experience late menopause also have an increased risk. Women who develop breast cancer tend to have higher endogenous estrogen and androgen levels.[37]

Conversely, women who experience premature menopause have a lower risk of breast cancer. Following ovarian ablation, breast cancer risk may be reduced as much as 75% depending on age, weight, and parity, with the greatest reduction for young, thin, nulliparous women.[811] The removal of one ovary also reduces the risk of breast cancer but to a lesser degree.[12]

Other hormonal changes also influence breast cancer risk. For more information, see the sections on Early Pregnancy and Breast-feeding in the Factors With Adequate Evidence of Decreased Risk of Breast Cancer section.

The interaction of endogenous estrogen levels, insulin levels, and obesity—all of which affect breast cancer risk—are poorly understood but suggest strategies for interventions to decrease that risk. It is likely that reproductive risk factors interact with predisposing genotypes. For example, in the Nurses’ Health Study,[13] the associations between age at first birth, menarche, and menopause and the development of breast cancer were observed only among women without a family history of breast cancer in a mother or sister.

References
  1. Brinton LA, Schairer C, Hoover RN, et al.: Menstrual factors and risk of breast cancer. Cancer Invest 6 (3): 245-54, 1988. [PUBMED Abstract]
  2. Collaborative Group on Hormonal Factors in Breast Cancer: Menarche, menopause, and breast cancer risk: individual participant meta-analysis, including 118 964 women with breast cancer from 117 epidemiological studies. Lancet Oncol 13 (11): 1141-51, 2012. [PUBMED Abstract]
  3. Ritte R, Lukanova A, Tjønneland A, et al.: Height, age at menarche and risk of hormone receptor-positive and -negative breast cancer: a cohort study. Int J Cancer 132 (11): 2619-29, 2013. [PUBMED Abstract]
  4. Endogenous Hormones and Breast Cancer Collaborative Group: Endogenous sex hormones and breast cancer in postmenopausal women: reanalysis of nine prospective studies. J Natl Cancer Inst 94 (8): 606-16, 2002. [PUBMED Abstract]
  5. Key TJ, Appleby PN, Reeves GK, et al.: Circulating sex hormones and breast cancer risk factors in postmenopausal women: reanalysis of 13 studies. Br J Cancer 105 (5): 709-22, 2011. [PUBMED Abstract]
  6. Kaaks R, Rinaldi S, Key TJ, et al.: Postmenopausal serum androgens, oestrogens and breast cancer risk: the European prospective investigation into cancer and nutrition. Endocr Relat Cancer 12 (4): 1071-82, 2005. [PUBMED Abstract]
  7. Kaaks R, Berrino F, Key T, et al.: Serum sex steroids in premenopausal women and breast cancer risk within the European Prospective Investigation into Cancer and Nutrition (EPIC). J Natl Cancer Inst 97 (10): 755-65, 2005. [PUBMED Abstract]
  8. Smith PG, Doll R: Late effects of x irradiation in patients treated for metropathia haemorrhagica. Br J Radiol 49 (579): 224-32, 1976. [PUBMED Abstract]
  9. Trichopoulos D, MacMahon B, Cole P: Menopause and breast cancer risk. J Natl Cancer Inst 48 (3): 605-13, 1972. [PUBMED Abstract]
  10. Feinleib M: Breast cancer and artificial menopause: a cohort study. J Natl Cancer Inst 41 (2): 315-29, 1968. [PUBMED Abstract]
  11. Kampert JB, Whittemore AS, Paffenbarger RS: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988. [PUBMED Abstract]
  12. Hirayama T, Wynder EL: A study of the epidemiology of cancer of the breast. II. The influence of hysterectomy. Cancer 15: 28-38, 1962 Jan-Feb. [PUBMED Abstract]
  13. Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses’ health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012. [PUBMED Abstract]

Inherited Risk

Breast cancer risk increases in women with a positive family history, particularly if first-degree relatives are affected.[1] The following risk assessment models, derived from databases, cohort, and case-control studies, quantitate this risk:

Specific abnormal alleles are associated with approximately 5% of breast cancers. For more information, see Genetics of Breast and Gynecologic Cancers. Mutations in BRCA genes are inherited in an autosomal dominant fashion and are highly penetrant in causing cancer, often at a younger age.[24] Family history and mutation location within the BRCA1 or BRCA2 gene may contribute to the risk of cancer development among those with an inherited predisposition to breast cancer.[5] The lifetime risk of breast cancer is 55% to 65% for BRCA1 mutation carriers and 45% to 47% for BRCA2 mutation carriers.[6,7] In comparison, the lifetime risk of breast cancer is 13% in the general population.[8]

Some women inherit a susceptibility to mutagens or growth factors, which increase breast cancer risk.[9,10] For more information, see the Ionizing Radiation Exposure section.

References
  1. Colditz GA, Kaphingst KA, Hankinson SE, et al.: Family history and risk of breast cancer: nurses’ health study. Breast Cancer Res Treat 133 (3): 1097-104, 2012. [PUBMED Abstract]
  2. Miki Y, Swensen J, Shattuck-Eidens D, et al.: A strong candidate for the breast and ovarian cancer susceptibility gene BRCA1. Science 266 (5182): 66-71, 1994. [PUBMED Abstract]
  3. Futreal PA, Liu Q, Shattuck-Eidens D, et al.: BRCA1 mutations in primary breast and ovarian carcinomas. Science 266 (5182): 120-2, 1994. [PUBMED Abstract]
  4. Wooster R, Neuhausen SL, Mangion J, et al.: Localization of a breast cancer susceptibility gene, BRCA2, to chromosome 13q12-13. Science 265 (5181): 2088-90, 1994. [PUBMED Abstract]
  5. Kuchenbaecker KB, Hopper JL, Barnes DR, et al.: Risks of Breast, Ovarian, and Contralateral Breast Cancer for BRCA1 and BRCA2 Mutation Carriers. JAMA 317 (23): 2402-2416, 2017. [PUBMED Abstract]
  6. Antoniou A, Pharoah PD, Narod S, et al.: Average risks of breast and ovarian cancer associated with BRCA1 or BRCA2 mutations detected in case Series unselected for family history: a combined analysis of 22 studies. Am J Hum Genet 72 (5): 1117-30, 2003. [PUBMED Abstract]
  7. Chen S, Parmigiani G: Meta-analysis of BRCA1 and BRCA2 penetrance. J Clin Oncol 25 (11): 1329-33, 2007. [PUBMED Abstract]
  8. National Cancer Institute: SEER Cancer Stat Facts: Female Breast Cancer. Bethesda, Md: National Cancer Institute. Available online. Last accessed April 9, 2025.
  9. Swift M, Morrell D, Massey RB, et al.: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325 (26): 1831-6, 1991. [PUBMED Abstract]
  10. Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011. [PUBMED Abstract]

Increased Breast Density

Widespread use of screening mammograms has demonstrated great variability in breast tissue density. Women with a greater proportion of dense tissue have a higher incidence of breast cancer. Mammographic density also confounds the identification of cancers by mammograms. The extent of increased risk was described in a report of three nested case-control studies in screened populations with 1,112 matched case-control pairs. Compared with women with density comprising less than 10% of breast tissue, women with density in 75% or more of their breast had an increased risk of breast cancer (odds ratio [OR], 4.7; 95% confidence interval [CI], 3.0–7.4), whether the cancer was detected by screening (OR, 3.5; 95% CI, 2.0–6.2) or detected less than 12 months after a negative screening examination (OR, 17.8; 95% CI, 4.8–65.9). Increased risk of breast cancer, whether detected by screening or other means, persisted for at least 8 years after study entry and was greater in younger women than in older women. For women younger than the median age of 56 years, 26% of all breast cancers and 50% of cancers detected less than 12 months after a negative screening test were identified in women with mammographic breast density of 50% or more.[1,2]

Compared with women who have the lowest breast density, women with dense breasts have increased risk, proportionate to the degree of density. This increased relative risk ranges from 1.79 for women with slightly increased breast density to 4.64 for women with very dense breasts.[3] There is no increased risk of breast cancer mortality among women with dense breast tissue.[4]

References
  1. Boyd NF, Guo H, Martin LJ, et al.: Mammographic density and the risk and detection of breast cancer. N Engl J Med 356 (3): 227-36, 2007. [PUBMED Abstract]
  2. Razzaghi H, Troester MA, Gierach GL, et al.: Mammographic density and breast cancer risk in White and African American Women. Breast Cancer Res Treat 135 (2): 571-80, 2012. [PUBMED Abstract]
  3. McCormack VA, dos Santos Silva I: Breast density and parenchymal patterns as markers of breast cancer risk: a meta-analysis. Cancer Epidemiol Biomarkers Prev 15 (6): 1159-69, 2006. [PUBMED Abstract]
  4. Gierach GL, Ichikawa L, Kerlikowske K, et al.: Relationship between mammographic density and breast cancer death in the Breast Cancer Surveillance Consortium. J Natl Cancer Inst 104 (16): 1218-27, 2012. [PUBMED Abstract]

Factors With Adequate Evidence of Increased Risk of Breast Cancer

Menopausal Hormone Therapy (MHT)

MHT has been used to alleviate hot flashes and other symptoms associated with menopause. Single-agent estrogen is associated with an increased incidence of uterine cancer, but estrogen-progesterone use is not. Women with intact uteri are prescribed the combination, with oral progesterone given continuously or intermittently, or intrauterine progesterone delivered locally by intrauterine device (IUD). Estrogen therapy that began close to the time of menopause is associated with an increased risk of developing breast cancer. Estrogen therapy that began at or after menopause is associated with an increased risk of developing endometrial cancer and total cardiovascular disease, especially stroke.[1] Women who have undergone hysterectomy often take unopposed estrogen.

In 1997, 51 epidemiological studies were reanalyzed, encompassing more than 150,000 women, and it was found that MHT was associated with increased breast cancer risk.[2]

The Heart and Estrogen/Progestin Replacement Study, published in 2002, extended these findings by randomly assigning 2,763 women, with coronary heart disease (median age, 67), to receive either estrogen-progestin or placebo.[3] At 6.8 years of follow-up, breast cancer incidence was higher for hormone users (relative risk [RR], 1.27; 95% confidence interval [CI], 0.84–1.94).

The Women’s Health Initiative (WHI), also published in 2002, randomly assigned over 16,000 women aged 50 to 79 years with intact uteri to receive either estrogen-progesterone or placebo.[4] The WHI was terminated early because the risk for coronary heart disease was unchanged, but the risk for stroke was increased with MHT. The incidence of invasive breast cancer was also increased in women who had taken MHT (hazard ratio, 1.24; 95% CI, 10.2–1.50). In addition to the randomized trial, the WHI conducted an observational study that examined women aged 50 to 79 years and found an increased risk of breast cancer, especially for those starting MHT at menopause. The WHI also randomly assigned 10,739 women who had undergone hysterectomy and were aged 50 to 79 years to receive either estrogen or placebo. Estrogen use was associated with an increased risk of stroke, so the trial was stopped early. After the publication of the WHI results, MHT use dropped worldwide, and breast cancer risk declined in countries where MHT usage had been high.

In 2003, the Cancer Surveillance System of Puget Sound reported results of a population-based survey of 965 women with breast cancer and 1,007 controls.[5] This study showed a 1.7-fold increased risk of invasive breast cancer with estrogen-progesterone use, but not with estrogen use alone.

While the association between estrogen-progesterone MHT and breast cancer risk was consistently observed, questions arose about the use of estrogen-only in women who had undergone hysterectomy, especially about the timing of therapy in relation to menopause and the participation in screening activities by MHT users.

The United Kingdom Million Women Study [6] recruited 1,084,110 women aged 50 to 64 years between 1996 and 2001. This study obtained information about MHT use, along with other health information, and followed them for breast cancer incidence and death. One-half of the women had used MHT. At 2.6 years of follow up, there were 9,364 invasive breast cancers, and at 4.1 years, there were 637 breast cancer deaths. At recruitment, current MHT users were more likely than were never-users to develop breast cancer (adjusted RR, 1.66; 95% CI, 1.58–1.75; P < .0001) and to die from the disease (adjusted RR, 1.22; 95% CI, 1.00–1.48; P = .05). Past MHT users had no increased risk of incident breast cancer (odds ratio [OR], 1.01; 95% CI, 0.94–1.09) or fatal breast cancer (OR, 1.05; 95% CI, 0.82–1.34). Incidence was increased for current users of estrogen (RR, 1.30; 95% CI, 1.21–1.40; P < .0001), combined MHT (RR, 2.00; 95% CI, 1.88–2.12; P < .0001), and tibolone (RR, 1.45; 95% CI, 1.25–1.68; P < .0001). The magnitude of the associated risk was greater for combined MHT than for other types of MHT (P < .0001). Tibolone is approved for use to manage menopausal symptoms or to prevent osteoporosis in many countries. However, it is not approved for use in Canada or the United States.

A population-based survey of 965 women with breast cancer and 1,007 controls was conducted by the Cancer Surveillance System of Puget Sound. It showed that combined MHT users had a 1.7-fold increased risk of invasive breast cancer, whereas estrogen-only users did not.[5]

In 2019, the Collaborative Group on Hormonal Factors in Breast Cancer reported results of a meta-analysis of 24 prospective and 34 retrospective studies of MHT and breast cancer risk, encompassing 143,887 women who developed breast cancer and 424,972 controls. Overall, MHT users had higher breast cancer risk, especially for hormone-sensitive tumors.[7]

Table 1. Breast Cancer Risk Among Menopausal Hormone Therapy Usersa
  Years 1–4 of Use Years 5–14 of Use
CI = confidence interval; RR = relative risk.
a[7]
Estrogen-progesterone RR, 1.60 (95% CI, 1.52–1.62) RR, 2.08 (95% CI, 2.02–2.15)
Estrogen-only RR, 1.17 (95% CI, 1.10–1.26) RR, 1.33 (95% CI, 1.28–1.37)

The associations between MHT and breast cancer were weaker for women starting MHT after age 60 years and for women with obesity. Women with obesity had minimal risk from estrogen MHT that began after age 60 years. In summary, women of average weight who used 5 years of MHT starting at 50 years have an increased risk of breast cancer incidence of 1 in 50 users for estrogen-progesterone, 1 in 70 users for estrogen plus intermittent progesterone, and 1 in 200 users for estrogen-only products.

This meta-analysis, confirming and expanding the understanding of estrogen-progesterone risk of breast cancer, also resolves the question of estrogen use in women who have undergone hysterectomy. If the estrogen use began at menopause, it is associated with an increase in breast cancer risk, but not if it began many years later. These findings, as well as the documented increase in stroke risk with estrogen therapy, should be considered when reviewing options to treat.

In 2022, an evidence review concluded that the use of combined estrogen and progestin for the primary prevention of chronic disease (i.e., cardiovascular disease, cancer, osteoporosis, and fracture) in postmenopausal women with an intact uterus was associated with some benefits. However, this combination therapy was also associated with an increased risk of harms. Therefore, it has no net benefit. Moreover, the systematic review concluded with moderate certainty that the use of estrogen alone for the primary prevention of chronic diseases in postmenopausal women who had a hysterectomy also has no net benefit.[8]

Ionizing Radiation Exposure

A well-established relationship exists between exposure to ionizing radiation and subsequent breast cancer.[9] Excess breast cancer risk has been observed in association with atomic bomb exposure, frequent fluoroscopy for tuberculosis, and radiation therapy for acne, tinea, thymic enlargement, postpartum mastitis, and lymphoma. Risk is higher for the young, especially around puberty. An estimate of the risk of breast cancer associated with medical radiology puts the figure at less than 1% of all breast cancer cases.[10] However, it has been theorized that certain populations, such as AT heterozygotes, are at an increased risk of breast cancer from radiation exposure.[11] A large cohort study of women who carry mutations of BRCA1 or BRCA2 concluded that chest x-rays, especially before age 20 years increased their risk of breast cancer beyond already increased levels (RR, 1.54; 95% CI, 1.1–2.1).[12]

Women treated for Hodgkin lymphoma with mantle radiation by age 16 years have a subsequent risk up to 35% of developing breast cancer by age 40 years.[1315] Higher radiation doses (median dose, 40 Gy in breast cancer cases) and treatment between the ages of 10 and 16 years are associated with higher risk.[13] Unlike the risk for secondary leukemia, the risk of treatment-related breast cancer does not abate with duration of follow-up, persisting more than 25 years after treatment.[13,15,16] In these studies, most patients (85%–100%) who developed breast cancer did so either within the field of radiation or at the margin.[13,14,16] A Dutch study examined 48 women who developed breast cancer at least 5 years after treatment for Hodgkin disease and compared them with 175 matched female Hodgkin disease patients who did not develop breast cancer. Patients treated with chemotherapy and mantle radiation were less likely to develop breast cancer than were those treated with mantle radiation alone, possibly because of chemotherapy-induced ovarian suppression (RR, 0.06; 95% CI, 0.01–0.45).[17] Another study of 105 radiation-associated breast cancer patients and 266 age-matched and radiation-matched controls showed a similar protective effect for ovarian radiation.[15] These studies suggest that reduction of ovarian hormones limits the proliferation of breast tissue with radiation-induced mutations.[15]

The question arises whether breast cancer patients treated with lumpectomy and radiation therapy (L-RT) are at higher risk for second breast malignancies or other malignancies than are those treated by mastectomy. Outcomes of 1,029 L-RT patients were compared with outcomes of 1,387 patients who underwent mastectomies. After a median follow-up of 15 years, there was no difference in the risk of second malignancies.[18] Further evidence from three RCTs is also reassuring. One report of 1,851 women randomly assigned to undergo total mastectomy, lumpectomy alone, or L-RT showed rates of contralateral breast cancer to be 8.5%, 8.8%, and 9.4%, respectively.[19] Another study of 701 women randomly assigned to undergo radical mastectomy or breast-conserving surgery followed by radiation therapy demonstrated the rate of contralateral breast carcinomas per 100 woman-years to be 10.2 versus 8.7, respectively.[20] The third study compared 25-year outcomes of 1,665 women randomly assigned to undergo radical mastectomy, total mastectomy, or total mastectomy with radiation. There was no significant difference in the rate of contralateral breast cancer according to treatment group, and the overall rate was 6%.[21]

Obesity

Obesity is associated with increased breast cancer risk, especially among postmenopausal women who do not use hormone therapy (HT). The WHI observed 85,917 women aged 50 to 79 years and collected information on weight history and known risk factors for breast cancer.[22,23] Height, weight, and waist and hip circumferences were measured. With a median follow-up of 34.8 months, 1,030 of the women developed invasive breast cancer. Among the women who never used HT, increased breast cancer risk was associated with weight at entry, body mass index (BMI) at entry, BMI at age 50 years, maximum BMI, adult and postmenopausal weight change, and waist and hip circumferences. Weight was the strongest predictor, with a RR of 2.85 (95% CI, 1.81–4.49) for women weighing more than 82.2 kg, compared with those weighing less than 58.7 kg.

The association between obesity, diabetes, and insulin levels with breast cancer risk have been studied but not clearly defined. The British Women’s Heart and Health Study of women aged 60 to 79 years compared 151 women who had a diagnosis of breast cancer with 3,690 women who did not. The age-adjusted OR was 1.34 (95% CI, 1.02–1.77) for each unit increase in log(e) insulin level among nondiabetic women. The association was observed, after adjustment for confounders and for potential mediating factors, for both pre- and postmenopausal breast cancers. In addition, fasting glucose level, homeostatic model assessment score (the product of fasting glucose and insulin levels divided by 22.5), diabetes, and a history of gestational glycosuria or diabetes were also associated with breast cancer.[24]

Alcohol

Alcohol consumption increases the risk of breast cancer. A British meta-analysis included individual data from 53 case-control and cohort studies.[25] Compared with the RR of breast cancer for women who reported no alcohol consumption, the RR of breast cancer was 1.32 (95% CI, 1.19–1.45; P < .001) for women consuming 35 g to 44 g of alcohol per day and 1.46 (95% CI, 1.33–1.61; P < .001) for those consuming at least 45 g of alcohol per day. The RR of breast cancer increases by about 7% (95% CI, 5.5%–8.7%; P < .001) for each 10 g of alcohol (i.e., one drink) consumed per day. These findings persist after stratification for race, education, family history, age at menarche, height, weight, BMI, breast-feeding, oral contraceptive use, menopausal hormone use and type, and age at menopause.

References
  1. Cuzick J, Sestak I, Forbes JF, et al.: Use of anastrozole for breast cancer prevention (IBIS-II): long-term results of a randomised controlled trial. Lancet 395 (10218): 117-122, 2020. [PUBMED Abstract]
  2. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350 (9084): 1047-59, 1997. [PUBMED Abstract]
  3. Hulley S, Furberg C, Barrett-Connor E, et al.: Noncardiovascular disease outcomes during 6.8 years of hormone therapy: Heart and Estrogen/progestin Replacement Study follow-up (HERS II). JAMA 288 (1): 58-66, 2002. [PUBMED Abstract]
  4. Writing Group for the Women’s Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
  5. Li CI, Malone KE, Porter PL, et al.: Relationship between long durations and different regimens of hormone therapy and risk of breast cancer. JAMA 289 (24): 3254-63, 2003. [PUBMED Abstract]
  6. Beral V, Reeves G, Bull D, et al.: Breast cancer risk in relation to the interval between menopause and starting hormone therapy. J Natl Cancer Inst 103 (4): 296-305, 2011. [PUBMED Abstract]
  7. Collaborative Group on Hormonal Factors in Breast Cancer: Type and timing of menopausal hormone therapy and breast cancer risk: individual participant meta-analysis of the worldwide epidemiological evidence. Lancet 394 (10204): 1159-1168, 2019. [PUBMED Abstract]
  8. Gartlehner G, Patel SV, Reddy S, et al.: Hormone Therapy for the Primary Prevention of Chronic Conditions in Postmenopausal Persons: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 328 (17): 1747-1765, 2022. [PUBMED Abstract]
  9. John EM, Kelsey JL: Radiation and other environmental exposures and breast cancer. Epidemiol Rev 15 (1): 157-62, 1993. [PUBMED Abstract]
  10. Evans JS, Wennberg JE, McNeil BJ: The influence of diagnostic radiography on the incidence of breast cancer and leukemia. N Engl J Med 315 (13): 810-5, 1986. [PUBMED Abstract]
  11. Swift M, Morrell D, Massey RB, et al.: Incidence of cancer in 161 families affected by ataxia-telangiectasia. N Engl J Med 325 (26): 1831-6, 1991. [PUBMED Abstract]
  12. Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators’ Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
  13. Bhatia S, Robison LL, Oberlin O, et al.: Breast cancer and other second neoplasms after childhood Hodgkin’s disease. N Engl J Med 334 (12): 745-51, 1996. [PUBMED Abstract]
  14. Hancock SL, Tucker MA, Hoppe RT: Breast cancer after treatment of Hodgkin’s disease. J Natl Cancer Inst 85 (1): 25-31, 1993. [PUBMED Abstract]
  15. Travis LB, Hill DA, Dores GM, et al.: Breast cancer following radiotherapy and chemotherapy among young women with Hodgkin disease. JAMA 290 (4): 465-75, 2003. [PUBMED Abstract]
  16. Sankila R, Garwicz S, Olsen JH, et al.: Risk of subsequent malignant neoplasms among 1,641 Hodgkin’s disease patients diagnosed in childhood and adolescence: a population-based cohort study in the five Nordic countries. Association of the Nordic Cancer Registries and the Nordic Society of Pediatric Hematology and Oncology. J Clin Oncol 14 (5): 1442-6, 1996. [PUBMED Abstract]
  17. van Leeuwen FE, Klokman WJ, Stovall M, et al.: Roles of radiation dose, chemotherapy, and hormonal factors in breast cancer following Hodgkin’s disease. J Natl Cancer Inst 95 (13): 971-80, 2003. [PUBMED Abstract]
  18. Obedian E, Fischer DB, Haffty BG: Second malignancies after treatment of early-stage breast cancer: lumpectomy and radiation therapy versus mastectomy. J Clin Oncol 18 (12): 2406-12, 2000. [PUBMED Abstract]
  19. Fisher B, Anderson S, Bryant J, et al.: Twenty-year follow-up of a randomized trial comparing total mastectomy, lumpectomy, and lumpectomy plus irradiation for the treatment of invasive breast cancer. N Engl J Med 347 (16): 1233-41, 2002. [PUBMED Abstract]
  20. Veronesi U, Cascinelli N, Mariani L, et al.: Twenty-year follow-up of a randomized study comparing breast-conserving surgery with radical mastectomy for early breast cancer. N Engl J Med 347 (16): 1227-32, 2002. [PUBMED Abstract]
  21. Fisher B, Jeong JH, Anderson S, et al.: Twenty-five-year follow-up of a randomized trial comparing radical mastectomy, total mastectomy, and total mastectomy followed by irradiation. N Engl J Med 347 (8): 567-75, 2002. [PUBMED Abstract]
  22. Morimoto LM, White E, Chen Z, et al.: Obesity, body size, and risk of postmenopausal breast cancer: the Women’s Health Initiative (United States). Cancer Causes Control 13 (8): 741-51, 2002. [PUBMED Abstract]
  23. Wolin KY, Carson K, Colditz GA: Obesity and cancer. Oncologist 15 (6): 556-65, 2010. [PUBMED Abstract]
  24. Lawlor DA, Smith GD, Ebrahim S: Hyperinsulinaemia and increased risk of breast cancer: findings from the British Women’s Heart and Health Study. Cancer Causes Control 15 (3): 267-75, 2004. [PUBMED Abstract]
  25. Hamajima N, Hirose K, Tajima K, et al.: Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87 (11): 1234-45, 2002. [PUBMED Abstract]

Factors With Adequate Evidence of Decreased Risk of Breast Cancer

Early Pregnancy

Childbirth is followed by an increase in risk of breast cancer for several years, and then a long-term reduction in risk, which is greater for younger women.[13] In one study, women who experienced a first full-term pregnancy before age 20 years were half as likely to develop breast cancer as nulliparous women or women whose first full-term pregnancy occurred at age 35 years or older.[4,5]

The effect of childbirth on breast cancer risk was demonstrated by the International Premenopausal Breast Cancer Collaborative Group, which undertook a pooled analysis of individual-level data from about 890,000 women from 15 prospective cohort studies. When compared with nulliparous women, parous women had an increased risk of developing both estrogen receptor–positive (ER–positive) and estrogen receptor–negative (ER–negative) breast cancer for up to 20 years after childbirth. However, after about 24 years, the risk of developing ER–positive breast cancer decreased, but the risk of developing ER–negative breast cancer remained elevated. Thus, the association between parity and breast cancer risk is complex and appears to be influenced by the time period after childbirth, as well as tumor phenotype.[6]

Breast-feeding

Breast-feeding is associated with a decreased risk of breast cancer.[7] A reanalysis of individual data from 47 epidemiological studies in 30 countries of 50,302 women with breast cancer and 96,973 controls revealed that breast cancer incidence was lower in parous women who had ever breast-fed than in parous women who had not. It was also proportionate to duration of breast-feeding.[8] The relative risk (RR) of breast cancer decreased by 4.3% (95%, confidence interval [CI], 2.9%–5.8%; P < .0001) for every 12 months of breast-feeding in addition to a decrease of 7.0% (95% CI, 5.0%–9.0%; P < .0001) for each birth.

Exercise

Many studies have shown an associated benefit between physical exercise and breast cancer risk. A French study of 59,308 women, averaging 8.5 years postmenopause, found that recreational activity greater than 12 metabolic equivalent task (MET) h/wk was associated with decreased risk of invasive breast cancer (hazard ratio [HR], 0.9; 95% CI, 0.83–0.99).[9] The Nurses’ Health Study included 95,396 postmenopausal women and found that women who exercised more than 27 MET h/wk (equivalent to 1 h/d of brisk walking) had decreased breast cancer incidence compared with those who had fewer than 3 MET h/wk (HR, 0.85; 95% CI, 0.78–0.93; P < .001 for trend). There was no difference in the association between exercise and breast cancer risk for hormone-positive or hormone-negative cancers.[10] Two meta-analyses yielded the same conclusions. One meta-analysis included 38 prospective trials performed from 1987 to 2014. The summary RR was 0.88 (95% CI, 0.85–0.90); results were similar for hormone-positive or hormone-negative cancers.[11] Another meta-analysis reviewed 139 studies encompassing 236,955 women with 3,963 controls. Women who exercised had a significant decrease in breast cancer (odds ratio, 0.78; 95% CI, 0.76–0.81), with a similar effect size for premenopausal and postmenopausal women.[12]

References
  1. Kampert JB, Whittemore AS, Paffenbarger RS: Combined effect of childbearing, menstrual events, and body size on age-specific breast cancer risk. Am J Epidemiol 128 (5): 962-79, 1988. [PUBMED Abstract]
  2. Pike MC, Krailo MD, Henderson BE, et al.: ‘Hormonal’ risk factors, ‘breast tissue age’ and the age-incidence of breast cancer. Nature 303 (5920): 767-70, 1983. [PUBMED Abstract]
  3. Lambe M, Hsieh C, Trichopoulos D, et al.: Transient increase in the risk of breast cancer after giving birth. N Engl J Med 331 (1): 5-9, 1994. [PUBMED Abstract]
  4. Henderson BE, Pike MC, Ross RK, et al.: Epidemiology and risk factors. In: Bonadonna G, ed.: Breast Cancer: Diagnosis and Management. John Wiley & Sons, 1984, pp 15-33.
  5. Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989. [PUBMED Abstract]
  6. Nichols HB, Schoemaker MJ, Cai J, et al.: Breast Cancer Risk After Recent Childbirth: A Pooled Analysis of 15 Prospective Studies. Ann Intern Med 170 (1): 22-30, 2019. [PUBMED Abstract]
  7. Col: Breast cancer and breastfeeding: collaborative reanalysis of individual data from 47 epidemiological studies in 30 countries, including 50302 women with breast cancer and 96973 women without the disease. Lancet 360 (9328): 187-95, 2002. [PUBMED Abstract]
  8. Furberg H, Newman B, Moorman P, et al.: Lactation and breast cancer risk. Int J Epidemiol 28 (3): 396-402, 1999. [PUBMED Abstract]
  9. Fournier A, Dos Santos G, Guillas G, et al.: Recent recreational physical activity and breast cancer risk in postmenopausal women in the E3N cohort. Cancer Epidemiol Biomarkers Prev 23 (9): 1893-902, 2014. [PUBMED Abstract]
  10. Eliassen AH, Hankinson SE, Rosner B, et al.: Physical activity and risk of breast cancer among postmenopausal women. Arch Intern Med 170 (19): 1758-64, 2010. [PUBMED Abstract]
  11. Pizot C, Boniol M, Mullie P, et al.: Physical activity, hormone replacement therapy and breast cancer risk: A meta-analysis of prospective studies. Eur J Cancer 52: 138-54, 2016. [PUBMED Abstract]
  12. Hardefeldt PJ, Penninkilampi R, Edirimanne S, et al.: Physical Activity and Weight Loss Reduce the Risk of Breast Cancer: A Meta-analysis of 139 Prospective and Retrospective Studies. Clin Breast Cancer 18 (4): e601-e612, 2018. [PUBMED Abstract]

Interventions With Adequate Evidence of Benefit

Selective Estrogen Receptor Modulators (SERMs)

Tamoxifen

Tamoxifen is used to treat metastatic breast cancer and to suppress local recurrences and new primary breast cancers after surgical excision of breast cancer.[1] Tamoxifen also maintains bone density among postmenopausal women with breast cancer.[26] Adverse effects include hot flashes, venous thromboembolic events, and endometrial cancer.[79]

The Breast Cancer Prevention Trial (BCPT) randomly assigned 13,388 patients at elevated risk of breast cancer to receive tamoxifen or placebo.[10,11] The study was closed early because the incidence of breast cancer for the tamoxifen group was 49% lower than for the control group (85 vs. 154 invasive breast cancer cases and 31 vs. 59 in situ cases at 4 years). Tamoxifen-treated women also had fewer fractures (47 vs. 71) but more endometrial cancer (33 vs. 14 cases) and thrombotic events (99 vs. 70), including pulmonary emboli (17 vs. 6).[11]

An update of the BCPT results after 7 years of follow-up confirmed and extended those results.[12] Benefits and risks of tamoxifen were not significantly different from those in the original report, with persistent benefit of fewer fractures and persistent increased risk of endometrial cancer, thrombosis, and cataract surgery. No overall mortality benefit was observed after 7 years of follow-up (relative risk [RR], 1.10; 95% confidence interval [CI], 0.85–1.43).

Three other trials of tamoxifen for primary prevention of breast cancer have been completed.[1315]

  • A study in the United Kingdom [13] enrolled 2,471 women at increased breast cancer risk because of a family history of breast and/or ovarian cancer. Risk of estrogen receptor–positive (ER-positive) breast cancer was significantly reduced in the tamoxifen arm (hazard ratio [HR], 0.61; 95% CI, 0.43–0.86), an effect noted predominantly in the posttreatment period. Overall, tamoxifen was associated with decreased breast cancer risk at 13 years (HR, 0.78; 95% CI, 0.58–1.04) but not at 6 years (RR, 1.06).[16]
  • An Italian study [14] focused on 5,408 women who had undergone hysterectomy and who were described as low to normal risk. After nearly 4 years of follow-up, no protective effect of tamoxifen was observed. Longer follow-up and subgroup analysis in this trial found a protective effect of tamoxifen among women at high risk for hormone receptor–positive breast cancer (RR, 0.24; 95% CI, 0.10–0.59) and among women who were taking HT during the trial (RR, 0.43; 95% CI, 0.20–0.95).[17,18]
  • The International Breast Cancer Intervention Study (IBIS-I) randomly assigned 7,152 women aged 35 to 70 years who were at an increased risk of breast cancer to receive tamoxifen (20 mg/day) or placebo for 5 years.[15] After a median follow-up of 50 months, fewer tamoxifen-treated women had developed invasive or in situ breast cancer (absolute rate, 4.6 vs. 6.75 per 1,000 woman-years; risk reduction, 32%; 95% CI, 8%–50%). The RR reduction in ER-positive invasive breast cancer was 31%; there was no reduction in estrogen receptor–negative (ER-negative) cancers. The nonsignificant increase in all-cause mortality in the tamoxifen group (25 vs. 11; P = .028) was attributed to chance. The beneficial effect of tamoxifen on breast cancer persisted beyond active treatment; 46 months after the 5-year treatment, fewer women in the tamoxifen arm developed breast cancer (142 vs. 195 cases; RR, 0.73; 95% CI, 0.58–0.91).[19]

A meta-analysis of these primary prevention tamoxifen trials showed a 38% reduction in the incidence of breast cancer without statistically significant heterogeneity.[9] Incidence rates of ER-positive tumors were reduced by 48%. Rates of endometrial cancer were increased (consensus RR, 2.4; 95% CI, 1.5–4.0), as were venous thromboembolic events (RR, 1.9; 95% CI, 1.4–2.6). None of these primary prevention trials was designed to detect differences in breast cancer mortality.

The Cochrane Database of Systematic Reviews found that tamoxifen administered at the standard dose of 20 mg/day for 5 years is effective in decreasing breast cancer incidence, but the increased risk of toxicity has limited its broad use.[20] This finding warrants further investigation because the clinical implications of the lower dose, whether it may prevent cancer or improve mortality, was not studied.

Women with a history of ductal carcinoma in situ (DCIS) are at increased risk of contralateral breast cancer. The National Surgical Adjuvant Breast and Bowel Project (NSABP) trial B-24 addressed the management of these patients. Women were randomly assigned to receive lumpectomy and radiation therapy either with or without adjuvant tamoxifen. At 6 years, the tamoxifen-treated women had fewer invasive and in situ breast cancers (8.2% vs. 13.4%; RR, 0.63; 95% CI, 0.47–0.83). The risk of contralateral breast cancer was also lower in women treated with tamoxifen (RR, 0.49; 95% CI, 0.26–0.87).[21]

Low-dose tamoxifen

The above-referenced clinical trials assessed tamoxifen use at a dose of 20 mg per day taken for 5 years. Because of the toxicity associated with tamoxifen and low adherence rates, several recent studies have examined the effects of lower-dose tamoxifen. In a double-blind, placebo-controlled, randomized controlled trial, researchers at the Karolinska Institutet found that a lower dose of 2.5 mg was similarly effective in reducing breast density as was a 20 mg dose. This effect was most pronounced in premenopausal women. In addition, vasomotor symptoms declined as the dose of tamoxifen decreased. The authors postulated that decreased mammographic density may be a surrogate for response to tamoxifen therapy and that adherence may improve with less severe symptoms.[22]

The TAM-01 randomized, placebo-controlled, double-blind study examined the use of low-dose (5 mg) tamoxifen as a strategy to prevent invasive breast cancer.[23] The study enrolled 500 women aged 75 years and younger with hormone-sensitive (67%) or unknown breast intraepithelial neoplasia, including atypical ductal hyperplasia, lobular carcinoma in situ, and DCIS (69%); 60% of the women were postmenopausal. Patients in the treatment group received tamoxifen 5 mg per day for 3 years. Of those with DCIS, 45% received radiation therapy. The following results were reported:

  • After a median follow-up of 9.7 years, there were 25 breast cancers in the tamoxifen group (41 invasive cancers) and 41 in the placebo group (59 invasive) (HR, 0.58; 95% CI, 0.35–0.95; log-rank P = .03).
  • For contralateral breast cancers, there were 6 events in the tamoxifen group and 16 in the placebo group (HR, 0.36; 95% CI, 0.14–0.92; P = .025). During the 3-year treatment period, there were 12 serious adverse events with tamoxifen and 16 with placebo. There was one deep vein thrombosis and one stage I endometrial cancer with tamoxifen treatment and one pulmonary embolism with placebo. A limitation of this study is the small sample size.
  • Post-hoc sub-group analyses suggested possible clinically important differences in effects by menopausal status. The study was also not powered to assess differences in effect by DCIS versus non-DCIS breast disease. However, particularly in the United States, DCIS is typically managed differently than atypia.

Raloxifene

Raloxifene hydrochloride (Evista) is a SERM that has antiestrogenic effects on breast and estrogenic effects on bone, lipid metabolism, and blood clotting. Unlike tamoxifen, it has antiestrogenic effects on the endometrium.[24] The Multiple Outcomes of Raloxifene Evaluation (MORE) trial was a randomized, double-blind trial that evaluated 7,705 postmenopausal women with osteoporosis from 1994 to 1998 at 180 clinical centers in the United States. Vertebral fractures were reduced. The effect on breast cancer incidence was a secondary end point. After a median follow-up of 47 months, the risk of invasive breast cancer was decreased in the raloxifene-treated women (RR, 0.25; 95% CI, 0.17–0.45).[25] As with tamoxifen, raloxifene reduced the risk of ER-positive breast cancer but not ER-negative breast cancer and was associated with an excess risk of hot flashes and thromboembolic events. No excess risk of endometrial cancer or hyperplasia was observed.[26]

An extension of the MORE trial was the Continuing Outcomes Relevant to Evista (CORE) trial, which studied about 80% of MORE participants in their randomly assigned groups for an additional 4 years. Although there was a median 10-month gap between the two studies, and only about 55% of women were adherent to their assigned medications, the raloxifene group continued to experience a lower incidence of invasive ER-positive breast cancer. The overall reduction in invasive breast cancer during the 8 years of MORE and CORE was 66% (HR, 0.34; 95% CI, 0.22–0.50); the reduction for ER-positive invasive breast cancer was 76% (HR, 0.24; 95% CI, 0.15–0.40).[27]

The Raloxifene Use for the Heart trial was a randomized, placebo-controlled trial to evaluate the effects of raloxifene on incidence of coronary events and invasive breast cancer. As in the MORE and CORE studies, raloxifene reduced the risk of invasive breast cancer (HR, 0.56; 95% CI, 0.38–0.83).[28]

The Study of Tamoxifen and Raloxifene (STAR) (NSABP P-2) compared tamoxifen and raloxifene in 19,747 high-risk women who were monitored for a mean of 3.9 years. Invasive breast cancer incidence was approximately the same for both drugs, but there were fewer noninvasive cancers in the tamoxifen group. Adverse events of uterine cancer, venous thromboembolic events, and cataracts were more common in tamoxifen-treated women, and there was no difference in ischemic heart disease events, strokes, or fractures.[29] Treatment-associated symptoms of dyspareunia, musculoskeletal problems, and weight gain occurred less frequently in tamoxifen-treated women, whereas vasomotor flushing, bladder control symptoms, gynecologic symptoms, and leg cramps occurred less frequently in those receiving raloxifene.[30]

Table 2. Incidence of Outcomes Per 1,000 Women
  Tamoxifen Raloxifene RR, 95% CI
CI = confidence interval; RR = relative risk; VTE = venous thromboembolism.
Invasive breast cancer 4.3 4.41 1.02, 0.82–1.28
Noninvasive breast cancer 1.51 2.11 1.4, 0.98–2.00
Uterine cancer 2.0 1.25 0.62, 0.35–1.08
VTE 3.8 2.6 0.7, 0.68–0.99
Cataracts 12.3 9.72 0.79, 0.68–0.92
Incidence of Symptoms (0–4 scale)
Favor Tamoxifen
Dyspareunia 0.68 0.78 P < .001
Musculoskeletal problems 1.10 1.15 P = .002
Weight gain 0.76 0.82 P < .001
Favor Raloxifene
Vasomotor symptoms 0.96 0.85 P < .001
Bladder control symptoms 0.88 0.73 P < .001
Leg cramps 1.10 0.91 P < .001
Gynecologic problems 0.29 0.19 P < .001

Aromatase Inhibitors or Inactivators (Als)

Another class of agents used to treat women with hormone-sensitive breast cancer may also prevent breast cancer. These drugs interfere with aromatase, the adrenal enzyme that allows estrogen production in postmenopausal women. Anastrozole and letrozole inhibit aromatase activity, whereas exemestane inactivates the enzyme. Side effects for all three drugs include fatigue, arthralgia, myalgia, decreased bone mineral density, and increased fracture rate.

Women with a previous diagnosis of breast cancer have a lower risk of recurrence and of new breast cancers when treated with AIs, as shown in the following studies:

  1. In the Arimidex, Tamoxifen, Alone or in Combination trial, which compared anastrozole with tamoxifen as adjuvant therapy for primary breast cancer, the rate of locoregional and distant recurrence was lower for anastrozole when compared with tamoxifen (7.1% vs. 8.5%) but higher for the combination (9.1%).[31] Anastrozole was also more effective in reducing the incidence of new contralateral breast cancer (0.4% vs. 1.1% vs. 0.9%).
  2. In another trial, 5,187 women who received 5 years of adjuvant tamoxifen were randomly assigned to receive either letrozole or placebo.[32] After only 2.5 years of median follow-up, the study was terminated because previously defined efficacy end points had been reached. Patients treated with letrozole had a lower incidence of locoregional and distant cancer recurrence and a lower incidence of new contralateral breast cancer (14 vs. 26).
  3. Another placebo-controlled trial of 1,918 women with breast cancer examined the effect of extending letrozole treatment for an additional 5 years in women who had received adjuvant tamoxifen followed by 5 years of letrozole.[33] At a median of 6.3 years from study entry, the extended letrozole group had an improved 5-year disease-free survival rate of 95% (95% CI, 93%–96%) compared with 91% (95% CI, 89%–93%) for the control group (HR, 0.66) but no difference in overall survival. The difference in new contralateral breast cancer diagnoses was statistically significant: 21% (95% CI, 10%–32%) for the extended letrozole group compared with 49% (32%–67%) for the control group (HR, 0.42). Women treated with letrozole had an increased risk of bone pain (18% vs. 14%), bone fracture (14% vs. 9%), and new-onset osteoporosis (11% vs. 6%).
  4. A trial randomly assigned 4,742 women who had received 2 years of adjuvant tamoxifen to either continue the tamoxifen or switch to exemestane.[34] After 2.4 years of median follow-up, the exemestane group had a decreased risk of local or metastatic recurrence and a decreased incidence of new contralateral breast cancer (9 vs. 20).

Aromatase inhibitors or inactivators also have been shown to prevent breast cancer in women at increased risk, as shown in the following studies:

  1. An RCT of primary prevention of breast cancer compared exemestane with placebo in 4,560 women with at least one risk factor (age >60 years, a Gail 5-year risk >1.66%, or a history of DCIS with mastectomy). After 35 months of median follow-up, invasive breast cancer was diagnosed less frequently in the exemestane group (11 vs. 32; HR, 0.35; 95% CI, 0.18–0.70; number needed-to-treat, about 100 for 35 months). Compared with the placebo group, the exemestane-treated women had more hot flashes (increase, 8%) and fatigue (increase, 2%) but no difference in fractures or cardiovascular events.[35]
  2. The International Breast Cancer Intervention Study II (IBIS-II) randomly assigned 3,864 postmenopausal women who were at increased risk of developing breast cancer to receive either daily anastrozole (1 mg) or placebo for 5 years.[36] After a median follow-up of 5 years, fewer breast cancers (invasive and DCIS) occurred in the anastrozole-treated group than in the placebo group (HR, 0.47; 95% CI, 0.32–0.68). The risk of hormone receptor–positive, but not hormone receptor–negative, breast cancer was reduced. Additional follow-up, up to a median of 131 months, showed continued benefit for women treated with anastrozole, who had a 49% reduction in breast cancer (HR, 0.51; 95% CI, 0.39–0.66). No difference in breast cancer mortality was observed.[37] Women treated with anastrozole were more likely than those taking placebo to have musculoskeletal symptoms, including arthralgias (51% vs. 46%), joint stiffness (7% vs. 5%), carpal tunnel syndrome (3% vs. 2%); hypertension (5% vs. 3%); vasomotor symptoms (57% vs. 49%); and dry eyes (4% vs. 2%).

Prophylactic Mastectomy

A retrospective cohort study evaluated the impact of bilateral prophylactic mastectomy on breast cancer incidence among women at high and moderate risk on the basis of family history.[38] BRCA mutation status was not known. Subcutaneous, rather than total, mastectomy was performed in 90% of these women. After a median follow-up of 14 years postsurgery, the risk reduction for the 425 moderate-risk women was 89%; for the 214 high-risk women, it was 90% to 94%, depending on the method used to calculate expected rates of breast cancer. The risk reduction for breast cancer mortality was 100% for moderate-risk women and 81% for high-risk women. Because the study used family history as a risk indicator rather than genetic testing, breast cancer risk may be overestimated.

Contralateral prophylactic mastectomy (CPM) refers to the surgical removal of the opposite uninvolved breast in women who present with unilateral breast cancer. Women who undergo CPM therefore generally undergo bilateral mastectomy for the treatment of unilateral breast cancer, and rates of this procedure among women with unilateral disease (DCIS and early-stage invasive breast cancer) was reported to have increased from 1.9% in 1998 to 11.2% in 2011 based on data from the U.S. National Cancer Data Base.[39]

Some observational studies have suggested that CPM is associated with reduced breast cancer mortality, but these results are generally attributed to selection bias. As of yet, there is no high-quality evidence that CPM is associated with improvements in overall survival. However, some women with unilateral breast cancer, who have a high risk of developing contralateral breast cancer, may reasonably choose CPM to reduce the risk of a new primary cancer in the opposite breast.[40]

Prophylactic Oophorectomy

Ovarian ablation and oophorectomy are associated with decreased breast cancer risk in average-risk women and in women with increased risk resulting from thoracic irradiation. For more information, see the Endogenous Estrogen section. Observational studies of women with high breast cancer risk resulting from BRCA1 or BRCA2 gene mutations showed that prophylactic oophorectomy to prevent ovarian cancer was also associated with a 50% decrease in breast cancer incidence.[4143] These studies are confounded by selection bias, family relationships between patients and controls, indications for oophorectomy, and inadequate information about hormone use. A prospective cohort study had similar findings, with a greater breast cancer risk reduction in BRCA2 mutation carriers than in BRCA1 carriers.[44]

References
  1. Nayfield SG, Karp JE, Ford LG, et al.: Potential role of tamoxifen in prevention of breast cancer. J Natl Cancer Inst 83 (20): 1450-9, 1991. [PUBMED Abstract]
  2. Love RR, Barden HS, Mazess RB, et al.: Effect of tamoxifen on lumbar spine bone mineral density in postmenopausal women after 5 years. Arch Intern Med 154 (22): 2585-8, 1994. [PUBMED Abstract]
  3. Powles TJ, Hickish T, Kanis JA, et al.: Effect of tamoxifen on bone mineral density measured by dual-energy x-ray absorptiometry in healthy premenopausal and postmenopausal women. J Clin Oncol 14 (1): 78-84, 1996. [PUBMED Abstract]
  4. Costantino JP, Kuller LH, Ives DG, et al.: Coronary heart disease mortality and adjuvant tamoxifen therapy. J Natl Cancer Inst 89 (11): 776-82, 1997. [PUBMED Abstract]
  5. McDonald CC, Stewart HJ: Fatal myocardial infarction in the Scottish adjuvant tamoxifen trial. The Scottish Breast Cancer Committee. BMJ 303 (6800): 435-7, 1991. [PUBMED Abstract]
  6. Rutqvist LE, Mattsson A: Cardiac and thromboembolic morbidity among postmenopausal women with early-stage breast cancer in a randomized trial of adjuvant tamoxifen. The Stockholm Breast Cancer Study Group. J Natl Cancer Inst 85 (17): 1398-406, 1993. [PUBMED Abstract]
  7. Fisher B, Costantino JP, Redmond CK, et al.: Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86 (7): 527-37, 1994. [PUBMED Abstract]
  8. Bergman L, Beelen ML, Gallee MP, et al.: Risk and prognosis of endometrial cancer after tamoxifen for breast cancer. Comprehensive Cancer Centres’ ALERT Group. Assessment of Liver and Endometrial cancer Risk following Tamoxifen. Lancet 356 (9233): 881-7, 2000. [PUBMED Abstract]
  9. Cuzick J, Powles T, Veronesi U, et al.: Overview of the main outcomes in breast-cancer prevention trials. Lancet 361 (9354): 296-300, 2003. [PUBMED Abstract]
  10. Redmond CK, Wickerham DL, Cronin W, et al.: The NSABP breast cancer prevention trial (BCPT): a progress report. [Abstract] Proceedings of the American Society of Clinical Oncology 12: A-78, 69, 1993.
  11. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for prevention of breast cancer: report of the National Surgical Adjuvant Breast and Bowel Project P-1 Study. J Natl Cancer Inst 90 (18): 1371-88, 1998. [PUBMED Abstract]
  12. Fisher B, Costantino JP, Wickerham DL, et al.: Tamoxifen for the prevention of breast cancer: current status of the National Surgical Adjuvant Breast and Bowel Project P-1 study. J Natl Cancer Inst 97 (22): 1652-62, 2005. [PUBMED Abstract]
  13. Powles T, Eeles R, Ashley S, et al.: Interim analysis of the incidence of breast cancer in the Royal Marsden Hospital tamoxifen randomised chemoprevention trial. Lancet 352 (9122): 98-101, 1998. [PUBMED Abstract]
  14. Veronesi U, Maisonneuve P, Costa A, et al.: Prevention of breast cancer with tamoxifen: preliminary findings from the Italian randomised trial among hysterectomised women. Italian Tamoxifen Prevention Study. Lancet 352 (9122): 93-7, 1998. [PUBMED Abstract]
  15. Cuzick J, Forbes J, Edwards R, et al.: First results from the International Breast Cancer Intervention Study (IBIS-I): a randomised prevention trial. Lancet 360 (9336): 817-24, 2002. [PUBMED Abstract]
  16. Powles TJ, Ashley S, Tidy A, et al.: Twenty-year follow-up of the Royal Marsden randomized, double-blinded tamoxifen breast cancer prevention trial. J Natl Cancer Inst 99 (4): 283-90, 2007. [PUBMED Abstract]
  17. Veronesi U, Maisonneuve P, Rotmensz N, et al.: Tamoxifen for the prevention of breast cancer: late results of the Italian Randomized Tamoxifen Prevention Trial among women with hysterectomy. J Natl Cancer Inst 99 (9): 727-37, 2007. [PUBMED Abstract]
  18. Martino S, Costantino J, McNabb M, et al.: The role of selective estrogen receptor modulators in the prevention of breast cancer: comparison of the clinical trials. Oncologist 9 (2): 116-25, 2004. [PUBMED Abstract]
  19. Cuzick J, Forbes JF, Sestak I, et al.: Long-term results of tamoxifen prophylaxis for breast cancer–96-month follow-up of the randomized IBIS-I trial. J Natl Cancer Inst 99 (4): 272-82, 2007. [PUBMED Abstract]
  20. Mocellin S, Goodwin A, Pasquali S: Risk-reducing medications for primary breast cancer: a network meta-analysis. Cochrane Database Syst Rev 4 (4): CD012191, 2019. [PUBMED Abstract]
  21. Fisher B, Dignam J, Wolmark N, et al.: Tamoxifen in treatment of intraductal breast cancer: National Surgical Adjuvant Breast and Bowel Project B-24 randomised controlled trial. Lancet 353 (9169): 1993-2000, 1999. [PUBMED Abstract]
  22. Eriksson M, Eklund M, Borgquist S, et al.: Low-Dose Tamoxifen for Mammographic Density Reduction: A Randomized Controlled Trial. J Clin Oncol 39 (17): 1899-1908, 2021. [PUBMED Abstract]
  23. Lazzeroni M, Puntoni M, Guerrieri-Gonzaga A, et al.: Randomized Placebo Controlled Trial of Low-Dose Tamoxifen to Prevent Recurrence in Breast Noninvasive Neoplasia: A 10-Year Follow-Up of TAM-01 Study. J Clin Oncol 41 (17): 3116-3121, 2023. [PUBMED Abstract]
  24. Khovidhunkit W, Shoback DM: Clinical effects of raloxifene hydrochloride in women. Ann Intern Med 130 (5): 431-9, 1999. [PUBMED Abstract]
  25. Cauley JA, Norton L, Lippman ME, et al.: Continued breast cancer risk reduction in postmenopausal women treated with raloxifene: 4-year results from the MORE trial. Multiple outcomes of raloxifene evaluation. Breast Cancer Res Treat 65 (2): 125-34, 2001. [PUBMED Abstract]
  26. Cummings SR, Eckert S, Krueger KA, et al.: The effect of raloxifene on risk of breast cancer in postmenopausal women: results from the MORE randomized trial. Multiple Outcomes of Raloxifene Evaluation. JAMA 281 (23): 2189-97, 1999. [PUBMED Abstract]
  27. Martino S, Cauley JA, Barrett-Connor E, et al.: Continuing outcomes relevant to Evista: breast cancer incidence in postmenopausal osteoporotic women in a randomized trial of raloxifene. J Natl Cancer Inst 96 (23): 1751-61, 2004. [PUBMED Abstract]
  28. Grady D, Cauley JA, Geiger MJ, et al.: Reduced incidence of invasive breast cancer with raloxifene among women at increased coronary risk. J Natl Cancer Inst 100 (12): 854-61, 2008. [PUBMED Abstract]
  29. Vogel VG, Costantino JP, Wickerham DL, et al.: Effects of tamoxifen vs raloxifene on the risk of developing invasive breast cancer and other disease outcomes: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2727-41, 2006. [PUBMED Abstract]
  30. Land SR, Wickerham DL, Costantino JP, et al.: Patient-reported symptoms and quality of life during treatment with tamoxifen or raloxifene for breast cancer prevention: the NSABP Study of Tamoxifen and Raloxifene (STAR) P-2 trial. JAMA 295 (23): 2742-51, 2006. [PUBMED Abstract]
  31. The ATAC Trialists’ Group. Arimidex, tamoxifen alone or in combination: Anastrozole alone or in combination with tamoxifen versus tamoxifen alone for adjuvant treatment of postmenopausal women with early breast cancer: first results of the ATAC randomised trial. Lancet 359 (9324): 2131-9, 2002. [PUBMED Abstract]
  32. Goss PE, Ingle JN, Martino S, et al.: A randomized trial of letrozole in postmenopausal women after five years of tamoxifen therapy for early-stage breast cancer. N Engl J Med 349 (19): 1793-802, 2003. [PUBMED Abstract]
  33. Goss PE, Ingle JN, Pritchard KI, et al.: Extending Aromatase-Inhibitor Adjuvant Therapy to 10 Years. N Engl J Med 375 (3): 209-19, 2016. [PUBMED Abstract]
  34. Coombes RC, Hall E, Gibson LJ, et al.: A randomized trial of exemestane after two to three years of tamoxifen therapy in postmenopausal women with primary breast cancer. N Engl J Med 350 (11): 1081-92, 2004. [PUBMED Abstract]
  35. Goss PE, Ingle JN, Alés-Martínez JE, et al.: Exemestane for breast-cancer prevention in postmenopausal women. N Engl J Med 364 (25): 2381-91, 2011. [PUBMED Abstract]
  36. Cuzick J, Sestak I, Forbes JF, et al.: Anastrozole for prevention of breast cancer in high-risk postmenopausal women (IBIS-II): an international, double-blind, randomised placebo-controlled trial. Lancet 383 (9922): 1041-8, 2014. [PUBMED Abstract]
  37. Batur P: In high-risk, postmenopausal women, 5 years of anastrozole reduced breast cancer incidence at 11 years. Ann Intern Med 172 (8): JC45, 2020. [PUBMED Abstract]
  38. Hartmann LC, Schaid DJ, Woods JE, et al.: Efficacy of bilateral prophylactic mastectomy in women with a family history of breast cancer. N Engl J Med 340 (2): 77-84, 1999. [PUBMED Abstract]
  39. Kummerow KL, Du L, Penson DF, et al.: Nationwide trends in mastectomy for early-stage breast cancer. JAMA Surg 150 (1): 9-16, 2015. [PUBMED Abstract]
  40. Carbine NE, Lostumbo L, Wallace J, et al.: Risk-reducing mastectomy for the prevention of primary breast cancer. Cochrane Database Syst Rev 4: CD002748, 2018. [PUBMED Abstract]
  41. Rebbeck TR, Levin AM, Eisen A, et al.: Breast cancer risk after bilateral prophylactic oophorectomy in BRCA1 mutation carriers. J Natl Cancer Inst 91 (17): 1475-9, 1999. [PUBMED Abstract]
  42. Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
  43. Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
  44. Kauff ND, Domchek SM, Friebel TM, et al.: Risk-reducing salpingo-oophorectomy for the prevention of BRCA1- and BRCA2-associated breast and gynecologic cancer: a multicenter, prospective study. J Clin Oncol 26 (8): 1331-7, 2008. [PUBMED Abstract]

Factors and Interventions With Inadequate Evidence of an Association

Hormonal Contraceptives

Oral contraceptives have been associated with a small increased risk of breast cancer in current users that diminishes over time.[1] A well-conducted case-control study did not observe an association between breast cancer risk and oral contraceptive use for ever use, duration of use, or recent use.[2]

Another case-control study found no increased risk of breast cancer associated with the use of injectable or implantable progestin-only contraceptives in women aged 35 to 64 years.[3]

A nationwide prospective cohort study in Denmark found that women who currently or recently used hormonal contraceptives had a higher risk of breast cancer than did women who had never used hormonal contraceptives. Moreover, the risk of breast cancer increased with longer duration of hormonal contraceptive use. However, in absolute terms, the effect of oral contraceptives on breast cancer risk was very small; approximately one extra case of breast cancer may be expected for every 7,690 women using hormonal contraception for 1 year.[4]

Environmental Factors

Occupational, environmental, or chemical exposures have all been proposed as causes of breast cancer. Meta-analyses, describing up to 134 environmental chemicals, their sources, and biomarkers of their exposures, suggest that some may be associated with cancer.[5,6] Epidemiological and animal data summarized by the National Academy of Medicine [7] and the Interagency Breast Cancer and Environmental Research Coordinating Committee [8] for a wide range of metals, chemicals, and consumer products indicated that there may be biological plausibility for an association between breast cancer risk and environmental factors. However, the data were largely inconclusive as to whether or not definitive associations exist between specific exposures and increased breast cancer risk, particularly at levels relevant to the general population.

Clearly determining whether specific environmental exposures influence the risk of breast cancer in humans poses important challenges. People are exposed to a variable, difficult-to-measure mix of environmental factors over a lifetime; additionally, cancer can take decades to develop after a potential exposure, making accurate recall challenging. Therefore, teasing out the effects of any individual substance on breast cancer risk is not easy. Because so many factors must be considered, any observed associations can be easily confounded by the analytical problems of multiplicities, measurement challenges, and recall and publication bias.[9,10] Additionally, although a specific environmental exposure might be determined to have the potential to be harmful as observed in an animal model or other toxicological studies using high-dose exposures, this does not necessarily mean that the substance, under conditions in which the general human population is exposed, leads to adverse health outcomes. The ultimate risk to human health depends not only on the intrinsic toxic potential of the substance, but also on the dose or amount the population is exposed to and the timing or length of time of the exposure. Overall, available human studies evaluating potential associations between breast cancer and specific environmental exposures are not conclusive.

References
  1. Breast cancer and hormonal contraceptives: further results. Collaborative Group on Hormonal Factors in Breast Cancer. Contraception 54 (3 Suppl): 1S-106S, 1996. [PUBMED Abstract]
  2. Marchbanks PA, McDonald JA, Wilson HG, et al.: Oral contraceptives and the risk of breast cancer. N Engl J Med 346 (26): 2025-32, 2002. [PUBMED Abstract]
  3. Strom BL, Berlin JA, Weber AL, et al.: Absence of an effect of injectable and implantable progestin-only contraceptives on subsequent risk of breast cancer. Contraception 69 (5): 353-60, 2004. [PUBMED Abstract]
  4. Mørch LS, Skovlund CW, Hannaford PC, et al.: Contemporary Hormonal Contraception and the Risk of Breast Cancer. N Engl J Med 377 (23): 2228-2239, 2017. [PUBMED Abstract]
  5. Brody JG, Rudel RA, Michels KB, et al.: Environmental pollutants, diet, physical activity, body size, and breast cancer: where do we stand in research to identify opportunities for prevention? Cancer 109 (12 Suppl): 2627-34, 2007. [PUBMED Abstract]
  6. Rodgers KM, Udesky JO, Rudel RA, et al.: Environmental chemicals and breast cancer: An updated review of epidemiological literature informed by biological mechanisms. Environ Res 160: 152-182, 2018. [PUBMED Abstract]
  7. Institute of Medicine: Breast Cancer and the Environment: A Life Course Approach. The National Academies Press, 2012. Also available online. Last accessed April 9, 2025.
  8. Interagency Breast Cancer and Environmental Research Coordinating Committee: Breast Cancer and The Environment: Prioritizing Prevention. Bethesda, Md: National Institute of Environmental Health Sciences, 2013. Available online. Last accessed April 9, 2025.
  9. Berry D: Multiplicities in cancer research: ubiquitous and necessary evils. J Natl Cancer Inst 104 (15): 1124-32, 2012. [PUBMED Abstract]
  10. Dickersin K: The existence of publication bias and risk factors for its occurrence. JAMA 263 (10): 1385-9, 1990. [PUBMED Abstract]

Factors and Interventions With Adequate Evidence of Little or No Association

Abortion

Abortion has been proposed as a risk factor for breast cancer. Findings from observational studies have varied; some studies showed an association, while other studies did not. Observational studies that support this association were less rigorous and potentially biased because of differential recall by women on a socially sensitive issue.[14] For example, the impact of recall or reporting bias was demonstrated in a study that compared regions with different social attitudes on abortion.[5] The Committee on Gynecologic Practice of the American College of Obstetricians and Gynecologists has concluded that “more rigorous recent studies demonstrate no causal relationship between induced abortion and a subsequent increase in breast cancer risk.”[6] Studies that used prospectively recorded data regarding abortion, thereby avoiding recall bias, largely showed no association with the subsequent development of breast cancer.[712]

Diet

There is little evidence that dietary modifications of any kind have an impact on the incidence of breast cancer.

Very few randomized trials in humans compare cancer incidence for different diets. Most studies are observational—including post hoc analyses of randomized trials—and are subject to biases that may be so large as to render the observation difficult to interpret. In particular, P values and confidence intervals (CIs) do not have the same interpretation as when calculated for the primary end point in a randomized trial.

A summary of ecological studies published before 1975 showed a positive correlation between international age-adjusted breast cancer mortality rates and the estimated per capita consumption of dietary fat.[13] Results of case-control studies have been mixed. Twenty years later, a pooled analysis of results from seven cohort studies found no association between total dietary fat intake and breast cancer risk.[14]

A randomized, controlled, dietary modification study was undertaken among 48,835 postmenopausal women aged 50 to 79 years who were also enrolled in the Women’s Health Initiative. The intervention promoted a goal of reducing total fat intake by 20% by increasing vegetable, fruit, and grain consumption. The intervention group reduced fat intake by approximately 10% for more than 8.1 years of follow-up, resulting in lower estradiol and gamma-tocopherol levels, but no persistent weight loss. The incidence of invasive breast cancer was numerically, but not statistically lower in the intervention group, with a hazard ratio (HR) of 0.91 (95% CI, 0.83–1.01).[15] There was no difference in all-cause mortality, overall mortality, or the incidence of cardiovascular events.[16]

With regard to fruit and vegetable intake, a pooled analysis of eight cohort studies including more than 350,000 women with 7,377 incident breast cancers showed little or no association for various assumed statistical models.[17]

The Women’s Healthy Eating and Living Randomized Trial [18] examined the effect of diet on the incidence of new primary breast cancers in women previously diagnosed with breast cancer. More than 3,000 women were enrolled and randomly assigned to an intense regimen of increased fruit and vegetable intake, increased fiber intake, and decreased fat intake, or a comparison group receiving printed materials on the “5-A-Day” dietary guidelines. After a mean of 7.3 years of follow-up, there was no reduction in new primary cancers, no difference in disease-free survival, and no difference in overall survival.

A randomized trial in Spain [19] assigned participants who were at high cardiovascular risk to one of three diets: a Mediterranean diet supplemented with extra-virgin olive oil, a Mediterranean diet supplemented with mixed nuts, or a control Mediterranean diet (counseling to reduce dietary fat). The investigators reported a statistically significant reduction in major cardiovascular events, which was the trial’s primary end point.[20] The investigators also addressed other end points, including the incidence of breast cancer, although it is not specified how many were examined. Based on only 35 cases of invasive breast cancer (as compared with 288 major cardiovascular events), the respective rates of breast cancer were 8 of 1,476 (0.54%); 10 of 1,285 (0.78%); and 17 of 1,391 (1.22%) with respective average follow-up durations of 4.8, 4.3, and 4.2 years. The circumstances of the study make it difficult to determine the statistical significance of these differences.

Vitamins

The potential role of specific micronutrients for breast cancer risk reduction has been examined in clinical trials, with cardiovascular disease and cancer as outcomes. The Women’s Health Study, a randomized trial with 39,876 women, found no difference in breast cancer incidence at 2 years between women assigned to take either beta carotene or placebo.[21] In this same study, no overall effect on cancer was seen in women taking 600 IU of vitamin E every other day.[22] The Women’s Antioxidant Cardiovascular Study examined 8,171 women for incidence of total cancer and invasive breast cancer and found no effect for vitamin C, vitamin E, or beta carotene.[23] Two years later, a subset of 5,442 women were randomly assigned to take 1.5 mg of folic acid, 50 mg of vitamin B6, and 1 mg of vitamin B12, or placebo. After 7.3 years, there was no difference in the incidence of total invasive cancer or invasive breast cancer.[24]

Fenretinide [25] is a vitamin A analog that has been shown to reduce breast carcinogenesis in preclinical studies. A phase III Italian trial compared the efficacy of a 5-year intervention with fenretinide versus no treatment in 2,972 women, aged 30 to 70 years, with surgically removed stage I breast cancer or DCIS. At a median observation time of 97 months, there were no statistically significant differences in the occurrence of contralateral breast cancer (P = .642), ipsilateral breast cancer (P = .177), incidence of distant metastases, nonbreast malignancies, and all-cause mortality.[26]

Active and Passive Cigarette Smoking

The potential role of active cigarette smoking in the etiology of breast cancer has been studied for more than three decades, with no clear-cut evidence of an association.[27] Since the mid-1990s, studies of cigarette smoking and breast cancer have more carefully accounted for secondhand smoke exposure.[27,28] A recent meta-analysis suggests that there is no overall association between passive smoking and breast cancer and that study methodology (ascertainment of exposure after breast cancer diagnosis) may be responsible for the apparent risk associations seen in some studies.[29]

Underarm Deodorants/Antiperspirants

Despite warnings to women in lay publications that underarm deodorants and antiperspirants cause breast cancer, there is no evidence to support these concerns. A study based on interviews with 813 women who had breast cancer and 793 controls found no association between the risk of breast cancer and the use of antiperspirants, the use of deodorants, or the use of blade razors before these products were applied.[30] In contrast, a study of 437 breast cancer survivors found that women who used antiperspirants/deodorants and shaved their underarms more frequently had cancer diagnosed at a significantly younger age. It is likely that this finding could be explained by differences in endogenous hormones rather than shaving and antiperspirant/deodorant use. Early menarche and increased body hair are both associated with increased levels of endogenous hormones, known to be risk factors for breast cancer.[31]

Statins

Two well-conducted meta-analyses of randomized controlled trials (RCTs) [32] and RCTs plus observational studies [33] found no evidence that statin use either increases or decreases the risk of breast cancer.

Bisphosphonates

Oral and intravenous bisphosphonates for the treatment of hypercalcemia and osteoporosis have been studied for a possible beneficial effect on breast cancer prevention. Initial observational studies suggested that women who used these drugs for durations of approximately 1 to 4 years had a lower incidence of breast cancer.[3437] These findings are confounded by the fact that women with osteoporosis have lower breast cancer risk than those with normal bone density. Additional evidence came from studies of women with a breast cancer diagnosis; the use of these drugs was associated with fewer new contralateral cancers.[38] With this background, two large randomized placebo-controlled trials were done. The Fracture Intervention Trial (FIT) treated 6,194 postmenopausal osteopenic women with either alendronate or placebo and found no difference at 3.8 years in breast cancer incidence, with incidence of 1.8% and 1.5%, respectively (HR, 1.24; 95% CI, 0.84–1.83). The Health Outcomes and Reduced Incidence With Zoledronic Acid Once Yearly-Pivotal Fracture Trial (HORIZON-PRT) examined 7,580 postmenopausal osteoporotic women with either intravenous zoledronate or placebo and found no difference at 2.8 years in breast cancer incidence, with incidence of 0.8% and 0.9%, respectively (HR, 1.15; 95% CI, 0.7–1.89).[39]

Working Night Shifts

Based on evidence from animal studies, the World Health Organization’s International Agency for Research on Cancer (IARC) classified shift work that involves circadian disruption as a probable breast carcinogen.[40] In 2013, a meta-analysis of 15 epidemiological studies found only weak evidence of an increased incidence of breast cancer among women who had ever worked night shifts.[41] In 2016, the results from three recent prospective studies from the United Kingdom, involving nearly 800,000 women, were combined with results from seven other prospective studies and showed no evidence of any association between breast cancer incidence and night shift work. In particular, the confidence intervals for the incidence rate ratios were narrow, even for 20 years or more of night shift work (rate ratio, 1.01; 95% CI, 0.93–1.10). These results exclude a moderate association of breast cancer incidence with long duration of night shift work.[42]

The U.K. Generations Study was established in 2003 to address risk factors and causes of breast cancer. In a prospective cohort of 105,000 women, information was obtained by questionnaire on bedroom light levels at night at the time of study recruitment and at age 20 years. They followed women for an average of 6.1 years and observed 1,775 breast cancers. Adjusting for potentially confounding factors, including night shift work, they found no evidence that the amount of bedroom light at night was associated with breast cancer risk. For the highest-to-lowest levels of light at night, the HR of breast cancer incidence was 1.01 (95% CI, 0.88–1.15).[43]

References
  1. Huang Y, Zhang X, Li W, et al.: A meta-analysis of the association between induced abortion and breast cancer risk among Chinese females. Cancer Causes Control 25 (2): 227-36, 2014. [PUBMED Abstract]
  2. Sanderson M, Shu XO, Jin F, et al.: Abortion history and breast cancer risk: results from the Shanghai Breast Cancer Study. Int J Cancer 92 (6): 899-905, 2001. [PUBMED Abstract]
  3. Beral V, Bull D, Doll R, et al.: Breast cancer and abortion: collaborative reanalysis of data from 53 epidemiological studies, including 83,000 women with breast cancer from 16 countries. Lancet 363 (9414): 1007-16, 2004. [PUBMED Abstract]
  4. Melbye M, Wohlfahrt J, Olsen JH, et al.: Induced abortion and the risk of breast cancer. N Engl J Med 336 (2): 81-5, 1997. [PUBMED Abstract]
  5. Rookus MA, van Leeuwen FE: Induced abortion and risk for breast cancer: reporting (recall) bias in a Dutch case-control study. J Natl Cancer Inst 88 (23): 1759-64, 1996. [PUBMED Abstract]
  6. Committee on Gynecologic Practice: ACOG Committee Opinion No. 434: induced abortion and breast cancer risk. Obstet Gynecol 113 (6): 1417-8, 2009. [PUBMED Abstract]
  7. Henderson KD, Sullivan-Halley J, Reynolds P, et al.: Incomplete pregnancy is not associated with breast cancer risk: the California Teachers Study. Contraception 77 (6): 391-6, 2008. [PUBMED Abstract]
  8. Lash TL, Fink AK: Null association between pregnancy termination and breast cancer in a registry-based study of parous women. Int J Cancer 110 (3): 443-8, 2004. [PUBMED Abstract]
  9. Michels KB, Xue F, Colditz GA, et al.: Induced and spontaneous abortion and incidence of breast cancer among young women: a prospective cohort study. Arch Intern Med 167 (8): 814-20, 2007. [PUBMED Abstract]
  10. Wu JQ, Li YY, Ren JC, et al.: Induced abortion and breast cancer: results from a population-based case control study in China. Asian Pac J Cancer Prev 15 (8): 3635-40, 2014. [PUBMED Abstract]
  11. Braüner CM, Overvad K, Tjønneland A, et al.: Induced abortion and breast cancer among parous women: a Danish cohort study. Acta Obstet Gynecol Scand 92 (6): 700-5, 2013. [PUBMED Abstract]
  12. Guo J, Huang Y, Yang L, et al.: Association between abortion and breast cancer: an updated systematic review and meta-analysis based on prospective studies. Cancer Causes Control 26 (6): 811-9, 2015. [PUBMED Abstract]
  13. Carroll KK, Khor HT: Dietary fat in relation to tumorigenesis. Prog Biochem Pharmacol 10: 308-53, 1975. [PUBMED Abstract]
  14. Hunter DJ, Spiegelman D, Adami HO, et al.: Cohort studies of fat intake and the risk of breast cancer–a pooled analysis. N Engl J Med 334 (6): 356-61, 1996. [PUBMED Abstract]
  15. Prentice RL, Caan B, Chlebowski RT, et al.: Low-fat dietary pattern and risk of invasive breast cancer: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295 (6): 629-42, 2006. [PUBMED Abstract]
  16. Howard BV, Van Horn L, Hsia J, et al.: Low-fat dietary pattern and risk of cardiovascular disease: the Women’s Health Initiative Randomized Controlled Dietary Modification Trial. JAMA 295 (6): 655-66, 2006. [PUBMED Abstract]
  17. Smith-Warner SA, Spiegelman D, Yaun SS, et al.: Intake of fruits and vegetables and risk of breast cancer: a pooled analysis of cohort studies. JAMA 285 (6): 769-76, 2001. [PUBMED Abstract]
  18. Pierce JP, Natarajan L, Caan BJ, et al.: Influence of a diet very high in vegetables, fruit, and fiber and low in fat on prognosis following treatment for breast cancer: the Women’s Healthy Eating and Living (WHEL) randomized trial. JAMA 298 (3): 289-98, 2007. [PUBMED Abstract]
  19. Toledo E, Salas-Salvadó J, Donat-Vargas C, et al.: Mediterranean Diet and Invasive Breast Cancer Risk Among Women at High Cardiovascular Risk in the PREDIMED Trial: A Randomized Clinical Trial. JAMA Intern Med 175 (11): 1752-60, 2015. [PUBMED Abstract]
  20. Estruch R, Ros E, Salas-Salvadó J, et al.: Primary prevention of cardiovascular disease with a Mediterranean diet. N Engl J Med 368 (14): 1279-90, 2013. [PUBMED Abstract]
  21. Lee IM, Cook NR, Manson JE, et al.: Beta-carotene supplementation and incidence of cancer and cardiovascular disease: the Women’s Health Study. J Natl Cancer Inst 91 (24): 2102-6, 1999. [PUBMED Abstract]
  22. Lee IM, Cook NR, Gaziano JM, et al.: Vitamin E in the primary prevention of cardiovascular disease and cancer: the Women’s Health Study: a randomized controlled trial. JAMA 294 (1): 56-65, 2005. [PUBMED Abstract]
  23. Lin J, Cook NR, Albert C, et al.: Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial. J Natl Cancer Inst 101 (1): 14-23, 2009. [PUBMED Abstract]
  24. Zhang SM, Cook NR, Albert CM, et al.: Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA 300 (17): 2012-21, 2008. [PUBMED Abstract]
  25. Costa A, Formelli F, Chiesa F, et al.: Prospects of chemoprevention of human cancers with the synthetic retinoid fenretinide. Cancer Res 54 (7 Suppl): 2032s-2037s, 1994. [PUBMED Abstract]
  26. Veronesi U, De Palo G, Marubini E, et al.: Randomized trial of fenretinide to prevent second breast malignancy in women with early breast cancer. J Natl Cancer Inst 91 (21): 1847-56, 1999. [PUBMED Abstract]
  27. The Health Consequences of Smoking: A Report of the Surgeon General. U.S. Department of Health and Human Services, CDC, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2004. Also available online. Last accessed April 9, 2025.
  28. U.S. Department of Health and Human Services: The Health Consequences of Involuntary Exposure to Tobacco Smoke: A Report of the Surgeon General. U.S. Department of Health and Human Services, Centers for Disease Control and Prevention, Coordinating Center for Health Promotion, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2006. Also available online. Last accessed February 20, 2025.
  29. Pirie K, Beral V, Peto R, et al.: Passive smoking and breast cancer in never smokers: prospective study and meta-analysis. Int J Epidemiol 37 (5): 1069-79, 2008. [PUBMED Abstract]
  30. Mirick DK, Davis S, Thomas DB: Antiperspirant use and the risk of breast cancer. J Natl Cancer Inst 94 (20): 1578-80, 2002. [PUBMED Abstract]
  31. McGrath KG: An earlier age of breast cancer diagnosis related to more frequent use of antiperspirants/deodorants and underarm shaving. Eur J Cancer Prev 12 (6): 479-85, 2003. [PUBMED Abstract]
  32. Dale KM, Coleman CI, Henyan NN, et al.: Statins and cancer risk: a meta-analysis. JAMA 295 (1): 74-80, 2006. [PUBMED Abstract]
  33. Bonovas S, Filioussi K, Tsavaris N, et al.: Use of statins and breast cancer: a meta-analysis of seven randomized clinical trials and nine observational studies. J Clin Oncol 23 (34): 8606-12, 2005. [PUBMED Abstract]
  34. Newcomb PA, Trentham-Dietz A, Hampton JM: Bisphosphonates for osteoporosis treatment are associated with reduced breast cancer risk. Br J Cancer 102 (5): 799-802, 2010. [PUBMED Abstract]
  35. Rennert G, Pinchev M, Rennert HS: Use of bisphosphonates and risk of postmenopausal breast cancer. J Clin Oncol 28 (22): 3577-81, 2010. [PUBMED Abstract]
  36. Chlebowski RT, Chen Z, Cauley JA, et al.: Oral bisphosphonate use and breast cancer incidence in postmenopausal women. J Clin Oncol 28 (22): 3582-90, 2010. [PUBMED Abstract]
  37. Cardwell CR, Abnet CC, Veal P, et al.: Exposure to oral bisphosphonates and risk of cancer. Int J Cancer 131 (5): E717-25, 2012. [PUBMED Abstract]
  38. Monsees GM, Malone KE, Tang MT, et al.: Bisphosphonate use after estrogen receptor-positive breast cancer and risk of contralateral breast cancer. J Natl Cancer Inst 103 (23): 1752-60, 2011. [PUBMED Abstract]
  39. Hue TF, Cummings SR, Cauley JA, et al.: Effect of bisphosphonate use on risk of postmenopausal breast cancer: results from the randomized clinical trials of alendronate and zoledronic acid. JAMA Intern Med 174 (10): 1550-7, 2014. [PUBMED Abstract]
  40. Straif K, Baan R, Grosse Y, et al.: Carcinogenicity of shift-work, painting, and fire-fighting. Lancet Oncol 8 (12): 1065-1066, 2007. [PUBMED Abstract]
  41. Kamdar BB, Tergas AI, Mateen FJ, et al.: Night-shift work and risk of breast cancer: a systematic review and meta-analysis. Breast Cancer Res Treat 138 (1): 291-301, 2013. [PUBMED Abstract]
  42. Travis RC, Balkwill A, Fensom GK, et al.: Night Shift Work and Breast Cancer Incidence: Three Prospective Studies and Meta-analysis of Published Studies. J Natl Cancer Inst 108 (12): , 2016. [PUBMED Abstract]
  43. Johns LE, Jones ME, Schoemaker MJ, et al.: Domestic light at night and breast cancer risk: a prospective analysis of 105 000 UK women in the Generations Study. Br J Cancer 118 (4): 600-606, 2018. [PUBMED Abstract]

Latest Updates to This Summary (04/09/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Incidence and Mortality

Updated statistics with estimated new cases and deaths for 2025 (cited American Cancer Society as reference 1).

Revised text to state that according to data from the Surveillance, Epidemiology, and End Results (SEER) Program, breast cancer mortality rates declined by 44% from 1989 to 2022. However, mortality rates in Black women remain about 38% higher than in White women.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about breast cancer prevention. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Breast Cancer Prevention. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/breast/hp/breast-prevention-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389323]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Genetics of Breast and Gynecologic Cancers (PDQ®)–Health Professional Version

Genetics of Breast and Gynecologic Cancers (PDQ®)–Health Professional Version

Executive Summary

This executive summary reviews the topics covered in this PDQ summary on the genetics of breast and gynecologic cancers.

  • Associated Genes and Syndromes

    Breast and ovarian cancer are present in several autosomal dominant cancer syndromes, although they are most strongly associated with highly penetrant germline pathogenic variants in BRCA1 and BRCA2. Other genes, such as PALB2, TP53 (associated with Li-Fraumeni syndrome), PTEN (associated with PTEN hamartoma tumor syndromes, including Cowden syndrome), CDH1 (associated with diffuse gastric and lobular breast cancer syndrome), and STK11 (associated with Peutz-Jeghers syndrome), confer a risk to either or both of these cancers with relatively high penetrance.

    Inherited endometrial cancer is most commonly associated with Lynch syndrome, a condition caused by inherited pathogenic variants in the highly penetrant mismatch repair genes MLH1, MSH2, MSH6, PMS2, and EPCAM. Colorectal cancer (and, to a lesser extent, ovarian cancer and stomach cancer) is also associated with Lynch syndrome.

    CHEK2, BRIP1, RAD51C, RAD51D, and ATM are moderate penetrance genes that are associated with increased breast and/or gynecologic cancer risk. Genome-wide searches are showing promise in identifying common, low-penetrance susceptibility alleles for many complex diseases, including breast and gynecologic cancers, but the clinical utility of these findings remains uncertain.

  • Clinical Management

    Breast cancer screening strategies, including breast magnetic resonance imaging and mammography, are commonly performed in carriers of BRCA pathogenic variants and in individuals at increased risk of breast cancer. Initiation of screening is generally recommended at earlier ages and at more frequent intervals in individuals with an increased risk due to genetics and family history than in the general population. There is evidence to demonstrate that these strategies have utility in early detection of cancer. In contrast, there is currently no evidence to demonstrate that ovarian cancer screening using cancer antigen–125 testing and transvaginal ultrasound leads to early detection of cancer.

    Risk-reducing surgeries, including risk-reducing mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO), have been shown to significantly reduce the risk of developing breast and/or ovarian cancer and improve overall survival in carriers of BRCA1 and BRCA2 pathogenic variants. Chemoprevention strategies for breast cancer and chemoprevention strategies for ovarian cancer have been examined in this population. For example, tamoxifen use has been shown to reduce the risk of contralateral breast cancer among carriers of BRCA1 and BRCA2 pathogenic variants after treatment for breast cancer, but there are limited data in the primary cancer prevention setting to suggest that it reduces the risk of breast cancer among healthy female carriers of BRCA2 pathogenic variants. The use of oral contraceptives also has been associated with a protective effect on the risk of developing ovarian cancer, including in carriers of BRCA1 and BRCA2 pathogenic variants, with no association of increased risk of breast cancer when using formulations developed after 1975.

  • Psychosocial and Behavioral Issues

    Psychosocial factors influence decisions about genetic testing for inherited cancer risk and risk-management strategies. Uptake of genetic testing varies widely across studies. Psychological factors that have been associated with testing uptake include cancer-specific distress and perceived risk of developing breast or ovarian cancer. Studies have shown low levels of distress after genetic testing for both carriers and noncarriers, particularly in the longer term. Uptake of RRM and RRSO also varies across studies and may be influenced by factors such as cancer history, age, family history, recommendations of the health care provider, and pretreatment genetic education and counseling. Patients’ communication with their family members about an inherited risk of breast and gynecologic cancer is complex; gender, age, and the degree of relatedness are some elements that affect disclosure of this information. Research is ongoing to better understand and address psychosocial and behavioral issues in high-risk families.

Introduction

General Information

Among women in the United States, breast cancer is the most commonly diagnosed cancer after nonmelanoma skin cancer, and it is the second leading cause of cancer deaths after lung cancer. In 2025, an estimated 319,750 new cases of breast cancer (including 2,800 cases in men) will be diagnosed, and 42,680 deaths (including 510 deaths in men) will occur.[1] The incidence of breast cancer, particularly for estrogen receptor (ER)–positive cancers occurring after age 50 years, is declining and has declined at a faster rate since 2003. This may be temporally related to a decrease in hormone replacement therapy (HRT) after early reports from the Women’s Health Initiative (WHI).[2] An estimated 20,890 new cases of ovarian cancer are expected in the United States in 2025, with an estimated 12,730 deaths. Ovarian cancer is the sixth most deadly cancer in women.[1] An estimated 69,120 new cases of endometrial cancer are expected in the United States in 2025, with an estimated 13,860 deaths.[1] (Refer to the PDQ summaries on Breast Cancer Treatment; Ovarian Epithelial, Fallopian Tube, and Primary Peritoneal Cancer Treatment; and Endometrial Cancer Treatment for more information about breast, ovarian, and endometrial cancer rates, diagnosis, and management.)

A possible genetic contribution to both breast and ovarian cancer risk is indicated by the increased incidence of these cancers among women with a family history (refer to the Risk Factors for Breast Cancer, Risk Factors for Ovarian Cancer, and Risk Factors for Endometrial Cancer sections below for more information), and by the observation of some families in which multiple family members are affected with breast and/or ovarian cancer, in a pattern compatible with an inheritance of autosomal dominant cancer susceptibility. Formal studies of families (linkage analysis) have subsequently proven the existence of autosomal dominant predispositions to breast and ovarian cancer and have led to the identification of several highly penetrant genes as the cause of inherited cancer risk in many families. (Refer to the PDQ summary Cancer Genetics Overview for more information about linkage analysis.) Pathogenic variants in these genes are rare in the general population and are estimated to account for no more than 5% to 10% of breast and ovarian cancer cases overall. It is likely that other genetic factors contribute to the etiology of some of these cancers.

Risk Factors for Breast Cancer

This section discusses factors that can modify an individual’s risk of developing breast cancer. These risk factors can affect women in the general population, women who have a family histories of breast cancer, and women who carry pathogenic variants in breast cancer risk genes. For more information on breast cancer risk factors in the general population, see Breast Cancer Prevention, and for more information on risks associated with BRCA1/2 pathogenic variants, see the Cancer Risks, Spectrum, and Characteristics section in BRCA1 and BRCA2: Cancer Risks and Management.

The following breast cancer risk factors are discussed in this section:

These factors can increase or decrease breast cancer risk in all women. However, they may affect breast cancer risk differently in women with increased breast cancer susceptibility (i.e., women who have high-risk family histories and/or pathogenic variants in hereditary breast cancer genes). Factors that increase breast cancer risk in the general population may lower breast cancer risk, increase breast cancer risk more than expected, or have no effect on breast cancer risk in women with high breast cancer susceptibility. In some cases, these risk factors may affect high-risk women in the same way that they affect average-risk women. Furthermore, modifying risk factors has a greater effect on the absolute breast cancer risk in women with high breast cancer susceptibility than in women with low breast cancer susceptibility.[3] It is imperative that providers discuss breast cancer risk factors with high-susceptibility patients, since risk patterns deviate from those seen in women in the general population. Providers may also want to convey whether these risk factors increase, decrease, or do not affect breast cancer risk in women with high breast cancer susceptibility, based on available evidence. This information may change how providers approach breast cancer risk management in women with high breast cancer susceptibility.

Age

Like other cancer types, breast cancer’s cumulative risk increases with age. As individuals age, they encounter more environmental exposures and accumulate genomic changes. Hence, most breast cancers occur after age 50 years.[4] Women with pathogenic variants in breast cancer risk genes often develop breast cancer at younger ages than women with sporadic breast cancers.

Family history of breast cancer

A family history of breast cancer is a well-established, consistent risk factor for breast cancer. Approximately 5% to 10% of women with breast cancer also had a mother or sister with breast cancer in cross-sectional studies. About 10% to 20% of women had a first-degree relative (FDR) or a second-degree relative (SDR) with breast cancer.[58] A pooled analysis of 38 studies showed that women had increased breast cancer risk when they had at least one FDR with breast cancer (relative risk [RR], 2.1; 95% confidence interval [CI], 2.0–2.2).[9] A large population-based study that used the Swedish Family Cancer Database found that women had a significantly increased risk of breast cancer when they had a mother or a sister with breast cancer.[6,7,911]

The following factors can increase a woman’s breast cancer risk:

  • Large number of affected relatives.
  • Family members who were diagnosed with breast cancer at young ages.
  • Family members with bilateral breast cancers.
  • Family members with multiple ipsilateral breast cancers.
  • Male relatives with breast cancer.

Furthermore, women with family histories of multiple breast cancers had higher hazard ratios (HRs) (HR, 2.7; 95% CI, 2.6–2.9) than women who had a single breast cancer in their families (HR, 1.8; 95% CI, 1.8–1.9). When women had multiple breast cancers in their families (with one breast cancer occurring before age 40 years), the HR was 3.8 (95% CI, 3.1–4.8). However, breast cancer risk also significantly increased when a relative was diagnosed with breast cancer at 60 years or older, suggesting that having a relative with breast cancer at any age can increase risk.[11] Another study in women with unilateral versus contralateral breast cancer (CBC) evaluated CBC risk among family members.[12] Results indicated that women with at least one affected FDR had an 8.1% chance of developing CBC after 10 years. Participants’ risks also increased when relatives were diagnosed with breast cancer before age 40 years (10-year absolute risk [AR], 13.5%; 95% CI, 8.8%–20.8%) or if relatives had CBC (10-year AR, 14.1%; 95% CI, 9.5%–20.7%). These risks were similar to those seen among BRCA carriers (10-year AR, 18.4%; 95% CI, 16.0%–21.3%). These risk estimates remained unchanged when the analysis was restricted to women who tested negative for a pathogenic variant in BRCA1/BRCA2, ATM, CHEK2, or PALB2.

Albright et al. addressed how affected third-degree relatives (TDRs) can contribute to an individual’s breast cancer risk.[13] These researchers used the Utah Population Database and the Utah Cancer Registry to estimate RRs for participants to develop breast cancer. They collected family histories with FDRs, SDRs, and TDRs and included both paternal and maternal relatives. They confirmed that individuals with affected FDRs had the highest breast cancer risk, particularly if the FDR was diagnosed with breast cancer early in life. When participants had five or more affected TDRs (and no FDRs/SDRs with breast cancer), they had an RR of 1.32 (95% CI, 1.11–1.57).

One of the largest studies of twins ever conducted examined 80,309 monozygotic twins and 123,382 dizygotic twins. This study had a heritability estimate of 31% for breast cancer (95% CI, 11%–51%).[14] If a monozygotic twin had breast cancer, her twin sister had a 28.1% chance of developing breast cancer (95% CI, 23.9%–32.8%), and if a dizygotic twin had breast cancer, her twin sister had a 19.9% chance of developing breast cancer (95% CI, 17%–23.2%). These estimates suggest that monozygotic twins have a 10% higher risk of developing breast cancer than dizygotic twins. However, the high rate of discordance seen, even between monozygotic twins, suggests that environmental factors can also modify breast cancer risk.

Benign breast disease, mammographic density, and background parenchymal enhancement

Benign breast disease (BBD)

  • BBD is a broad group of conditions characterized by non-cancerous changes in breast tissue. BBD can be divided into three categories: nonproliferative lesions, proliferative lesions without atypia, and atypical hyperplasias. BBD is a consistent risk factor for breast cancer in the general population.[15,16]
  • BBD is also an important risk factor in women who have high breast cancer susceptibility due to family histories of cancer or pathogenic variants in breast cancer risk genes. For example, a study of 17,154 women found that women with a history of BBD have an increased risk of breast cancer that is independent of their underlying familial and genetic risks.[17] However, breast cancer risk associated with personal histories of BBD did not vary between women with BRCA1 pathogenic variants (RR, 1.64; 95% CI, 1.04–2.58), women with BRCA2 pathogenic variants (RR, 1.34; 95% CI, 0.78–2.3), and women who only had family histories of breast cancer (RR, 1.31; 95% CI, 1.13–1.53). In women with high breast cancer susceptibility, BBD can further increase breast cancer risk, because it multiplies their underlying familial and genetic risks.

Mammographic density

  • Women with dense breast tissue (assessed by mammogram) also have an increased risk of developing breast cancer.[15,18,19] Studies have shown that breast density likely has a genetic etiology.[2022]
  • A systematic review reported that women who had dense breast tissue and an FDR with breast cancer had an increased chance of developing breast cancer.[23] Two retrospective studies also investigated the association between mammographic density and breast cancer risk in BRCA1 and BRCA2 carriers.[24,25] These retrospective studies had samples of 206 and 691 BRCA pathogenic variant carriers. In these studies, 96 and 248 women developed breast cancer, respectively.[24,25] The studies found that mammographic density is an independent risk factor for breast cancer in both BRCA1 and BRCA2 pathogenic variant carriers. Associations between breast density and breast cancer risk were similar to those observed in the general population (RR, 2.30 for density ≥50% vs. <50%).

Background parenchymal enhancement (BPE)

  • Like breast density (assessed by mammogram), BPE (assessed by breast magnetic resonance imaging [MRI]) may increase breast cancer risk. Data have shown that moderate BPE (odds ratio [OR], 1.6; 95% CI, 1.0–2.6) and mild BPE (OR, 2.1; 95% CI, 1.5–3.0) can increase breast cancer risk in women with high breast cancer susceptibility. However, an association between mild/moderate BPE and breast cancer risk was not found in women with average breast cancer susceptibility.[26]

Parity, age at first birth, and breastfeeding

Parity

  • A large prospective study analyzed the relationship between parity and breast cancer risk in female BRCA1 and BRCA2 carriers. Results showed that parity affected breast cancer risk in BRCA1 and BRCA2 carriers differently. Breast cancer risk increased in uniparous BRCA1 carriers and parous BRCA2 carriers.[27] In BRCA1 carriers, there was no overall association between parity and breast cancer risk when compared with nulliparity and breast cancer risk. Uniparous BRCA1 carriers were at an increased risk of breast cancer in the prospective analysis (HRprospective, 1.69; 95% CI, 1.09–2.62) when compared with nulliparous BRCA1 carriers. The results also suggested that uniparous women who breastfed may have decreased breast cancer risk when compared with those who did not breastfeed. In BRCA2 carriers, being parous was associated with a 33% increase in breast cancer risk (HRcombined, 1.33; 95% CI, 1.05–1.69). Multiparity did not decrease breast cancer risk in BRCA2 carriers, unless they had at least four full-term pregnancies (HRcombined, 0.72; 95% CI, 0.54–0.98).

Age at first birth

  • In the general population, breast cancer risk increases when women have early menarche and/or late menopause. Breast cancer risk decreases when a woman’s first full-term pregnancy occurs at a young age. However, these risk factors can affect women with high breast cancer susceptibility differently than women in the general population. BRCA1 and BRCA2 pathogenic variant carriers who become pregnant prior to age 30 years may have increased breast cancer risk. This effect is even more significant in BRCA1 pathogenic variant carriers.[2830] BRCA1 and BRCA2 pathogenic variant carriers who developed breast cancer during pregnancy or became pregnant after developing breast cancer did not experience adverse survival outcomes.[31]

Breastfeeding

  • Breastfeeding can reduce breast cancer risk in BRCA1 (but not BRCA2) pathogenic variant carriers.[32] Breastfeeding for long periods of time was associated with decreased breast cancer risk in BRCA1 carriers (P-trend = .0003).[27]

Reproductive history can also affect a woman’s risk for ovarian cancer and endometrial cancer. For more information, see the Risk Factors for Ovarian Cancer and Risk Factors for Endometrial Cancer sections.

Contraceptives

Breast cancer risk is one of the factors to consider when prescribing contraceptives, which assist with pregnancy control, abnormal bleeding, and other gynecological symptoms. Oral contraceptives (OCs) may slightly increase breast cancer risk in long-term users, but this appears to be a short-term effect.[33]

Some studies show that OC use does not further increase breast cancer risk in women with high breast cancer susceptibility. For example, a meta-analysis with data from 54 studies showed that women with family histories of breast cancer did not have increased breast cancer risk from OC use.[33] Although the data are not entirely consistent, a meta-analysis of BRCA1/BRCA2 pathogenic variant carriers concluded that breast cancer risk did not significantly increase when participants used OCs.[34] More specifically, the International BRCA1/2 Carrier Cohort Study (IBCCS), the Kathleen Cuningham Foundation Consortium for Research into Familial Breast Cancer (kConFab) Follow-Up Study, and the Breast Cancer Family Registry (BCFR) did not report associations between OC use and increased breast cancer risk in women with BRCA1 pathogenic variants.[35] In fact, OCs are sometimes recommended for ovarian cancer prevention in BRCA1 and BRCA2 pathogenic variant carriers. For more information, see the Oral contraceptives and Risk Factors for Ovarian Cancer sections. However, in the prospective analyses of the IBCCS, kConFab, and BCFR studies mentioned above, women with BRCA2 pathogenic variants had increased breast cancer risk when they took OCs (HR, 1.75; 95% CI, 1.03–2.97). Additionally, a systematic review of the published data concluded that it is unclear if OC use increases breast cancer risk in BRCA1/2 carriers due to inconsistencies across studies.[36]

Some studies also suggest that the year an OC was made and a woman’s age when beginning OC use may matter. For example, OCs made before 1975 are associated with increased breast cancer risk in BRCA1/2 carriers (summary relative risk [SRR], 1.47; 95% CI, 1.06–2.04).[34] A case-control study of 2,492 matched pairs of women with a BRCA1 pathogenic variant also found that OC use significantly increased breast cancer risk when women began using OCs prior to age 20 years (OR, 1.45; 95% CI, 1.20–1.75).[37]

Other contraceptive methods have not been studied in women with pathogenic variants in breast cancer risk genes. However, studies have investigated associations between intrauterine devices and breast cancer risk in the general population. A meta-analysis and systematic review of seven studies examined the effect of the levonorgestrel-releasing intrauterine system (LNG-IUS) on breast cancer risk. The meta-analysis included studies that controlled for family history of breast cancer, but associations were not separately evaluated or stratified by family history of breast cancer. In LNG-IUS users, breast cancer risk increased in all women (OR, 1.16; 95% CI, 1.06–1.28), in women younger than 50 years (OR, 1.12; 95% CI, 1.02–1.22), and in women 50 years and older (OR, 1.52; 95% CI, 1.34–1.72).[38]

Hormone replacement therapy

Both observational studies and randomized clinical trials have examined the association between postmenopausal HRT and breast cancer. Short-term use of HRT for treatment of postmenopausal symptoms appears to confer little or no breast cancer risk.[39,40] A meta-analysis with data from 51 observational studies found a 1.35 RR for breast cancer (95% CI, 1.21–1.49) in women who used HRT for 5 or more years after menopause.[39] The WHI, a randomized, controlled trial of about 160,000 postmenopausal women, investigated the risks and benefits of HRT. The estrogen-plus-progestin arm of the study, in which more than 16,000 women were randomly assigned to receive combined estrogen and progestin or placebo, was halted early because health risks exceeded health benefits.[41,42] Significant increases in both total breast cancer cases (245 in the estrogen-plus-progestin group vs. 185 in the placebo group) and invasive breast cancer cases (199 in the estrogen-plus-progestin group vs. 150 in the placebo group) prompted early closure of the study (RR, 1.24; 95% CI, 1.02–1.5; P < .001). Risks for coronary heart disease, stroke, and pulmonary embolism also increased in the estrogen-plus-progestin group. The WHI study did not stratify data by participants’ family histories of breast cancer, and subjects were not systematically tested for BRCA1/BRCA2 pathogenic variants.[42] Similar findings were seen in the estrogen-progestin arm of the prospective, observational Million Women’s Study in the United Kingdom.[43] However, breast cancer risk was not elevated in women randomly assigned to the estrogen-only group when compared with those in the placebo group in the WHI study (RR, 0.77; 95% CI, 0.59–1.01). Hysterectomy was required for women to qualify for the estrogen-only arm of this study; 40% of these patients also had a bilateral oophorectomy, which can potentially decrease breast cancer risk.[44]

Among women with family histories of breast cancer, the associations between HRT and breast cancer risk have not been consistent. Some studies suggested risk was particularly elevated among women with family histories of breast cancer, while others did not report an interaction between these factors.[4549,39] A large meta-analysis found that women who used HRT had increased breast cancer risk. However, risk did not differ significantly between subjects with or without family histories of cancer.[49]

The effect of HRT on breast cancer risk among carriers of BRCA1 and BRCA2 pathogenic variants has been studied in the context of bilateral risk-reducing oophorectomy. Short-term HRT use does not seem to alter an oophorectomy’s protective effect on breast cancer risk.[50] For example, a prospective, longitudinal cohort study recruited BRCA1 carriers from 80 centers in 17 countries. This study found that HRT use after oophorectomy was not associated with increased breast cancer risk in BRCA1 carriers.[51] The HR was 0.97 (95% CI, 0.62–1.52) for individuals who used HRT when compared with individuals who had never used HRT. However, the effects of estrogen-only HRT and estrogen-plus-progesterone HRT differed. After a 10-year follow-up period, the cumulative breast cancer incidence was 12% in women who used estrogen-only HRT and 22% in women who used estrogen-plus-progesterone HRT. These associations were stronger for women who underwent oophorectomy before age 45 years. The study concluded that using estrogen-only HRT after oophorectomy did not increase risk of BRCA1-associated breast cancers. However, the potential harmful effects of progesterone-containing HRT warrant further study.[52] For more information, see the HRT in Carriers of BRCA1/BRCA2 Pathogenic Variants section in BRCA1 and BRCA2: Cancer Risks and Management.

HRT use may also increase a woman’s chance of developing endometrial cancer. For more information, see the Hormones section.

Radiation exposure

Radiation exposure can increase an individual’s breast cancer risk. This is demonstrated by the survivors of the atomic bombings in Hiroshima and Nagasaki and by women who have received therapeutic radiation treatments to the chest and upper body. However, it is unclear how much radiation exposure affects breast cancer risk in women with high breast cancer susceptibility.

Early data suggested that carriers of BRCA1 and BRCA2 pathogenic variants may have increased sensitivity to radiation, which may contribute to cancer susceptibility.[5356] Studies have shown that individuals with germline ATM and TP53 variants also have increased sensitivity to radiation.[57,58]

It is possible that radiation exposure from diagnostic procedures, including mammography, poses a greater risk to women with high breast cancer susceptibility than to women who are at average risk of developing breast cancer. Therapeutic radiation could also increase cancer risk in women with high breast cancer susceptibility. However, a cohort study of BRCA1 and BRCA2 pathogenic variant carriers treated with breast-conserving therapy did not show evidence of increased radiation sensitivity in participants. Sequelae were not observed in the breasts, lungs, or bone marrow of BRCA carriers.[59]

Conversely, tumors in women with pathogenic variants in breast cancer risk genes may be more responsive to radiation treatment than tumors in women at average breast cancer risk. Studies examining the impact of radiation exposure in carriers of BRCA1 and BRCA2 pathogenic variants have had conflicting results.[6065] A large European study showed a dose-response relationship, in which breast cancer risk increased with total radiation exposure. However, this occurred most often when patients had nonmammographic radiation exposure before age 20 years.[64] A significant association was not observed between prior mammography exposure and breast cancer risk in a prospective study of 1,844 BRCA1 carriers and 502 BRCA2 carriers without breast cancer diagnoses upon study entry. The average follow-up period in this study was 5.3 years.[65]

A retrospective cohort study estimated the effect of adjuvant radiation therapy (for primary breast cancer) on CBC risk in BRCA1 and BRCA2 carriers (N, 691; median follow-up period, 8.6 y).[66] An association was not found between radiation therapy and CBC risk (HR, 0.82; 95% CI, 0.45–1.45). This was also true in patients who were younger than 40 years when they were diagnosed with their primary breast cancers (HR, 1.36; 95% CI, 0.60–3.09). A study examined the impact of radiation therapy on CBC risk in ATM, BRCA1/2, and CHEK2 1100delC carriers. CBC risk was not modified by radiation therapy, even though these women had a higher baseline risk of CBC than women in the general population (BRCA1/2 pathogenic variant carriers without radiation therapy: RR, 3.52; 95% CI, 1.76–7.01; BRCA1/2 pathogenic variant carriers with radiation therapy: RR, 4.46; 95% CI, 2.96–6.71).[67] Thus, it is important to differentiate individuals with increased CBC risk due to pathogenic variants from individuals with increased CBC risk due to radiation therapy. For more information, see the Mammography section in BRCA1 and BRCA2: Cancer Risks and Management.

Alcohol and smoking

The risk of breast cancer increases by approximately 10% for each 10 g of daily alcohol intake (approximately one drink or less) in the general population.[68,69] Prior studies of BRCA1/BRCA2 pathogenic variant carriers have not found an association between alcohol consumption and increased breast cancer risk.[7072] The association between cigarette smoking and breast cancer risk in women with BRCA1/2 pathogenic variants is inconclusive.[73,74]

Recent studies have evaluated the association between alcohol consumption, tobacco smoking, and breast cancer risk in individuals with BRCA1/2 pathogenic variants or family histories of breast cancer. One study evaluated if tobacco smoking and alcohol consumption are associated with increased breast cancer risk in BRCA1 and BRCA2 carriers using pooled data from an international cohort.[75] This study did not find an association between alcohol consumption and increased breast cancer risk in BRCA1 and BRCA2 carriers. Parous BRCA carriers who smoked for more than 5 years before their first full-term pregnancy had a significantly increased breast cancer risk when compared with parous BRCA carriers who did not smoke. A prospective study evaluating a cohort of women with family histories of breast cancer found that alcohol consumption was associated with an increased number of ER-positive breast cancers in women at the lowest quantile of absolute breast cancer risk (HR, 1.46; 95% CI, 1.07–1.99).[76] Cigarette smoking was also associated with increased breast cancer risk in those at the highest quantile of absolute breast cancer risk.

Physical activity

Increased physical activity has been associated with reduced breast cancer risk in most epidemiological studies. This risk reduction has also been seen in studies of female BRCA1 or BRCA2 pathogenic variant carriers. For example, one study reported a 38% reduction in premenopausal breast cancer risk from moderate physical activity (OR for the top quartile of physical activity compared with the lowest level, 0.62; 95% CI, 0.40–0.96).[77] This reduction in breast cancer risk has been seen in women with varying levels of breast cancer susceptibility, including women who have family histories of breast cancer but do not have known BRCA1 or BRCA2 pathogenic variants.[78]

Risk Factors for Ovarian Cancer

Refer to the PDQ summary on Ovarian, Fallopian Tube, and Primary Peritoneal Cancers Prevention for information about risk factors for ovarian cancer in the general population.

Age

Ovarian cancer incidence rises in a linear fashion from age 30 years to age 50 years and continues to increase, though at a slower rate, thereafter. Before age 30 years, the risk of developing epithelial ovarian cancer is remote, even in hereditary cancer families.[79]

Family history including inherited cancer genes

Although reproductive, demographic, and lifestyle factors affect risk of ovarian cancer, the single greatest ovarian cancer risk factor is a family history of the disease. A large meta-analysis of 15 published studies estimated an OR of 3.1 for the risk of ovarian cancer associated with at least one FDR with ovarian cancer.[80]

Reproductive history

Nulliparity is consistently associated with an increased risk of ovarian cancer, including among carriers of BRCA/BRCA2 pathogenic variants, yet a meta-analysis identified a risk reduction only in women with four or more live births.[30] Risk may also be increased among women who have used fertility drugs, especially those who remain nulligravid.[81,82] Several studies have reported a risk reduction in ovarian cancer after OC use in carriers of BRCA/BRCA2 pathogenic variants;[8385] a risk reduction has also been shown after tubal ligation in BRCA1 carriers, with a statistically significant decreased risk of 22% to 80% after the procedure.[85,86] Breastfeeding for more than 12 months may also be associated with a reduction in ovarian cancer among carriers of BRCA1/BRCA2 pathogenic variants.[87] On the other hand, evidence is growing that the use of menopausal HRT is associated with an increased risk of ovarian cancer, particularly in long-time users and users of sequential estrogen-progesterone schedules.[8891]

Surgical history

Bilateral tubal ligation and hysterectomy are associated with reduced ovarian cancer risk,[81,92,93] including in carriers of BRCA/BRCA2 pathogenic variants.[94] Ovarian cancer risk is reduced more than 90% in women with documented BRCA1 or BRCA2 pathogenic variants who chose risk-reducing salpingo-oophorectomy (RRSO). In this same population, risk-reducing oophorectomy also resulted in a nearly 50% reduction in the risk of subsequent breast cancer.[95,96] While some studies have shown more benefit for breast cancer reduction in patients with BRCA2 versus BRCA1 pathogenic variants, others have shown no benefit for BRCA1 carriers. Additionally, many of the studies remain underpowered to demonstrate benefit.[97] (Refer to the Risk-reducing salpingo-oophorectomy for breast cancer risk reduction section in BRCA1 and BRCA2: Cancer Risks and Management for more information about these studies.)

Oral contraceptives (OCs)

Use of OCs for 4 or more years is associated with an approximately 50% reduction in ovarian cancer risk in the general population.[81,98] A majority of, but not all, studies also support OCs being protective among carriers of BRCA/BRCA2 pathogenic variants.[86,99102] A meta-analysis of 18 studies including 13,627 carriers of BRCA pathogenic variants reported a significantly reduced risk of ovarian cancer (SRR, 0.50; 95% CI, 0.33–0.75) associated with OC use.[34] (Refer to the Chemopreventive agents for reducing ovarian cancer risk section in BRCA1 and BRCA2: Cancer Risks and Management.)

Risk Factors for Endometrial Cancer

Refer to the PDQ summary on Endometrial Cancer Prevention for information about risk factors for endometrial cancer in the general population.

Age

Age is an important risk factor for endometrial cancer. Most women with endometrial cancer are diagnosed after menopause. Only 15% of women are diagnosed with endometrial cancer before age 50 years, and fewer than 5% are diagnosed before age 40 years.[103] Women with Lynch syndrome tend to develop endometrial cancer at an earlier age, with the median age at diagnosis of 48 years.[104]

Family history including inherited cancer genes

Although the hyperestrogenic state is the most common predisposing factor for endometrial cancer, family history also plays a significant role in a woman’s risk for disease. Approximately 3% to 5% of uterine cancer cases are attributable to a hereditary cause,[105] with the main hereditary endometrial cancer syndrome being Lynch syndrome, an autosomal dominant genetic condition with a population prevalence of 1 in 300 to 1 in 1,000 individuals.[106,107] (Refer to the Lynch Syndrome section in Genetics of Colorectal Cancer for more information.)

Non-Lynch syndrome genes may also contribute to endometrial cancer risk. In an unselected endometrial cancer cohort undergoing multigene panel testing, approximately 3% of patients tested positive for a germline pathogenic variant in non-Lynch syndrome genes, including CHEK2, APC, ATM, BARD1, BRCA1, BRCA2, BRIP1, NBN, PTEN, and RAD51C.[108] Notably, patients with pathogenic variants in non-Lynch syndrome genes were more likely to have serous tumor histology than were patients without pathogenic variants. Furthermore, although the overall risk of endometrial cancer after RRSO was not increased among carriers of BRCA1 pathogenic variants, these patients seemed to have an increased risk of serous and serous-like endometrial cancer.[109] These findings were supported by a Dutch multicenter cohort study in women with germline BRCA1 and BRCA2 pathogenic variants. This study concluded that participants’ AR for endometrial cancer was approximately 3%. Because some serous and p53-aberrant endometrial cancers may harbor germline or somatic BRCA1/BRCA2 variants, poly (ADP-ribose) polymerase (PARP) inhibitor therapy may also be a therapeutic option.[110]

Reproductive history

Reproductive factors such as multiparity, late menarche, and early menopause decrease the risk of endometrial cancer because of the lower cumulative exposure to estrogen and the higher relative exposure to progesterone.[111,112]

Hormones

Hormonal factors that increase the risk of type I endometrial cancer are better understood. All endometrial cancers share a predominance of estrogen relative to progesterone. Prolonged exposure to estrogen or unopposed estrogen increases the risk of endometrial cancer. Endogenous exposure to estrogen can result from obesity, polycystic ovary syndrome, and nulliparity, while exogenous estrogen can result from taking unopposed estrogen or tamoxifen. Unopposed estrogen increases the risk of developing endometrial cancer by twofold to twentyfold, proportional to the duration of use.[113,114] Tamoxifen, a selective estrogen receptor modulator, acts as an estrogen agonist on the endometrium while acting as an estrogen antagonist in breast tissue, and increases the risk of endometrial cancer.[115] In contrast, OCs, the LNG-IUS, and combination estrogen-progesterone HRT all reduce the risk of endometrial cancer through the antiproliferative effect of progesterone acting on the endometrium.[116119]

Autosomal Dominant Inheritance of Breast and Gynecologic Cancer Predisposition

Autosomal dominant inheritance of breast and gynecologic cancers is characterized by transmission of cancer predisposition from generation to generation, through either the mother’s or the father’s side of the family, with the following characteristics:

  • Inheritance risk of 50%. When a parent carries an autosomal dominant genetic predisposition, each child has a 50:50 chance of inheriting the predisposition. Although the risk of inheriting the predisposition is 50%, not everyone with the predisposition will develop cancer because of incomplete penetrance and/or gender-restricted or gender-related expression.
  • Both males and females can inherit and transmit an autosomal dominant cancer predisposition. A male who inherits a cancer predisposition can still pass the altered gene on to his sons and daughters.

Breast and ovarian cancer are components of several autosomal dominant cancer syndromes. The syndromes most strongly associated with both cancers are the syndromes associated with BRCA1 or BRCA2 pathogenic variants. Breast cancer is also a common feature of Li-Fraumeni syndrome due to TP53 pathogenic variants and of PTEN hamartoma tumor syndromes (including Cowden syndrome) due to PTEN pathogenic variants.[120] Other genetic syndromes that may include breast cancer as an associated feature include heterozygous carriers of the ATM gene and Peutz-Jeghers syndrome. Ovarian cancer has also been associated with Lynch syndrome, basal cell nevus (Gorlin) syndrome, and multiple endocrine neoplasia type 1.[120] Lynch syndrome is mainly associated with colorectal cancer and endometrial cancer, although several studies have demonstrated that patients with Lynch syndrome are also at risk of developing transitional cell carcinoma of the ureters and renal pelvis; cancers of the stomach, small intestine, liver and biliary tract, brain, breast, prostate, and adrenal cortex; and sebaceous skin tumors (Muir-Torre syndrome).[121127]

Germline pathogenic variants in the genes responsible for these autosomal dominant cancer syndromes produce different clinical phenotypes of characteristic malignancies and, in some instances, associated nonmalignant abnormalities.

The family characteristics that suggest hereditary cancer predisposition include the following:

  • Multiple cancers within a family.
  • Cancers typically occur at an earlier age than in sporadic cases (defined as cases not associated with genetic risk).
  • Two or more primary cancers in a single individual. These could be multiple primary cancers of the same type (e.g., bilateral breast cancer) or primary cancer of different types (e.g., breast cancer and ovarian cancer in the same individual or endometrial and colon cancer in the same individual).
  • Cases of male breast cancer. The inheritance risk for autosomal dominant genetic conditions is 50% for both males and females, but the differing penetrance of the genes may result in some unaffected individuals in the family.

Figure 1 and Figure 2 depict some of the classic inheritance features of a BRCA1 and BRCA2 pathogenic variant, respectively. Figure 3 depicts a classic family with Lynch syndrome. For more information about pedigree nomenclature, see the Family history section in Cancer Genetics Risk Assessment and Counseling.

EnlargePedigree showing some of the classic features of a family with a deleterious BRCA1 mutation across three generations, including transmission occurring through maternal and paternal lineages. The unaffected female proband is shown as having an affected mother (breast cancer diagnosed at age 42 y), female cousin (breast cancer diagnosed at age 38 y), maternal aunt (ovarian cancer diagnosed at age 53 y), and maternal grandmother (ovarian cancer diagnosed at age 49 y).
Figure 1. BRCA1 pedigree. This pedigree shows some of the classic features of a family with a BRCA1 pathogenic variant across three generations, including affected family members with breast cancer or ovarian cancer and a young age at onset. BRCA1 families may exhibit some or all of these features. As an autosomal dominant syndrome, a BRCA1 pathogenic variant can be transmitted through maternal or paternal lineages, as depicted in the figure.
EnlargePedigree showing some of the classic features of a family with a deleterious BRCA2 mutation across three generations, including transmission occurring through maternal and paternal lineages. The unaffected female proband is shown as having an affected brother (breast cancer diagnosed at age 52 y), mother (breast cancer diagnosed at age 45 y and pancreatic cancer diagnosed at age 55 y), maternal aunt (ovarian cancer diagnosed at age 58 y), and maternal grandfather (prostate cancer diagnosed at age 55 y).
Figure 2. BRCA2 pedigree. This pedigree shows some of the classic features of a family with a BRCA2 pathogenic variant across three generations, including affected family members with breast (including male breast cancer), ovarian, pancreatic, or prostate cancers and a relatively young age at onset. BRCA2 families may exhibit some or all of these features. As an autosomal dominant syndrome, a BRCA2 pathogenic variant can be transmitted through maternal or paternal lineages, as depicted in the figure.
EnlargePedigree showing some of the classic features of a family with Lynch syndrome across three generations, including transmission occurring through maternal and paternal lineages and the presence of both colon and endometrial cancers.
Figure 3. Lynch syndrome pedigree. This pedigree shows some of the classic features of a family with Lynch syndrome, including affected family members with colon cancer or endometrial cancer, a young age at onset in some individuals, and incomplete penetrance. Lynch syndrome families may exhibit some or all of these features. Lynch syndrome families may also include individuals with other gastrointestinal, gynecologic, and genitourinary cancers, or other extracolonic cancers. As an autosomal dominant syndrome, Lynch syndrome can be transmitted through maternal or paternal lineages, as depicted in the figure. Because the cancer risk is not 100%, individuals who have Lynch syndrome may not develop cancer, such as the mother of the female with colon cancer diagnosed at age 37 years in this pedigree (called incomplete penetrance).

There are no pathognomonic features distinguishing breast and ovarian cancers occurring in carriers of BRCA1 or BRCA2 pathogenic variants from those occurring in noncarriers. Breast cancers occurring in carriers of BRCA1 pathogenic variants are more likely to be ER-negative, progesterone receptor (PR)–negative, human epidermal growth factor receptor two (HER2/neu)–negative (i.e., triple-negative breast cancers [TNBC]), and have a basal phenotype. BRCA1-associated ovarian cancers are more likely to be high-grade and of serous histopathology. (Refer to the BRCA1/2-associated breast cancer pathology and Pathologies of BRCA1/2-associated ovarian, fallopian tube, and primary peritoneal cancers sections in BRCA1 and BRCA2: Cancer Risks and Management for more information.)

Some pathologic features distinguish carriers of Lynch syndrome–associated pathogenic variants from noncarriers. The hallmark feature of endometrial cancers occurring in Lynch syndrome is mismatch repair (MMR) deficiencies, including the presence of microsatellite instability (MSI), and the absence of specific MMR proteins. In addition to these molecular changes, there are also histologic changes including tumor-infiltrating lymphocytes, peritumoral lymphocytes, undifferentiated tumor histology, lower uterine segment origin, and synchronous tumors.

Considerations in Risk Assessment and in Identifying a Family History of Breast and Ovarian Cancer Risk

The accuracy and completeness of family histories must be considered when they are used to assess risk. A reported family history may be erroneous, or a person may be unaware of relatives affected with cancer. In addition, small family sizes and premature deaths may limit the information obtained from a family history. Breast or ovarian cancer on the paternal side of the family usually involves more distant relatives than does breast or ovarian cancer on the maternal side, so information may be more difficult to obtain. When self-reported information is compared with independently verified cases, the sensitivity of a history of breast cancer is relatively high, at 83% to 97%, but lower for ovarian cancer, at 60%.[128,129] Additional limitations of relying on family histories include adoption; families with a small number of women; limited access to family history information; and incidental removal of the uterus, ovaries, and/or fallopian tubes for noncancer indications. Family histories will evolve; therefore, it is important to update family histories from both parents over time. (Refer to the Accuracy of the family history section in Cancer Genetics Risk Assessment and Counseling for more information.)

Models for Prediction of Breast and Gynecologic Cancer Risk

Models to predict an individual’s risk of developing breast and/or gynecologic cancer are available.[130133] Risk models are evaluated based on two key metrics:

  • Calibration: How well the model predicts what will happen. When calibration statistics are close to 1, this means that the predicted value is similar to the actual value.
  • Discrimination: How well the model can differentiate between those with and without the outcome. When only case-control data are available, the discrimination of the model (which is often assessed by measuring the area under the receiver operator curve, AUROC or AUC for short) can be assessed but the calibration cannot. An AUC of 1.0 means that the model has perfect discriminatory accuracy. AUCs closer to 0.50 show that the model is poor at discrimination. Generally, an AUC of 0.80 or higher is good to excellent, while AUCs between 0.70 and 0.80 are poor.

There are several items to consider when using models, including (1) time horizon for the prediction, (2) variables included in the model, and (3) whether models can also predict the probability of carrying a pathogenic variant in breast cancer susceptibility genes like BRCA1 and BRCA2.

  • Time horizon of models: Most models can predict an individual’s lifetime risk of developing a specific cancer over a short time horizon (e.g., 1 year, 5 years, and 10 years). Although some clinical guidelines refer to lifetime risk cutoffs when assessing higher versus lower cancer risks, no model has been validated to predict full lifetime risk, since that would require following cohorts for a lifetime.[134] Using a shorter time horizon improved model performance, particularly for women under age 50 years, since many factors for risk models change over time.[135] For example, data from a large family-based cohort (n = 14,657 women; median follow-up of 10 years), showed that the 5-year incidence for breast cancer almost always had a higher specificity (i.e., fewer false positives) than that of lifetime risk from birth. For women aged 20 to 39 years, 5-year risk performed better than lifetime risk from birth. For women aged 40 years or older, receiver-operating characteristic curves were similar or superior for 5-year risk than for lifetime risk in multiple breast cancer models. Classifications based on remaining lifetime risk were inferior to 5-year risk estimates.
  • Variables included in models: In addition to a lack of validation for lifetime risk, cancer risk models are limited by the factors added to the models to help predict risk. Unlike risk models for diseases with shorter induction times (e.g., cardiovascular disease), cancer’s longer induction times can make updating models (based on known risk factors) lengthy, since prospective validation is needed to calibrate the models. Most breast cancer risk models include established reproductive risk factors for breast cancer (e.g., age at menarche, parity, etc.). Many risk models also include established risk factors like alcohol consumption and body size. Few risk models assess whether cessation or change in risk factors over time lead to a change in cancer risk.
  • Prediction of cancer susceptibility genes: In addition, models can predict an individual’s likelihood of having a pathogenic variant in BRCA1, BRCA2, or one of the MMR genes associated with Lynch syndrome. Not all models can be applied to all patients. Each model is appropriate only when the patient’s characteristics and family history are similar to those from the study population the model was based on. Different models may provide widely varying risk estimates for the same clinical scenario, and validation of these estimates has not been performed for many models.[131,136,137] For more information, see the Models for prediction of the likelihood of a BRCA1 or BRCA2 pathogenic variant section.

Limitations of risk models: Risk models only use a subset of risk factors for breast, ovarian, and endometrial cancer risk. Additionally, risk models are limited by moderate discrimination for these cancer types. Moderate discrimination means that when clinical cutoffs are used to define high- and low-risk individuals (e.g., individuals with >20% lifetime risk are defined as high-risk), people will be misclassified. This means that there will be both false positives (people at lower risk who follow high-risk protocols) and false negatives (people at higher risk who follow low-risk protocols).

Breast cancer risk assessment models

In general, breast cancer risk assessment models are designed for two types of populations: (1) women without pathogenic variants in breast cancer susceptibility genes or strong family histories of breast/ovarian cancer, and (2) women at higher risk because of personal or family histories of breast/ovarian cancer.[137] These two types of models require inputs from both prior literature and model development from large epidemiological studies, which include nongenetic risk factors like reproductive history. Some risk models also include information about prior breast biopsy and mammographic breast density. Only a few models include potentially modifiable factors, like alcohol use and exogenous hormone use.

Models of the first type designed for women (e.g., the Gail model, which is the basis for the Breast Cancer Risk Assessment Tool [BCRAT] [138], and the Colditz and Rosner model [139]) require only limited information about family history (e.g., number of FDRs with breast cancer). Although counting the number of FDRs is simpler to input into a model than the ages of all familial cancer diagnoses, risk may be overestimated in older individuals because the number of FDRs increases with age. Family histories of cancer in older individuals are also less predictive of risk as one ages. Most models of the first type, however, include built-in assumptions about competing risks of other outcomes. These assumptions are particularly important after age 60 years, when risk of other outcomes, like cardiovascular disease, is higher.

Models designed for women at higher risk require more detailed information about personal and family cancer histories of breast and ovarian cancers, including ages at onset of cancer and/or carrier status of specific breast cancer-susceptibility alleles. The genetic factors used by the latter models differ, with some assuming one risk locus (e.g., the Claus model [140]), others assuming two loci (e.g., the International Breast Cancer Intervention Study [IBIS] model [141] and the BRCAPRO model [142]), and still others assuming an additional polygenic component in addition to multiple loci (e.g., the Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm [BOADICEA]/CanRisk model [143145]). Prior to formally measuring polygenic risk scores (PRS), the BOADICEA/CanRisk model was the only risk model that captured underlying polygenic risk to explain the variance in risk levels. Now BOADICEA/CanRisk allows direct PRS inputs.[146] However, even with PRS included, as measured by individual single nucleotide polymorphisms (SNPs), there is still a large portion of the polygenic risk component that is not explained by PRS.

The models also differ in whether they include information about nongenetic risk factors. Three models (Gail/BCRAT, Pfeiffer,[133] and IBIS) include nongenetic risk factors but differ in the risk factors they include (e.g., the Pfeiffer model includes alcohol consumption, whereas the Gail/BCRAT does not). The BOADICEA/CanRisk model has also been updated to include nongenetic risk factors.[147] The nongenetic risk factors included in these models include age at menarche and reproductive factors (e.g., age at first birth, parity). Some, but not all, models also include modifiable factors like alcohol consumption. However, cancer risk models do not include social determinants of health or environmental/chemical exposures.

Breast cancer risk models have limited the ability to discriminate between individuals who are affected or unaffected with cancer. A model with high discrimination would be close to 1, and a model with little discrimination would be close to 0.5. Model discrimination is rarely above an AUC of 0.70.[148] Existing models are generally more accurate in prospective studies that have assessed how well they predict future cancers.[137,149151] Risk models now also include PRS and mammographic density.[146,147,152] For women at higher risk, an analysis comparing the 10-year performance of the BOADICEA/CanRisk, BRCAPRO, BCRAT, and IBIS models demonstrated that models with more detailed pedigree inclusion were superior—specifically, the BOADICEA/CanRisk and IBIS models.[153]

In the United States, the BRCAPRO, Claus,[140,154] and Gail/BCRAT models [138] are still widely used in clinical counseling, although the use of BOADICEA/CanRisk and IBIS models is becoming more common. Risk estimates derived from the models differ for an individual patient. Several other models that include more detailed family history information are also in use and are discussed below.

In addition to statistical and regression-based models, risk-assessment models are being developed based on artificial intelligence (AI), using imaging (primarily from mammography) and other clinical data from the electronic health record. Risk-assessment based on machine learning and AI algorithms (when applied to mammographic images) have produced AUCs in a similar or even higher range than some of the pedigree and regression-based risk models.[152] One such model has been replicated and validated in many different settings and populations (e.g., Mirai model). AI-based models may be advantageous in the future when using a single mammography screening for risk assessment. However, AI-based models cannot yet replace pedigree-based models when determining cancer risk, particularly in younger women and in women without prior mammography imaging.

Additional considerations for clinical use of breast cancer risk assessment models

The Gail model is the basis for the BCRAT, a computer program available from the National Cancer Institute by calling the Cancer Information Service at 1-800-4-CANCER (1-800-422-6237). This version of the Gail model estimates only the risk of invasive breast cancer. The Gail/BCRAT model has been found to be reasonably accurate at predicting breast cancer risk in women who undergo annual screening mammography; however, reliability varies depending on the cohort studied.[155160] Risk can be overestimated in the following populations:

  • Women who do not adhere to mammography screening recommendations.[155,156]
  • Women in the highest-risk strata (e.g., those with breast cancer family histories, particularly if FDRs are older when diagnosed with breast cancer).[158]

The Gail/BCRAT model is valid for women aged 35 years and older. The model was primarily developed for White women.[159] Extensions of the Gail model for African American women have been subsequently developed to calibrate risk estimates using data from more than 1,600 African American women with invasive breast cancer and more than 1,600 controls.[161] Additionally, extensions of the Gail model have incorporated high-risk single nucleotide variants (SNVs) and pathogenic variants; however, no software exists to calculate risk in these extended models.[162,163] Other risk assessment models incorporating breast density have been developed but are not ready for clinical use.[164,165]

Generally, the Gail/BCRAT model should not be the sole model used for families with one or more of the following characteristics:

  • Multiple affected individuals with breast cancer or ovarian cancer (especially when one or more breast cancers are diagnosed before age 50 y).
  • A woman with both breast and ovarian cancer.
  • Ashkenazi Jewish ancestry with at least one case of breast or ovarian cancer (as these families are more likely to have a hereditary cancer susceptibility syndrome).

Commonly used models that incorporate family history include the IBIS, BOADICEA/CanRisk, and BRCAPRO models. The IBIS/Tyrer-Cuzick model incorporates both genetic and nongenetic factors.[141] A three-generation pedigree is used to estimate the likelihood that an individual carries either a BRCA1/BRCA2 pathogenic variant or a hypothetical low-penetrance gene. In addition, the model incorporates personal risk factors such as mammographic density, parity, body mass index (BMI), height, and age at menarche, first live birth, menopause, and HRT use. Both genetic and nongenetic factors are combined to develop a risk estimate. The BOADICEA/CanRisk model examines family history to estimate breast cancer risk and also incorporates both BRCA1/BRCA2 and non-BRCA1/BRCA2 genetic risk factors.[144] The most important difference between BOADICEA/CanRisk and the other models using information on BRCA1/BRCA2 is that BOADICEA/CanRisk assumes an additional polygenic component in addition to multiple loci,[143145] which is more in line with what is known about the underlying genetics of breast cancer. The BOADICEA/CanRisk model has also been expanded to include additional pathogenic variants, including CHEK2, ATM, and PALB2.[166] However, the discrimination and calibration for these models differ significantly when compared in independent samples;[149] the IBIS and BOADICEA/CanRisk models are more comparable when estimating risk over a shorter fixed time horizon (e.g., 10 years),[149] than when estimating remaining lifetime risk. As all risk assessment models for cancers are typically validated over a shorter time horizon (e.g., 5 or 10 years), fixed time horizon estimates rather than remaining lifetime risk may be more accurate and useful measures to convey in a clinical setting.

In addition, readily available models that provide information about an individual woman’s risk in relation to the population-level risk depending on her risk factors may be useful in a clinical setting (e.g., Your Disease Risk). Although this tool was developed using information about average-risk women and does not calculate AR estimates, it still may be useful when counseling women about cancer prevention. Risk assessment models are being developed and validated in large cohorts to integrate genetic and nongenetic data, breast density, and other biomarkers.

Although most breast cancer risk models have been shown to be well calibrated overall, model performance can be different for subgroups of women. In particular, independent, prospective validation of risk models for women who tested negative for BRCA1 or BRCA2 pathogenic variants supported that the most commonly used clinical risk models underpredicted risk for this group of women.[167] The performance also differed based on whether the test results of relatives were known. The models also underpredicted risk by 26.3% to 56.7% in women who tested negative but whose relatives had not been tested.

Risk models in older individuals: As individuals age, the chance to have competing risks from other outcomes increases (e.g., cardiovascular disease). Some risk models incorporate the concept of competing risk into their calculations (e.g., BCRAT), while others do not (e.g., BOADICEA/CanRisk). Differences that occur due to competing risk are particularly important to consider, especially in older women with other comorbidities.

Ovarian cancer risk assessment models

Model development for prediction of ovarian cancer risk has been similar to that of breast cancer risk models with pedigree-based models and nonpedigree-based models. BOADICEA/CanRisk also can be used to predict ovarian cancer risk over a fixed time interval or an individual’s remaining lifetime. The Rosner and Pfeiffer risk models were developed without using pedigrees.[132,133] The Rosner model [132] included age at menopause, age at menarche, oral contraception use, and tubal ligation. The concordance statistic was 0.60 (0.57–0.62). The Pfeiffer model [133] included oral contraceptive use, menopausal HRT use, and family history of breast cancer or ovarian cancer, with a similar discriminatory power of 0.59 (0.56–0.62). Although both models were well calibrated, their modest discriminatory power limited their screening potential. Variations on these regression-based models have included interaction terms to account for modifications menopause can have on several ovarian cancer risk factors, including endometriosis, family history of ovarian cancer in an FDR, and breastfeeding.[168] AI-based models have been used for risk-stratification in ovarian cancer and other gynecological cancers, but they have not been used to predict risk of cancer onset.[169]

Endometrial cancer risk assessment models

Endometrial cancer risk models also can be divided into regression-based models, pedigree-based models, and AI-based models. The Pfeiffer model has been used to predict endometrial cancer risk in the general population.[133] For endometrial cancer, the RR model included BMI, menopausal HRT use, menopausal status, age at menopause, smoking status, and OC use. The discriminatory power of the model was 0.68 (0.66–0.70). It overestimated observed endometrial cancers in most subgroups but underestimated disease in women with the highest BMI category, in premenopausal women, and in women taking menopausal HRT for 10 years or more. The Endometrial Cancer Consortium developed a regression-based model using data from 19 case-control studies and validated it in three cohorts.[170] This analysis found an AUC with a range of 0.62 to 0.67.

Regression-based models differ from pedigree-based models, which require detailed information on the number of relatives with cancer, types of cancer, and ages of cancer diagnoses in family members. MMRpredict, PREMM5 (PREdiction Model for gene Mutations), and MMRpro are three quantitative predictive models used to identify individuals who may potentially have Lynch syndrome.[171173] MMRpredict incorporates only colorectal cancer patients but does include MSI and immunohistochemistry (IHC) tumor testing results. PREMM5 is an update of PREMM (1,2,6) and includes each of the five genes associated with Lynch syndrome. PREMM5 is a clinical prediction algorithm that estimates the cumulative probability of an individual carrying a germline pathogenic variant in MLH1, MSH2, MSH6, PMS2, or EPCAM genes. It accounts for other Lynch syndrome–associated tumors but does not include tumor testing results.[172] MMRpro incorporates tumor testing and germline testing results, but is more time intensive because it includes affected and unaffected individuals in the risk-quantification process. All three predictive models are comparable to the traditional Amsterdam and Bethesda criteria in identifying individuals with colorectal cancer who carry MMR gene pathogenic variants.[174] However, because these models were developed and validated in colorectal cancer patients, the discriminative abilities of these models to identify Lynch syndrome are lower among individuals with endometrial cancer than among those with colon cancer.[175] In fact, the sensitivity and specificity of MSI and IHC in identifying carriers of pathogenic variants are considerably higher than the prediction models and support the use of molecular tumor testing to screen for Lynch syndrome in women with endometrial cancer.

AI-based models have been used for risk-stratification and prognosis in endometrial cancer cases, but they have not been used to predict risk of endometrial cancer onset.[176]

Models for Predicting the Likelihood of a BRCA1/BRCA2 Pathogenic Variant

Many models have been developed to predict the probability of identifying germline BRCA1/BRCA2 pathogenic variants in individuals or families. These models include those using logistic regression,[142,177182] genetic models using Bayesian analysis (BRCAPRO and BOADICEA),[142,144] and empiric observations.[183188]

In addition to BOADICEA, BRCAPRO is commonly used for genetic counseling in the clinical setting. BRCAPRO and BOADICEA predict the probability of being a carrier and produce estimates of breast cancer risk (refer to Table 1). The discrimination and accuracy (factors used to evaluate the performance of prediction models) of these models are much higher for their ability to report on carrier status than for their ability to predict fixed or remaining lifetime risk.

BOADICEA is a polygenetic model that uses complex segregation analysis to examine both breast cancer risk and the probability of having a BRCA1 or BRCA2 pathogenic variant.[144] Even among experienced providers, the use of prediction models has been shown to increase the power to discriminate which patients are most likely to be carriers of BRCA1/BRCA2 pathogenic variants.[189,190] Most models do not include other cancers seen in the BRCA1 and BRCA2 spectrum, such as pancreatic cancer and prostate cancer. Interventions that decrease the likelihood that an individual will develop cancer (such as oophorectomy and mastectomy) may influence the ability to predict BRCA1 and BRCA2 pathogenic variant status.[191] One study has shown that the prediction models for genetic risk are sensitive to the amount of family history data available and do not perform as well with limited family information.[192] BOADICEA is being expanded to incorporate additional risk variants (genome-wide association studies [GWAS] and SNVs) to better predict pathogenic variant status and to improve the accuracy of breast cancer and ovarian cancer risk estimates.[193]

The performance of the models can vary in specific ethnic groups. The BRCAPRO model appeared to best fit a series of French Canadian families.[194] There have been variable results in the performance of the BRCAPRO model among Hispanic individuals,[195,196] and both the BRCAPRO model and Myriad tables underestimated the proportion of carriers of pathogenic variants in an Asian American population.[197] BOADICEA was developed and validated in British women. Thus, the major models used for both overall risk and genetic risk (Table 1) have not been developed or validated in large populations of racially and ethnically diverse women. Of the commonly used clinical models for assessing genetic risk, only the Tyrer-Cuzick model contains nongenetic risk factors.

The power of several of the models has been compared in different studies.[198201] Four breast cancer genetic-risk models, BOADICEA/CanRisk, BRCAPRO, IBIS, and eCLAUS, were evaluated for their diagnostic accuracy in predicting BRCA1/BRCA2 pathogenic variants in a cohort of 7,352 German families.[202] The family member with the highest likelihood of carrying a pathogenic variant from each family was screened for BRCA1/BRCA2 pathogenic variants. Carrier probabilities from each model were calculated and compared with the actual variants detected. BRCAPRO and BOADICEA/CanRisk had significantly higher diagnostic accuracy than IBIS or eCLAUS. Accuracy for the BOADICEA/CanRisk model was further improved when statuses of the tumor markers ER, PR, and HER2/neu were included in the model. The inclusion of these biomarkers has been shown to improve the performance of BRCAPRO.[203,204]

Table 1. Characteristics of Common Models for Estimating the Likelihood of a BRCA1/BRCA2 Pathogenic Variant
  Myriad Prevalence Tables [179] BRCAPRO [142,191] BOADICEA (now CanRisk) [142,144] Tyrer-Cuzick [141]
AJ = Ashkenazi Jewish; BOADICEA = Breast and Ovarian Analysis of Disease Incidence and Carrier Estimation Algorithm; FDR = first-degree relatives; SDR = second-degree relatives.
Method Empiric data from Myriad Genetics based on personal and family history reported on requisition forms Statistical model, assumes autosomal dominant inheritance Statistical model, assumes polygenic risk Statistical model, assumes autosomal dominant inheritance
Features of the model Proband may or may not have breast or ovarian cancer Proband may or may not have breast or ovarian cancer Proband may or may not have breast or ovarian cancer Proband must be unaffected
Considers age of breast cancer diagnosis as <50 y, >50 y Considers exact age at breast and ovarian cancer diagnosis Considers exact age at breast and ovarian cancer diagnosis Also includes reproductive factors and body mass index to estimate breast cancer risk
Considers breast cancer in ≥1 affected relative only if diagnosed <50 y Considers prior genetic testing in family (i.e., BRCA1/BRCA2 pathogenic variant–negative relatives) Includes all FDR and SDR with and without cancer  
Considers ovarian cancer in ≥1 relative at any age Considers oophorectomy status Includes AJ ancestry  
Includes AJ ancestry Includes all FDR and SDR with and without cancer    
Very easy to use Includes AJ ancestry    
Limitations Simplified/limited consideration of family structure Requires computer software and time-consuming data entry Requires computer software and time-consuming data entry Designed for individuals unaffected with breast cancer
Incorporates only FDR and SDR; may need to change proband to best capture risk and to account for disease in the paternal lineage
May overestimate risk in bilateral breast cancer [205]
Early age of breast cancer onset May perform better in White populations than in racial and ethnic minority populations [196,206] Incorporates only FDR and SDR; may need to change proband to best capture risk
May underestimate risk of BRCA pathogenic variant in high-grade serous ovarian cancers but overestimate the risk for other histologies [207]

Genetic testing for BRCA1 and BRCA2 pathogenic variants has been available to the public since 1996. As more individuals have undergone testing, risk assessment models have improved. This, in turn, gives providers better data to estimate an individual patient’s risk of carrying a pathogenic variant, but risk assessment continues to be an art. There are factors that might limit the ability to provide an accurate risk assessment (i.e., small family size, paucity of women, or ethnicity) including the specific circumstances of the individual patient (such as history of disease or risk-reducing surgeries).

Considerations When Conducting Genetic Testing

Indications for hereditary breast and gynecologic cancers genetic testing

Several professional organizations and expert panels—including the American Society of Clinical Oncology,[208] the National Comprehensive Cancer Network (NCCN),[209] the American Society of Human Genetics,[210] the American College of Medical Genetics and Genomics,[211] the National Society of Genetic Counselors,[211] the U.S. Preventive Services Task Force,[212] and the Society of Gynecologic Oncologists [213] —have developed clinical criteria and practice guidelines that can be helpful to health care providers in identifying individuals who may have a BRCA1 or BRCA2 pathogenic variant.

In 2019, the American Society of Breast Surgeons published a recommendation to make genetic testing for “BRCA1/BRCA2, and PALB2, with other genes as appropriate for the clinical scenario and family history” available to all breast cancer patients.[214] This recommendation was based on a study that suggested similar pathogenic variant rates identified through an extended multigene panel in patients with breast cancer who did or did not meet the NCCN guidelines for genetic testing.[215] This study had important methodologic challenges that need to be considered, including exclusion of participants previously tested, uncertain accuracy of the reported risk criteria for study participants, inclusion of genes with uncertain management guidelines, and difference in the specific genes in which pathogenic or likely pathogenic variants were identified across the two groups. For example, there was a statistically significant difference between participants who met and who did not meet NCCN criteria in the detection of BRCA1/BRCA2 variants.

Other studies have also found that the NCCN criteria have good sensitivity when predicting BRCA1/BRCA2 variants; however, less is known about many other genes. For example, one study showed that the NCCN criteria were able to detect 88.9% of the BRCA1/BRCA2 pathogenic variant carriers [216] and others have found that, if more than one NCCN criterion is met, then the positive predictive value does pass the 10% threshold (e.g., 12% for more than two NCCN criteria).[217]

As the cost of genetic testing continues to decrease, there is a need for unbiased evidence to guide indications for testing, including the cost-benefit impact on screening, prevention, and treatment. Efforts to generate less biased evidence include a single institution study of 3,907 unselected women with breast cancer tested for nine breast cancer genes, including BRCA1/BRCA2, ATM, CDH1, CHEK2, NF1, PALB2, PTEN, and TP53.[218] The study assessed the relative performance of NCCN genetic testing criteria as compared with the American Society of Breast Surgeons’ recommendation to test all women aged 65 years or younger with breast cancer. The sensitivity of the criteria was defined as the proportion of individuals who met testing criteria and tested positive for a pathogenic or likely pathogenic variant of the total population of pathogenic or likely pathogenic variant carriers in the study, while the specificity was defined as the proportion of individuals who did not meet testing criteria and tested negative for a pathogenic or likely pathogenic variant of the total population of noncarriers in the study. High sensitivity and specificity are both important considerations; however, higher sensitivity leads to lower specificity, so it is important to balance these two factors. Detection of BRCA1/BRCA2 pathogenic or likely pathogenic variants based on NCCN criteria had a sensitivity of 87% with a specificity of 53.5%; when expanded to the nine genes included in the study, sensitivity was 70% and specificity was 53.2%. When including all women diagnosed with breast cancer at age 65 or younger, the sensitivity to detect BRCA1/BRCA2 pathogenic or likely pathogenic variants increased to 98%, while the specificity dropped to 22%. Among those who did not meet NCCN criteria, 0.7% had pathogenic or likely pathogenic BRCA1/BRCA2 variants.

Another study to assess frequency of pathogenic or likely pathogenic variants among breast cancer patients included a nested case-control study conducted through the WHI cohort among women with (cases) and without (controls) invasive breast cancer. Participants were tested for pathogenic or likely pathogenic variants in ten breast cancer–associated genes, including BRCA1/BRCA2.[219] The prevalence of pathogenic or likely pathogenic BRCA1/BRCA2 variants among those diagnosed with invasive breast cancer before age 65 years was 2.21%, compared with 1.09% among those diagnosed at age 65 years or older. In comparison, the frequency of pathogenic or likely pathogenic BRCA1/BRCA2 variants was 0.22% in the control group. Current genetic testing criteria detect BRCA pathogenic variants. Although higher sensitivity is always desired, it is at the expense of specificity. Lower specificity leads to higher costs to achieve one positive genetic test.

Benefits of offering genetic testing at the time of cancer diagnosis

At the time of a new cancer diagnosis, genetic testing for inherited cancer predisposition may guide patient care including decisions about surgery, chemotherapy and other biologics, and radiation treatment.[220,221] Among high-risk patients, the option of genetic testing is an important part of the shared decision-making process regarding cancer treatments at the time of diagnosis. Tools are available to facilitate decision making about genetic testing in this context.[222]

Breast cancer diagnosis

Benefits of offering genetic testing at the time of breast cancer diagnosis include, but are not limited to, the following:

  1. Surgery: The identification of inherited susceptibility to breast cancer may influence surgical treatment decisions. As an example, the high risk of a second primary breast cancer among BRCA pathogenic variant carriers, particularly those diagnosed at an early age, may influence their decision to choose a bilateral mastectomy (versus a lumpectomy or unilateral/subtotal mastectomy) for surgical treatment of their breast cancer.[223] Discussion of RRSO is indicated,[224] and referral to a gynecologic provider may be considered.
  2. Chemotherapy and other biologics: Medical treatments may be guided by the identification of a pathogenic variant in an inherited cancer predisposing gene. As an example, among BRCA pathogenic variant carriers, breast cancer treatment may include the use of platinum-based agents.[225] Furthermore, novel agents such as PARP inhibitors may be used in the treatment of metastatic breast cancer.[226]
  3. Radiation therapy: Decisions about the use of radiation treatment may be guided by the presence of a pathogenic variant in an inherited breast cancer susceptibility gene. In particular, the poorer wound healing in irradiated breasts is an important consideration for those who may consider risk-reducing mastectomy with reconstruction. As an example, individuals with a pathogenic variant in TP53 may experience higher risks from radiation, including increased risks for subsequent new cancers.[227,228] Thus, identification of TP53 carriers in the context of an active breast cancer diagnosis may influence radiation treatment decisions and reconstruction options.
Ovarian cancer diagnosis

Benefits of offering genetic testing at the time of ovarian cancer diagnosis include, but are not limited to, the following:

  1. Surgery: In most cases, the decision for ovarian cancer surgery is made on the basis of an adnexal mass or abdominal symptoms. When possible, considering the likelihood of a heritable genetic variant at the time of diagnosis may add value to surgical decision-making. The identification of inherited susceptibility to ovarian/fallopian tube cancer may influence surgical treatment decisions. For a questionable adnexal mass in a younger woman who is at risk of carrying a pathogenic variant of a highly penetrant ovarian cancer gene, knowledge of this information may help guide a decision for risk-reducing or therapeutic surgery.[229,230] For women who may be considering fertility preservation surgery, genetic knowledge may motivate consideration of bilateral salpingo-oophorectomy, and in the case of carriers of BRCA1 pathogenic variants, a more detailed discussion regarding aggressive uterine cancer risk.
  2. Chemotherapy and other biologics: First-line chemotherapy for ovarian cancer still relies on a backbone of platinum and taxane chemotherapy. Current treatment options for optimally resected stage III ovarian carcinoma include intravenous (IV) chemotherapy, dose-dense IV chemotherapy, and a combination of IV paclitaxel plus intraperitoneal (IP) cisplatin, followed by IP paclitaxel 1 week later. Carriers of BRCA1 and BRCA2 pathogenic variants are considered more platinum sensitive, with longer progression-free survival times compared with BRCA1 and BRCA2 wild-type patients,[231,232] so it is unclear whether a particular treatment strategy is driven more by antiangiogenesis effects, peritoneal dose intensity, or platinum dose intensity. The advent of PARP as a biologic target (in combination with chemotherapy or as maintenance) may also increase the armory of first-line treatment of ovarian cancer.[233] (Refer to the Ovarian Cancer Treatment Strategies section in BRCA1 and BRCA2: Cancer Risks and Management for more information about PARP inhibitors in ovarian cancer treatment.)
Endometrial cancer diagnosis

Benefits of offering genetic testing at the time of endometrial cancer diagnosis include, but are not limited to, the following:

  1. Surgery: The most common treatment for a newly diagnosed endometrial cancer includes hysterectomy with removal of the ovaries and fallopian tubes, as well as assessment of lymph nodes.[234] An exception to this practice might apply to a younger woman who wishes to retain fertility or retain her adnexa. IHC of endometrial sampling may allow for an assessment of the likelihood of a heritable genetic variant at the time of diagnosis, which may add value to the surgical decision-making process. For a young woman who is found to have Lynch syndrome, knowledge of this information may help guide a decision for hormonal management of endometrial cancer to allow future childbearing, or RRSO if her risk of ovarian cancer is deemed high enough on the basis of a specific genetic variant. For a young woman who is found to carry a pathogenic variant in BRCA1/BRCA2, or one of the other homologous recombination deficiencies increasing ovarian cancer risk, she may wish to decide between salpingo-oophorectomy or, at least, salpingectomy.
  2. Chemotherapy and other biologics: Immune checkpoint inhibitors are now approved for use in endometrial cancers that have MSI or MMR deficiency.[235] While MSI and MMR status can be assessed at either the time of diagnosis or recurrent disease, it may be beneficial to perform tumor testing at diagnosis with the primary pathology processing, usually at the time of hysterectomy.

Multigene (panel) testing

Since the availability of next-generation sequencing and the Supreme Court of the United States ruling that human genes cannot be patented, several clinical laboratories now offer genetic testing through multigene panels at a cost comparable to that of single-gene testing. Even testing for BRCA1 and BRCA2 is a limited panel test of two genes. Approximately 25% of all ovarian/fallopian tube/peritoneal cancers are caused by a heritable genetic condition. Of these, about one-quarter (6% of all ovarian/fallopian tube/peritoneal cancers) are caused by genes other than BRCA1 and BRCA2, including many genes associated with the Fanconi anemia pathway or otherwise involved with homologous recombination.[236] In a population of ovarian cancer patients who test negative for BRCA1 and BRCA2 pathogenic variants, multigene panel testing can reveal actionable pathogenic variants.[237239]

In general, multigene panel testing increases the yield of non-BRCA pathogenic variants across a variety of populations.[221,240242] In an unselected population of breast cancer patients, the prevalence of BRCA1 and BRCA2 pathogenic variants was 6.1%, while the prevalence of pathogenic variants in other breast/ovarian cancer–predisposing genes was 4.6%.[243] In an unselected population of endometrial cancer patients, the prevalence of Lynch syndrome pathogenic variants (MLH1, MSH2, EPCAM-MSH2, MSH6, and PMS2) was 5.8%; the prevalence of pathogenic variants in other actionable genes was 3.4%.[108] Similarly, in a study of 35,409 women with breast cancer tested with the Myriad 25-gene panel, a pathogenic variant was found in 9.3% of women.[244] Among that 9.3%, 48.5% of the women carried a pathogenic variant in BRCA1 or BRCA2. The majority of other breast cancer genes with pathogenic variants identified included CHEK2 (11.7%), ATM (9.7%), and PALB2 (9.3%). The prevalence of pathogenic variants in the other breast cancer genes on the panel ranged from 0.05% to 0.31%. Pathogenic variants in Lynch syndrome genes accounted for 7.0% of variants identified; 3.7% were found in other genes included in the panel. The rate of pathogenic variants was higher in women with TNBC diagnosed before age 40 years. A similar trend of identifying pathogenic variants in non-BRCA susceptibility genes in male breast cancer patients has also been described.[245] In two studies of women who had previously tested negative for BRCA1/BRCA2, reflex testing with a multigene panel identified pathogenic variants in additional genes among 8% to 11% of cases.[246,247] In a study of 77,085 patients with breast cancer and 6,001 patients with ovarian cancer, 24.1% and 30.9% had genetic testing, respectively. Of those tested, pathogenic or likely pathogenic variants were identified in 7.8% of patients with breast cancer and 14.5% of patients with ovarian cancer. Prevalent non-BRCA pathogenic variants identified in patients with breast cancer included CHEK2 (1.6%), PALB2 (1.0%), ATM (0.7%), and NBN (0.4%). In patients with ovarian cancer, non-BRCA pathogenic variants included CHEK2 (1.4%), BRIP1 (0.9%), MSH2 (0.8%), and ATM (0.6%).[248] The potential utility of genetic testing in patients with ovarian tumors of all histologies was suggested in a study using a 32-gene panel that found 13.2% of 4,439 tumors harbored a pathogenic variant. Rates were highest among those with serous ovarian carcinoma (14.7%), although likely pathogenic variants were also seen in those with other histologies (borderline, germ cell, and sex cord stromal tumors), the significance of which is unclear to clinical management or etiology of disease.[249]

Multi-gene panel testing was conducted as part of two large efforts led by the worldwide Breast Cancer Association Consortium (BCAC) [250] and the United States–based CARRIERS consortium.[251] The BCAC study tested 113,927 women for 34 inherited cancer genes, while the CARRIERS study tested 64,791 women for 28 hereditary cancer genes. In both studies, significant associations were reported between eight genes and breast cancer development (BRCA1, BRCA2, PALB2, BARD1, RAD51C, RAD51D, ATM, and CHEK2). Associations were only reported between MSH6 and breast cancer development in the BCAC study. Similarly, associations were only reported between CDH1 and breast cancer development in the CARRIERS study. Both TP53 and PTEN (which are established breast cancer risk genes that are linked to early-onset disease) were not significantly associated with breast cancer development in these studies. This is presumably because TP53 and PTEN pathogenic variants are very rare.

NCCN recommends that women diagnosed with TNBC undergo BRCA1/BRCA2, CDH1, PALB2, PTEN, STK11, and TP53 testing to guide treatment decisions at any age.[209] A large study utilizing multigene (panel) testing comprising two separate cohorts reported that, in addition to BRCA1/BRCA2 genes, six other breast cancer susceptibility genes were also related to a higher risk of TNBC. Specifically, pathogenic variants in BARD1, PALB2, and RAD51D, in addition to BRCA1 and BRCA2, were each associated with more than a fivefold increase in breast cancer.[252] Pathogenic variants in three other genes —BRIP1, RAD51C, and TP53— were each associated with an increased TNBC risk of more than twofold. Pathogenic variants in these eight genes were reported in 12% of the TNBC cases (8.3% BRCA1/BRCA2, 3.7% non-BRCA1/BRCA2). The study was conducted in a clinical testing cohort of 140,449 individuals (8,753 TNBC cases) who received genetic testing using a 21-gene panel (sample A). In addition, a second sample (sample B) examined gene frequency rates in a pooled consortium of 2,143 individuals using a 17-gene panel. The overall frequency of pathogenic variants in the 21 genes examined in sample A was 14.4% (8.4% BRCA1/BRCA2, 6.0% non-BRCA1/BRCA2). The two samples had very consistent findings with respect to the risk estimates despite differences in age, race, ethnicity, and family history of cancer with sample A being younger, more racially and ethnically diverse, and more likely to have a family history of cancer. The pathogenic variant frequency detection in these 21 genes was also similar for White individuals (14% overall, 7.8% BRCA1/BRCA2, 6.2% non-BRCA1/BRCA2) and African American individuals (14.6% overall, 9.0% BRCA1/BRCA2, 5.6% non-BRCA1/BRCA2).

Multi-gene panel testing studies were conducted in women from the United States who had African ancestry, and results showed that certain genes were associated with increased breast cancer risk in this population. These genes were similar to the breast cancer risk genes found in individuals from the United States with European ancestry. A case-control study of 10,047 women with African ancestry found a pathogenic variant frequency of 10.3% in those with ER-negative breast cancer, 5.2% in those with ER-positive breast cancer, and 2.3% in those without breast cancer. BRCA1 (OR, 47), BRCA2 (OR, 7.25) and PALB2 (OR, 8.54) were associated with the highest breast cancer risks.[253] High ER-negative breast cancer risk was reported in individuals with pathogenic variants in RAD51D (OR, 7.82), while moderate ER-positive breast cancer risk was reported in individuals with pathogenic variants in CHEK2, ATM, ERCC3, and FANCC. Similarly, a case-control study of 3,286 women with African ancestry found significant associations between breast cancer risk and pathogenic variants in the following genes: BRCA1, BRCA2, PALB2, ATM, CHEK2, TP53, NF1, RAD51C, and RAD51D.[254]

There are caveats of multigene testing. Genes identified as part of multigene panel testing can be associated with varied breast cancer risk or confer no known risk.[239] There is also the possibility of finding a variant of uncertain significance (VUS). Even within a given gene, there may be differential risks on the basis of specific pathogenic variants.[255] A large population-based retrospective study using Surveillance, Epidemiology, and End Results (SEER) program data from Georgia and Los Angeles, California, found that multigene testing led to a twofold increase in the detection of pathogenic variants compared with BRCA-only testing in women with breast cancer.[256] VUS rates, however, were tenfold higher in the multigene panels, especially in African American women (44.5%) and Asian women (50.9%). Many centers now offer a multigene panel test instead of just BRCA1 and BRCA2 testing if there is a concerning family history of syndromes other than hereditary breast and ovarian cancer, or more importantly, to gain as much genetic information as possible with one test, particularly if there may be insurance limitations.

(Refer to the Multigene [panel] testing section in Cancer Genetics Risk Assessment and Counseling for more information about multigene testing, including genetic education and counseling considerations and research examining the use of multigene testing.)

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Ravdin PM, Cronin KA, Howlader N, et al.: The decrease in breast-cancer incidence in 2003 in the United States. N Engl J Med 356 (16): 1670-4, 2007. [PUBMED Abstract]
  3. Quante AS, Herz J, Whittemore AS, et al.: Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat 152 (1): 193-7, 2015. [PUBMED Abstract]
  4. Feuer EJ, Wun LM, Boring CC, et al.: The lifetime risk of developing breast cancer. J Natl Cancer Inst 85 (11): 892-7, 1993. [PUBMED Abstract]
  5. Yang Q, Khoury MJ, Rodriguez C, et al.: Family history score as a predictor of breast cancer mortality: prospective data from the Cancer Prevention Study II, United States, 1982-1991. Am J Epidemiol 147 (7): 652-9, 1998. [PUBMED Abstract]
  6. Colditz GA, Willett WC, Hunter DJ, et al.: Family history, age, and risk of breast cancer. Prospective data from the Nurses’ Health Study. JAMA 270 (3): 338-43, 1993. [PUBMED Abstract]
  7. Slattery ML, Kerber RA: A comprehensive evaluation of family history and breast cancer risk. The Utah Population Database. JAMA 270 (13): 1563-8, 1993. [PUBMED Abstract]
  8. Johnson N, Lancaster T, Fuller A, et al.: The prevalence of a family history of cancer in general practice. Fam Pract 12 (3): 287-9, 1995. [PUBMED Abstract]
  9. Pharoah PD, Day NE, Duffy S, et al.: Family history and the risk of breast cancer: a systematic review and meta-analysis. Int J Cancer 71 (5): 800-9, 1997. [PUBMED Abstract]
  10. Bevier M, Sundquist K, Hemminki K: Risk of breast cancer in families of multiple affected women and men. Breast Cancer Res Treat 132 (2): 723-8, 2012. [PUBMED Abstract]
  11. Kharazmi E, Chen T, Narod S, et al.: Effect of multiplicity, laterality, and age at onset of breast cancer on familial risk of breast cancer: a nationwide prospective cohort study. Breast Cancer Res Treat 144 (1): 185-92, 2014. [PUBMED Abstract]
  12. Reiner AS, Sisti J, John EM, et al.: Breast Cancer Family History and Contralateral Breast Cancer Risk in Young Women: An Update From the Women’s Environmental Cancer and Radiation Epidemiology Study. J Clin Oncol 36 (15): 1513-1520, 2018. [PUBMED Abstract]
  13. Albright FS, Kohlmann W, Neumayer L, et al.: Population-based relative risks for specific family history constellations of breast cancer. Cancer Causes Control 30 (6): 581-590, 2019. [PUBMED Abstract]
  14. Mucci LA, Hjelmborg JB, Harris JR, et al.: Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA 315 (1): 68-76, 2016. [PUBMED Abstract]
  15. Chen J, Pee D, Ayyagari R, et al.: Projecting absolute invasive breast cancer risk in white women with a model that includes mammographic density. J Natl Cancer Inst 98 (17): 1215-26, 2006. [PUBMED Abstract]
  16. Dupont WD, Page DL, Parl FF, et al.: Long-term risk of breast cancer in women with fibroadenoma. N Engl J Med 331 (1): 10-5, 1994. [PUBMED Abstract]
  17. Zeinomar N, Phillips KA, Daly MB, et al.: Benign breast disease increases breast cancer risk independent of underlying familial risk profile: Findings from a Prospective Family Study Cohort. Int J Cancer 145 (2): 370-379, 2019. [PUBMED Abstract]
  18. Boyd NF, Byng JW, Jong RA, et al.: Quantitative classification of mammographic densities and breast cancer risk: results from the Canadian National Breast Screening Study. J Natl Cancer Inst 87 (9): 670-5, 1995. [PUBMED Abstract]
  19. Byrne C, Schairer C, Wolfe J, et al.: Mammographic features and breast cancer risk: effects with time, age, and menopause status. J Natl Cancer Inst 87 (21): 1622-9, 1995. [PUBMED Abstract]
  20. Pankow JS, Vachon CM, Kuni CC, et al.: Genetic analysis of mammographic breast density in adult women: evidence of a gene effect. J Natl Cancer Inst 89 (8): 549-56, 1997. [PUBMED Abstract]
  21. Boyd NF, Lockwood GA, Martin LJ, et al.: Mammographic densities and risk of breast cancer among subjects with a family history of this disease. J Natl Cancer Inst 91 (16): 1404-8, 1999. [PUBMED Abstract]
  22. Vachon CM, King RA, Atwood LD, et al.: Preliminary sibpair linkage analysis of percent mammographic density. J Natl Cancer Inst 91 (20): 1778-9, 1999. [PUBMED Abstract]
  23. Vachon CM, van Gils CH, Sellers TA, et al.: Mammographic density, breast cancer risk and risk prediction. Breast Cancer Res 9 (6): 217, 2007. [PUBMED Abstract]
  24. Mitchell G, Antoniou AC, Warren R, et al.: Mammographic density and breast cancer risk in BRCA1 and BRCA2 mutation carriers. Cancer Res 66 (3): 1866-72, 2006. [PUBMED Abstract]
  25. Ramón Y Cajal T, Chirivella I, Miranda J, et al.: Mammographic density and breast cancer in women from high risk families. Breast Cancer Res 17: 93, 2015. [PUBMED Abstract]
  26. Thompson CM, Mallawaarachchi I, Dwivedi DK, et al.: The Association of Background Parenchymal Enhancement at Breast MRI with Breast Cancer: A Systematic Review and Meta-Analysis. Radiology 292 (3): 552-561, 2019. [PUBMED Abstract]
  27. Terry MB, Liao Y, Kast K, et al.: The Influence of Number and Timing of Pregnancies on Breast Cancer Risk for Women With BRCA1 or BRCA2 Mutations. JNCI Cancer Spectr 2 (4): pky078, 2018. [PUBMED Abstract]
  28. Johannsson O, Loman N, Borg A, et al.: Pregnancy-associated breast cancer in BRCA1 and BRCA2 germline mutation carriers. Lancet 352 (9137): 1359-60, 1998. [PUBMED Abstract]
  29. Jernström H, Lerman C, Ghadirian P, et al.: Pregnancy and risk of early breast cancer in carriers of BRCA1 and BRCA2. Lancet 354 (9193): 1846-50, 1999. [PUBMED Abstract]
  30. Friebel TM, Domchek SM, Rebbeck TR: Modifiers of cancer risk in BRCA1 and BRCA2 mutation carriers: systematic review and meta-analysis. J Natl Cancer Inst 106 (6): dju091, 2014. [PUBMED Abstract]
  31. Valentini A, Lubinski J, Byrski T, et al.: The impact of pregnancy on breast cancer survival in women who carry a BRCA1 or BRCA2 mutation. Breast Cancer Res Treat 142 (1): 177-85, 2013. [PUBMED Abstract]
  32. Jernström H, Lubinski J, Lynch HT, et al.: Breast-feeding and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. J Natl Cancer Inst 96 (14): 1094-8, 2004. [PUBMED Abstract]
  33. Breast cancer and hormonal contraceptives: collaborative reanalysis of individual data on 53 297 women with breast cancer and 100 239 women without breast cancer from 54 epidemiological studies. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 347 (9017): 1713-27, 1996. [PUBMED Abstract]
  34. Iodice S, Barile M, Rotmensz N, et al.: Oral contraceptive use and breast or ovarian cancer risk in BRCA1/2 carriers: a meta-analysis. Eur J Cancer 46 (12): 2275-84, 2010. [PUBMED Abstract]
  35. Schrijver LH, Olsson H, Phillips KA, et al.: Oral Contraceptive Use and Breast Cancer Risk: Retrospective and Prospective Analyses From a BRCA1 and BRCA2 Mutation Carrier Cohort Study. JNCI Cancer Spectr 2 (2): pky023, 2018. [PUBMED Abstract]
  36. Huber D, Seitz S, Kast K, et al.: Use of oral contraceptives in BRCA mutation carriers and risk for ovarian and breast cancer: a systematic review. Arch Gynecol Obstet 301 (4): 875-884, 2020. [PUBMED Abstract]
  37. Kotsopoulos J, Lubinski J, Moller P, et al.: Timing of oral contraceptive use and the risk of breast cancer in BRCA1 mutation carriers. Breast Cancer Res Treat 143 (3): 579-86, 2014. [PUBMED Abstract]
  38. Conz L, Mota BS, Bahamondes L, et al.: Levonorgestrel-releasing intrauterine system and breast cancer risk: A systematic review and meta-analysis. Acta Obstet Gynecol Scand 99 (8): 970-982, 2020. [PUBMED Abstract]
  39. Breast cancer and hormone replacement therapy: collaborative reanalysis of data from 51 epidemiological studies of 52,705 women with breast cancer and 108,411 women without breast cancer. Collaborative Group on Hormonal Factors in Breast Cancer. Lancet 350 (9084): 1047-59, 1997. [PUBMED Abstract]
  40. Gorsky RD, Koplan JP, Peterson HB, et al.: Relative risks and benefits of long-term estrogen replacement therapy: a decision analysis. Obstet Gynecol 83 (2): 161-6, 1994. [PUBMED Abstract]
  41. Writing Group for the Women’s Health Initiative Investigators: Risks and benefits of estrogen plus progestin in healthy postmenopausal women: principal results From the Women’s Health Initiative randomized controlled trial. JAMA 288 (3): 321-33, 2002. [PUBMED Abstract]
  42. Chlebowski RT, Hendrix SL, Langer RD, et al.: Influence of estrogen plus progestin on breast cancer and mammography in healthy postmenopausal women: the Women’s Health Initiative Randomized Trial. JAMA 289 (24): 3243-53, 2003. [PUBMED Abstract]
  43. Beral V; Million Women Study Collaborators: Breast cancer and hormone-replacement therapy in the Million Women Study. Lancet 362 (9382): 419-27, 2003. [PUBMED Abstract]
  44. Anderson GL, Limacher M, Assaf AR, et al.: Effects of conjugated equine estrogen in postmenopausal women with hysterectomy: the Women’s Health Initiative randomized controlled trial. JAMA 291 (14): 1701-12, 2004. [PUBMED Abstract]
  45. Schuurman AG, van den Brandt PA, Goldbohm RA: Exogenous hormone use and the risk of postmenopausal breast cancer: results from The Netherlands Cohort Study. Cancer Causes Control 6 (5): 416-24, 1995. [PUBMED Abstract]
  46. Steinberg KK, Thacker SB, Smith SJ, et al.: A meta-analysis of the effect of estrogen replacement therapy on the risk of breast cancer. JAMA 265 (15): 1985-90, 1991. [PUBMED Abstract]
  47. Sellers TA, Mink PJ, Cerhan JR, et al.: The role of hormone replacement therapy in the risk for breast cancer and total mortality in women with a family history of breast cancer. Ann Intern Med 127 (11): 973-80, 1997. [PUBMED Abstract]
  48. Stanford JL, Weiss NS, Voigt LF, et al.: Combined estrogen and progestin hormone replacement therapy in relation to risk of breast cancer in middle-aged women. JAMA 274 (2): 137-42, 1995. [PUBMED Abstract]
  49. Colditz GA, Egan KM, Stampfer MJ: Hormone replacement therapy and risk of breast cancer: results from epidemiologic studies. Am J Obstet Gynecol 168 (5): 1473-80, 1993. [PUBMED Abstract]
  50. Rebbeck TR, Friebel T, Wagner T, et al.: Effect of short-term hormone replacement therapy on breast cancer risk reduction after bilateral prophylactic oophorectomy in BRCA1 and BRCA2 mutation carriers: the PROSE Study Group. J Clin Oncol 23 (31): 7804-10, 2005. [PUBMED Abstract]
  51. Kotsopoulos J, Gronwald J, Karlan BY, et al.: Hormone Replacement Therapy After Oophorectomy and Breast Cancer Risk Among BRCA1 Mutation Carriers. JAMA Oncol 4 (8): 1059-1065, 2018. [PUBMED Abstract]
  52. Gordhandas S, Norquist BM, Pennington KP, et al.: Hormone replacement therapy after risk reducing salpingo-oophorectomy in patients with BRCA1 or BRCA2 mutations; a systematic review of risks and benefits. Gynecol Oncol 153 (1): 192-200, 2019. [PUBMED Abstract]
  53. Helzlsouer KJ, Harris EL, Parshad R, et al.: Familial clustering of breast cancer: possible interaction between DNA repair proficiency and radiation exposure in the development of breast cancer. Int J Cancer 64 (1): 14-7, 1995. [PUBMED Abstract]
  54. Helzlsouer KJ, Harris EL, Parshad R, et al.: DNA repair proficiency: potential susceptibility factor for breast cancer. J Natl Cancer Inst 88 (11): 754-5, 1996. [PUBMED Abstract]
  55. Abbott DW, Thompson ME, Robinson-Benion C, et al.: BRCA1 expression restores radiation resistance in BRCA1-defective cancer cells through enhancement of transcription-coupled DNA repair. J Biol Chem 274 (26): 18808-12, 1999. [PUBMED Abstract]
  56. Abbott DW, Freeman ML, Holt JT: Double-strand break repair deficiency and radiation sensitivity in BRCA2 mutant cancer cells. J Natl Cancer Inst 90 (13): 978-85, 1998. [PUBMED Abstract]
  57. Easton DF: Cancer risks in A-T heterozygotes. Int J Radiat Biol 66 (6 Suppl): S177-82, 1994. [PUBMED Abstract]
  58. Kleihues P, Schäuble B, zur Hausen A, et al.: Tumors associated with p53 germline mutations: a synopsis of 91 families. Am J Pathol 150 (1): 1-13, 1997. [PUBMED Abstract]
  59. Pierce LJ, Strawderman M, Narod SA, et al.: Effect of radiotherapy after breast-conserving treatment in women with breast cancer and germline BRCA1/2 mutations. J Clin Oncol 18 (19): 3360-9, 2000. [PUBMED Abstract]
  60. Narod SA, Lubinski J, Ghadirian P, et al.: Screening mammography and risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a case-control study. Lancet Oncol 7 (5): 402-6, 2006. [PUBMED Abstract]
  61. Andrieu N, Easton DF, Chang-Claude J, et al.: Effect of chest X-rays on the risk of breast cancer among BRCA1/2 mutation carriers in the international BRCA1/2 carrier cohort study: a report from the EMBRACE, GENEPSO, GEO-HEBON, and IBCCS Collaborators’ Group. J Clin Oncol 24 (21): 3361-6, 2006. [PUBMED Abstract]
  62. Goldfrank D, Chuai S, Bernstein JL, et al.: Effect of mammography on breast cancer risk in women with mutations in BRCA1 or BRCA2. Cancer Epidemiol Biomarkers Prev 15 (11): 2311-3, 2006. [PUBMED Abstract]
  63. Gronwald J, Pijpe A, Byrski T, et al.: Early radiation exposures and BRCA1-associated breast cancer in young women from Poland. Breast Cancer Res Treat 112 (3): 581-4, 2008. [PUBMED Abstract]
  64. Pijpe A, Andrieu N, Easton DF, et al.: Exposure to diagnostic radiation and risk of breast cancer among carriers of BRCA1/2 mutations: retrospective cohort study (GENE-RAD-RISK). BMJ 345: e5660, 2012. [PUBMED Abstract]
  65. Giannakeas V, Lubinski J, Gronwald J, et al.: Mammography screening and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers: a prospective study. Breast Cancer Res Treat 147 (1): 113-8, 2014. [PUBMED Abstract]
  66. Drooger J, Akdeniz D, Pignol JP, et al.: Adjuvant radiotherapy for primary breast cancer in BRCA1 and BRCA2 mutation carriers and risk of contralateral breast cancer with special attention to patients irradiated at younger age. Breast Cancer Res Treat 154 (1): 171-80, 2015. [PUBMED Abstract]
  67. Reiner AS, Robson ME, Mellemkjær L, et al.: Radiation Treatment, ATM, BRCA1/2, and CHEK2*1100delC Pathogenic Variants and Risk of Contralateral Breast Cancer. J Natl Cancer Inst 112 (12): 1275-1279, 2020. [PUBMED Abstract]
  68. Smith-Warner SA, Spiegelman D, Yaun SS, et al.: Alcohol and breast cancer in women: a pooled analysis of cohort studies. JAMA 279 (7): 535-40, 1998. [PUBMED Abstract]
  69. Hamajima N, Hirose K, Tajima K, et al.: Alcohol, tobacco and breast cancer–collaborative reanalysis of individual data from 53 epidemiological studies, including 58,515 women with breast cancer and 95,067 women without the disease. Br J Cancer 87 (11): 1234-45, 2002. [PUBMED Abstract]
  70. McGuire V, John EM, Felberg A, et al.: No increased risk of breast cancer associated with alcohol consumption among carriers of BRCA1 and BRCA2 mutations ages <50 years. Cancer Epidemiol Biomarkers Prev 15 (8): 1565-7, 2006. [PUBMED Abstract]
  71. Dennis J, Ghadirian P, Little J, et al.: Alcohol consumption and the risk of breast cancer among BRCA1 and BRCA2 mutation carriers. Breast 19 (6): 479-83, 2010. [PUBMED Abstract]
  72. Cybulski C, Lubinski J, Huzarski T, et al.: Prospective evaluation of alcohol consumption and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 151 (2): 435-41, 2015. [PUBMED Abstract]
  73. Brunet JS, Ghadirian P, Rebbeck TR, et al.: Effect of smoking on breast cancer in carriers of mutant BRCA1 or BRCA2 genes. J Natl Cancer Inst 90 (10): 761-6, 1998. [PUBMED Abstract]
  74. Ghadirian P, Lubinski J, Lynch H, et al.: Smoking and the risk of breast cancer among carriers of BRCA mutations. Int J Cancer 110 (3): 413-6, 2004. [PUBMED Abstract]
  75. Li H, Terry MB, Antoniou AC, et al.: Alcohol Consumption, Cigarette Smoking, and Risk of Breast Cancer for BRCA1 and BRCA2 Mutation Carriers: Results from The BRCA1 and BRCA2 Cohort Consortium. Cancer Epidemiol Biomarkers Prev 29 (2): 368-378, 2020. [PUBMED Abstract]
  76. Zeinomar N, Knight JA, Genkinger JM, et al.: Alcohol consumption, cigarette smoking, and familial breast cancer risk: findings from the Prospective Family Study Cohort (ProF-SC). Breast Cancer Res 21 (1): 128, 2019. [PUBMED Abstract]
  77. Lammert J, Lubinski J, Gronwald J, et al.: Physical activity during adolescence and young adulthood and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Breast Cancer Res Treat 169 (3): 561-571, 2018. [PUBMED Abstract]
  78. Kehm RD, Genkinger JM, MacInnis RJ, et al.: Recreational Physical Activity Is Associated with Reduced Breast Cancer Risk in Adult Women at High Risk for Breast Cancer: A Cohort Study of Women Selected for Familial and Genetic Risk. Cancer Res 80 (1): 116-125, 2020. [PUBMED Abstract]
  79. Amos CI, Struewing JP: Genetic epidemiology of epithelial ovarian cancer. Cancer 71 (2 Suppl): 566-72, 1993. [PUBMED Abstract]
  80. Stratton JF, Pharoah P, Smith SK, et al.: A systematic review and meta-analysis of family history and risk of ovarian cancer. Br J Obstet Gynaecol 105 (5): 493-9, 1998. [PUBMED Abstract]
  81. Whittemore AS, Harris R, Itnyre J: Characteristics relating to ovarian cancer risk: collaborative analysis of 12 US case-control studies. II. Invasive epithelial ovarian cancers in white women. Collaborative Ovarian Cancer Group. Am J Epidemiol 136 (10): 1184-203, 1992. [PUBMED Abstract]
  82. Brinton LA, Lamb EJ, Moghissi KS, et al.: Ovarian cancer risk after the use of ovulation-stimulating drugs. Obstet Gynecol 103 (6): 1194-203, 2004. [PUBMED Abstract]
  83. Gronwald J, Byrski T, Huzarski T, et al.: Influence of selected lifestyle factors on breast and ovarian cancer risk in BRCA1 mutation carriers from Poland. Breast Cancer Res Treat 95 (2): 105-9, 2006. [PUBMED Abstract]
  84. McLaughlin JR, Risch HA, Lubinski J, et al.: Reproductive risk factors for ovarian cancer in carriers of BRCA1 or BRCA2 mutations: a case-control study. Lancet Oncol 8 (1): 26-34, 2007. [PUBMED Abstract]
  85. Antoniou AC, Rookus M, Andrieu N, et al.: Reproductive and hormonal factors, and ovarian cancer risk for BRCA1 and BRCA2 mutation carriers: results from the International BRCA1/2 Carrier Cohort Study. Cancer Epidemiol Biomarkers Prev 18 (2): 601-10, 2009. [PUBMED Abstract]
  86. Narod SA, Sun P, Ghadirian P, et al.: Tubal ligation and risk of ovarian cancer in carriers of BRCA1 or BRCA2 mutations: a case-control study. Lancet 357 (9267): 1467-70, 2001. [PUBMED Abstract]
  87. Kotsopoulos J, Lubinski J, Gronwald J, et al.: Factors influencing ovulation and the risk of ovarian cancer in BRCA1 and BRCA2 mutation carriers. Int J Cancer 137 (5): 1136-46, 2015. [PUBMED Abstract]
  88. Rodriguez C, Patel AV, Calle EE, et al.: Estrogen replacement therapy and ovarian cancer mortality in a large prospective study of US women. JAMA 285 (11): 1460-5, 2001. [PUBMED Abstract]
  89. Riman T, Dickman PW, Nilsson S, et al.: Hormone replacement therapy and the risk of invasive epithelial ovarian cancer in Swedish women. J Natl Cancer Inst 94 (7): 497-504, 2002. [PUBMED Abstract]
  90. Lacey JV, Mink PJ, Lubin JH, et al.: Menopausal hormone replacement therapy and risk of ovarian cancer. JAMA 288 (3): 334-41, 2002. [PUBMED Abstract]
  91. Anderson GL, Judd HL, Kaunitz AM, et al.: Effects of estrogen plus progestin on gynecologic cancers and associated diagnostic procedures: the Women’s Health Initiative randomized trial. JAMA 290 (13): 1739-48, 2003. [PUBMED Abstract]
  92. Tortolero-Luna G, Mitchell MF: The epidemiology of ovarian cancer. J Cell Biochem Suppl 23: 200-7, 1995. [PUBMED Abstract]
  93. Hankinson SE, Hunter DJ, Colditz GA, et al.: Tubal ligation, hysterectomy, and risk of ovarian cancer. A prospective study. JAMA 270 (23): 2813-8, 1993. [PUBMED Abstract]
  94. Rutter JL, Wacholder S, Chetrit A, et al.: Gynecologic surgeries and risk of ovarian cancer in women with BRCA1 and BRCA2 Ashkenazi founder mutations: an Israeli population-based case-control study. J Natl Cancer Inst 95 (14): 1072-8, 2003. [PUBMED Abstract]
  95. Kauff ND, Satagopan JM, Robson ME, et al.: Risk-reducing salpingo-oophorectomy in women with a BRCA1 or BRCA2 mutation. N Engl J Med 346 (21): 1609-15, 2002. [PUBMED Abstract]
  96. Rebbeck TR, Lynch HT, Neuhausen SL, et al.: Prophylactic oophorectomy in carriers of BRCA1 or BRCA2 mutations. N Engl J Med 346 (21): 1616-22, 2002. [PUBMED Abstract]
  97. Kotsopoulos J, Huzarski T, Gronwald J, et al.: Bilateral Oophorectomy and Breast Cancer Risk in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst 109 (1): , 2017. [PUBMED Abstract]
  98. John EM, Whittemore AS, Harris R, et al.: Characteristics relating to ovarian cancer risk: collaborative analysis of seven U.S. case-control studies. Epithelial ovarian cancer in black women. Collaborative Ovarian Cancer Group. J Natl Cancer Inst 85 (2): 142-7, 1993. [PUBMED Abstract]
  99. Narod SA, Risch H, Moslehi R, et al.: Oral contraceptives and the risk of hereditary ovarian cancer. Hereditary Ovarian Cancer Clinical Study Group. N Engl J Med 339 (7): 424-8, 1998. [PUBMED Abstract]
  100. Whittemore AS, Balise RR, Pharoah PD, et al.: Oral contraceptive use and ovarian cancer risk among carriers of BRCA1 or BRCA2 mutations. Br J Cancer 91 (11): 1911-5, 2004. [PUBMED Abstract]
  101. McGuire V, Felberg A, Mills M, et al.: Relation of contraceptive and reproductive history to ovarian cancer risk in carriers and noncarriers of BRCA1 gene mutations. Am J Epidemiol 160 (7): 613-8, 2004. [PUBMED Abstract]
  102. Modan B, Hartge P, Hirsh-Yechezkel G, et al.: Parity, oral contraceptives, and the risk of ovarian cancer among carriers and noncarriers of a BRCA1 or BRCA2 mutation. N Engl J Med 345 (4): 235-40, 2001. [PUBMED Abstract]
  103. Soliman PT, Oh JC, Schmeler KM, et al.: Risk factors for young premenopausal women with endometrial cancer. Obstet Gynecol 105 (3): 575-80, 2005. [PUBMED Abstract]
  104. Vasen HF, Stormorken A, Menko FH, et al.: MSH2 mutation carriers are at higher risk of cancer than MLH1 mutation carriers: a study of hereditary nonpolyposis colorectal cancer families. J Clin Oncol 19 (20): 4074-80, 2001. [PUBMED Abstract]
  105. Daniels MS: Genetic testing by cancer site: uterus. Cancer J 18 (4): 338-42, 2012 Jul-Aug. [PUBMED Abstract]
  106. Dunlop MG, Farrington SM, Nicholl I, et al.: Population carrier frequency of hMSH2 and hMLH1 mutations. Br J Cancer 83 (12): 1643-5, 2000. [PUBMED Abstract]
  107. de la Chapelle A: The incidence of Lynch syndrome. Fam Cancer 4 (3): 233-7, 2005. [PUBMED Abstract]
  108. Ring KL, Bruegl AS, Allen BA, et al.: Germline multi-gene hereditary cancer panel testing in an unselected endometrial cancer cohort. Mod Pathol 29 (11): 1381-1389, 2016. [PUBMED Abstract]
  109. Shu CA, Pike MC, Jotwani AR, et al.: Uterine Cancer After Risk-Reducing Salpingo-oophorectomy Without Hysterectomy in Women With BRCA Mutations. JAMA Oncol 2 (11): 1434-1440, 2016. [PUBMED Abstract]
  110. de Jonge MM, de Kroon CD, Jenner DJ, et al.: Endometrial Cancer Risk in Women With Germline BRCA1 or BRCA2 Mutations: Multicenter Cohort Study. J Natl Cancer Inst 113 (9): 1203-1211, 2021. [PUBMED Abstract]
  111. McPherson CP, Sellers TA, Potter JD, et al.: Reproductive factors and risk of endometrial cancer. The Iowa Women’s Health Study. Am J Epidemiol 143 (12): 1195-202, 1996. [PUBMED Abstract]
  112. Dossus L, Allen N, Kaaks R, et al.: Reproductive risk factors and endometrial cancer: the European Prospective Investigation into Cancer and Nutrition. Int J Cancer 127 (2): 442-51, 2010. [PUBMED Abstract]
  113. Shapiro S, Kelly JP, Rosenberg L, et al.: Risk of localized and widespread endometrial cancer in relation to recent and discontinued use of conjugated estrogens. N Engl J Med 313 (16): 969-72, 1985. [PUBMED Abstract]
  114. Ziel HK, Finkle WD: Increased risk of endometrial carcinoma among users of conjugated estrogens. N Engl J Med 293 (23): 1167-70, 1975. [PUBMED Abstract]
  115. Fisher B, Costantino JP, Redmond CK, et al.: Endometrial cancer in tamoxifen-treated breast cancer patients: findings from the National Surgical Adjuvant Breast and Bowel Project (NSABP) B-14. J Natl Cancer Inst 86 (7): 527-37, 1994. [PUBMED Abstract]
  116. Pike MC, Peters RK, Cozen W, et al.: Estrogen-progestin replacement therapy and endometrial cancer. J Natl Cancer Inst 89 (15): 1110-6, 1997. [PUBMED Abstract]
  117. Fournier A, Dossus L, Mesrine S, et al.: Risks of endometrial cancer associated with different hormone replacement therapies in the E3N cohort, 1992-2008. Am J Epidemiol 180 (5): 508-17, 2014. [PUBMED Abstract]
  118. Weiss NS, Sayvetz TA: Incidence of endometrial cancer in relation to the use of oral contraceptives. N Engl J Med 302 (10): 551-4, 1980. [PUBMED Abstract]
  119. Soini T, Hurskainen R, Grénman S, et al.: Cancer risk in women using the levonorgestrel-releasing intrauterine system in Finland. Obstet Gynecol 124 (2 Pt 1): 292-9, 2014. [PUBMED Abstract]
  120. Lindor NM, McMaster ML, Lindor CJ, et al.: Concise handbook of familial cancer susceptibility syndromes – second edition. J Natl Cancer Inst Monogr (38): 1-93, 2008. [PUBMED Abstract]
  121. Vasen HF, Offerhaus GJ, den Hartog Jager FC, et al.: The tumour spectrum in hereditary non-polyposis colorectal cancer: a study of 24 kindreds in the Netherlands. Int J Cancer 46 (1): 31-4, 1990. [PUBMED Abstract]
  122. Watson P, Lynch HT: Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 71 (3): 677-85, 1993. [PUBMED Abstract]
  123. Watson P, Vasen HF, Mecklin JP, et al.: The risk of endometrial cancer in hereditary nonpolyposis colorectal cancer. Am J Med 96 (6): 516-20, 1994. [PUBMED Abstract]
  124. Aarnio M, Mecklin JP, Aaltonen LA, et al.: Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 64 (6): 430-3, 1995. [PUBMED Abstract]
  125. Raymond VM, Everett JN, Furtado LV, et al.: Adrenocortical carcinoma is a lynch syndrome-associated cancer. J Clin Oncol 31 (24): 3012-8, 2013. [PUBMED Abstract]
  126. Raymond VM, Mukherjee B, Wang F, et al.: Elevated risk of prostate cancer among men with Lynch syndrome. J Clin Oncol 31 (14): 1713-8, 2013. [PUBMED Abstract]
  127. Suspiro A, Fidalgo P, Cravo M, et al.: The Muir-Torre syndrome: a rare variant of hereditary nonpolyposis colorectal cancer associated with hMSH2 mutation. Am J Gastroenterol 93 (9): 1572-4, 1998. [PUBMED Abstract]
  128. Kerber RA, Slattery ML: Comparison of self-reported and database-linked family history of cancer data in a case-control study. Am J Epidemiol 146 (3): 244-8, 1997. [PUBMED Abstract]
  129. Parent ME, Ghadirian P, Lacroix A, et al.: The reliability of recollections of family history: implications for the medical provider. J Cancer Educ 12 (2): 114-20, 1997 Summer. [PUBMED Abstract]
  130. Ready K, Litton JK, Arun BK: Clinical application of breast cancer risk assessment models. Future Oncol 6 (3): 355-65, 2010. [PUBMED Abstract]
  131. Amir E, Freedman OC, Seruga B, et al.: Assessing women at high risk of breast cancer: a review of risk assessment models. J Natl Cancer Inst 102 (10): 680-91, 2010. [PUBMED Abstract]
  132. Rosner BA, Colditz GA, Webb PM, et al.: Mathematical models of ovarian cancer incidence. Epidemiology 16 (4): 508-15, 2005. [PUBMED Abstract]
  133. Pfeiffer RM, Park Y, Kreimer AR, et al.: Risk prediction for breast, endometrial, and ovarian cancer in white women aged 50 y or older: derivation and validation from population-based cohort studies. PLoS Med 10 (7): e1001492, 2013. [PUBMED Abstract]
  134. Quante AS, Whittemore AS, Shriver T, et al.: Practical problems with clinical guidelines for breast cancer prevention based on remaining lifetime risk. J Natl Cancer Inst 107 (7): , 2015. [PUBMED Abstract]
  135. MacInnis RJ, Knight JA, Chung WK, et al.: Comparing 5-Year and Lifetime Risks of Breast Cancer using the Prospective Family Study Cohort. J Natl Cancer Inst 113 (6): 785-791, 2021. [PUBMED Abstract]
  136. Gail MH, Mai PL: Comparing breast cancer risk assessment models. J Natl Cancer Inst 102 (10): 665-8, 2010. [PUBMED Abstract]
  137. Quante AS, Whittemore AS, Shriver T, et al.: Breast cancer risk assessment across the risk continuum: genetic and nongenetic risk factors contributing to differential model performance. Breast Cancer Res 14 (6): R144, 2012. [PUBMED Abstract]
  138. Gail MH, Brinton LA, Byar DP, et al.: Projecting individualized probabilities of developing breast cancer for white females who are being examined annually. J Natl Cancer Inst 81 (24): 1879-86, 1989. [PUBMED Abstract]
  139. Colditz GA, Rosner B: Cumulative risk of breast cancer to age 70 years according to risk factor status: data from the Nurses’ Health Study. Am J Epidemiol 152 (10): 950-64, 2000. [PUBMED Abstract]
  140. Claus EB, Risch N, Thompson WD: Autosomal dominant inheritance of early-onset breast cancer. Implications for risk prediction. Cancer 73 (3): 643-51, 1994. [PUBMED Abstract]
  141. Tyrer J, Duffy SW, Cuzick J: A breast cancer prediction model incorporating familial and personal risk factors. Stat Med 23 (7): 1111-30, 2004. [PUBMED Abstract]
  142. Parmigiani G, Berry D, Aguilar O: Determining carrier probabilities for breast cancer-susceptibility genes BRCA1 and BRCA2. Am J Hum Genet 62 (1): 145-58, 1998. [PUBMED Abstract]
  143. Antoniou AC, Pharoah PD, McMullan G, et al.: A comprehensive model for familial breast cancer incorporating BRCA1, BRCA2 and other genes. Br J Cancer 86 (1): 76-83, 2002. [PUBMED Abstract]
  144. Antoniou AC, Pharoah PP, Smith P, et al.: The BOADICEA model of genetic susceptibility to breast and ovarian cancer. Br J Cancer 91 (8): 1580-90, 2004. [PUBMED Abstract]
  145. Antoniou AC, Cunningham AP, Peto J, et al.: The BOADICEA model of genetic susceptibility to breast and ovarian cancers: updates and extensions. Br J Cancer 98 (8): 1457-66, 2008. [PUBMED Abstract]
  146. Mavaddat N, Ficorella L, Carver T, et al.: Incorporating Alternative Polygenic Risk Scores into the BOADICEA Breast Cancer Risk Prediction Model. Cancer Epidemiol Biomarkers Prev 32 (3): 422-427, 2023. [PUBMED Abstract]
  147. Carver T, Hartley S, Lee A, et al.: CanRisk Tool-A Web Interface for the Prediction of Breast and Ovarian Cancer Risk and the Likelihood of Carrying Genetic Pathogenic Variants. Cancer Epidemiol Biomarkers Prev 30 (3): 469-473, 2021. [PUBMED Abstract]
  148. Anothaisintawee T, Teerawattananon Y, Wiratkapun C, et al.: Risk prediction models of breast cancer: a systematic review of model performances. Breast Cancer Res Treat 133 (1): 1-10, 2012. [PUBMED Abstract]
  149. Amir E, Evans DG, Shenton A, et al.: Evaluation of breast cancer risk assessment packages in the family history evaluation and screening programme. J Med Genet 40 (11): 807-14, 2003. [PUBMED Abstract]
  150. Laitman Y, Simeonov M, Keinan-Boker L, et al.: Breast cancer risk prediction accuracy in Jewish Israeli high-risk women using the BOADICEA and IBIS risk models. Genet Res (Camb) 95 (6): 174-7, 2013. [PUBMED Abstract]
  151. MacInnis RJ, Bickerstaffe A, Apicella C, et al.: Prospective validation of the breast cancer risk prediction model BOADICEA and a batch-mode version BOADICEACentre. Br J Cancer 109 (5): 1296-301, 2013. [PUBMED Abstract]
  152. Vilmun BM, Vejborg I, Lynge E, et al.: Impact of adding breast density to breast cancer risk models: A systematic review. Eur J Radiol 127: 109019, 2020. [PUBMED Abstract]
  153. Terry MB, Liao Y, Whittemore AS, et al.: 10-year performance of four models of breast cancer risk: a validation study. Lancet Oncol 20 (4): 504-517, 2019. [PUBMED Abstract]
  154. Claus EB, Risch N, Thompson WD: The calculation of breast cancer risk for women with a first degree family history of ovarian cancer. Breast Cancer Res Treat 28 (2): 115-20, 1993. [PUBMED Abstract]
  155. Bondy ML, Lustbader ED, Halabi S, et al.: Validation of a breast cancer risk assessment model in women with a positive family history. J Natl Cancer Inst 86 (8): 620-5, 1994. [PUBMED Abstract]
  156. Spiegelman D, Colditz GA, Hunter D, et al.: Validation of the Gail et al. model for predicting individual breast cancer risk. J Natl Cancer Inst 86 (8): 600-7, 1994. [PUBMED Abstract]
  157. Rockhill B, Spiegelman D, Byrne C, et al.: Validation of the Gail et al. model of breast cancer risk prediction and implications for chemoprevention. J Natl Cancer Inst 93 (5): 358-66, 2001. [PUBMED Abstract]
  158. Costantino JP, Gail MH, Pee D, et al.: Validation studies for models projecting the risk of invasive and total breast cancer incidence. J Natl Cancer Inst 91 (18): 1541-8, 1999. [PUBMED Abstract]
  159. Bondy ML, Newman LA: Breast cancer risk assessment models: applicability to African-American women. Cancer 97 (1 Suppl): 230-5, 2003. [PUBMED Abstract]
  160. Schonfeld SJ, Pee D, Greenlee RT, et al.: Effect of changing breast cancer incidence rates on the calibration of the Gail model. J Clin Oncol 28 (14): 2411-7, 2010. [PUBMED Abstract]
  161. Gail MH, Costantino JP, Pee D, et al.: Projecting individualized absolute invasive breast cancer risk in African American women. J Natl Cancer Inst 99 (23): 1782-92, 2007. [PUBMED Abstract]
  162. Gail MH: Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 100 (14): 1037-41, 2008. [PUBMED Abstract]
  163. Gail MH: Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model. J Natl Cancer Inst 101 (13): 959-63, 2009. [PUBMED Abstract]
  164. Barlow WE, White E, Ballard-Barbash R, et al.: Prospective breast cancer risk prediction model for women undergoing screening mammography. J Natl Cancer Inst 98 (17): 1204-14, 2006. [PUBMED Abstract]
  165. Tice JA, Cummings SR, Ziv E, et al.: Mammographic breast density and the Gail model for breast cancer risk prediction in a screening population. Breast Cancer Res Treat 94 (2): 115-22, 2005. [PUBMED Abstract]
  166. Lee AJ, Cunningham AP, Tischkowitz M, et al.: Incorporating truncating variants in PALB2, CHEK2, and ATM into the BOADICEA breast cancer risk model. Genet Med 18 (12): 1190-1198, 2016. [PUBMED Abstract]
  167. MacInnis RJ, Liao Y, Knight JA, et al.: Considerations When Using Breast Cancer Risk Models for Women with Negative BRCA1/BRCA2 Mutation Results. J Natl Cancer Inst 112 (4): 418-422, 2020. [PUBMED Abstract]
  168. Liang X, Harris HR, Hendryx M, et al.: Sleep Characteristics and Risk of Ovarian Cancer Among Postmenopausal Women. Cancer Prev Res (Phila) 14 (1): 55-64, 2021. [PUBMED Abstract]
  169. Jiang Y, Wang C, Zhou S: Artificial intelligence-based risk stratification, accurate diagnosis and treatment prediction in gynecologic oncology. Semin Cancer Biol 96: 82-99, 2023. [PUBMED Abstract]
  170. Shi J, Kraft P, Rosner BA, et al.: Risk prediction models for endometrial cancer: development and validation in an international consortium. J Natl Cancer Inst 115 (5): 552-559, 2023. [PUBMED Abstract]
  171. Barnetson RA, Tenesa A, Farrington SM, et al.: Identification and survival of carriers of mutations in DNA mismatch-repair genes in colon cancer. N Engl J Med 354 (26): 2751-63, 2006. [PUBMED Abstract]
  172. Kastrinos F, Uno H, Ukaegbu C, et al.: Development and Validation of the PREMM5 Model for Comprehensive Risk Assessment of Lynch Syndrome. J Clin Oncol 35 (19): 2165-2172, 2017. [PUBMED Abstract]
  173. Chen S, Wang W, Lee S, et al.: Prediction of germline mutations and cancer risk in the Lynch syndrome. JAMA 296 (12): 1479-87, 2006. [PUBMED Abstract]
  174. Khan O, Blanco A, Conrad P, et al.: Performance of Lynch syndrome predictive models in a multi-center US referral population. Am J Gastroenterol 106 (10): 1822-7; quiz 1828, 2011. [PUBMED Abstract]
  175. Mercado RC, Hampel H, Kastrinos F, et al.: Performance of PREMM(1,2,6), MMRpredict, and MMRpro in detecting Lynch syndrome among endometrial cancer cases. Genet Med 14 (7): 670-80, 2012. [PUBMED Abstract]
  176. Shazly SA, Coronado PJ, Yılmaz E, et al.: Endometrial Cancer Individualized Scoring System (ECISS): A machine learning-based prediction model of endometrial cancer prognosis. Int J Gynaecol Obstet 161 (3): 760-768, 2023. [PUBMED Abstract]
  177. Couch FJ, DeShano ML, Blackwood MA, et al.: BRCA1 mutations in women attending clinics that evaluate the risk of breast cancer. N Engl J Med 336 (20): 1409-15, 1997. [PUBMED Abstract]
  178. Shattuck-Eidens D, Oliphant A, McClure M, et al.: BRCA1 sequence analysis in women at high risk for susceptibility mutations. Risk factor analysis and implications for genetic testing. JAMA 278 (15): 1242-50, 1997. [PUBMED Abstract]
  179. Frank TS, Manley SA, Olopade OI, et al.: Sequence analysis of BRCA1 and BRCA2: correlation of mutations with family history and ovarian cancer risk. J Clin Oncol 16 (7): 2417-25, 1998. [PUBMED Abstract]
  180. Frank TS, Deffenbaugh AM, Reid JE, et al.: Clinical characteristics of individuals with germline mutations in BRCA1 and BRCA2: analysis of 10,000 individuals. J Clin Oncol 20 (6): 1480-90, 2002. [PUBMED Abstract]
  181. Evans DG, Eccles DM, Rahman N, et al.: A new scoring system for the chances of identifying a BRCA1/2 mutation outperforms existing models including BRCAPRO. J Med Genet 41 (6): 474-80, 2004. [PUBMED Abstract]
  182. Apicella C, Dowty JG, Dite GS, et al.: Validation study of the LAMBDA model for predicting the BRCA1 or BRCA2 mutation carrier status of North American Ashkenazi Jewish women. Clin Genet 72 (2): 87-97, 2007. [PUBMED Abstract]
  183. Risch HA, McLaughlin JR, Cole DE, et al.: Prevalence and penetrance of germline BRCA1 and BRCA2 mutations in a population series of 649 women with ovarian cancer. Am J Hum Genet 68 (3): 700-10, 2001. [PUBMED Abstract]
  184. Malone KE, Daling JR, Doody DR, et al.: Prevalence and predictors of BRCA1 and BRCA2 mutations in a population-based study of breast cancer in white and black American women ages 35 to 64 years. Cancer Res 66 (16): 8297-308, 2006. [PUBMED Abstract]
  185. Struewing JP, Abeliovich D, Peretz T, et al.: The carrier frequency of the BRCA1 185delAG mutation is approximately 1 percent in Ashkenazi Jewish individuals. Nat Genet 11 (2): 198-200, 1995. [PUBMED Abstract]
  186. Oddoux C, Struewing JP, Clayton CM, et al.: The carrier frequency of the BRCA2 6174delT mutation among Ashkenazi Jewish individuals is approximately 1%. Nat Genet 14 (2): 188-90, 1996. [PUBMED Abstract]
  187. Warner E, Foulkes W, Goodwin P, et al.: Prevalence and penetrance of BRCA1 and BRCA2 gene mutations in unselected Ashkenazi Jewish women with breast cancer. J Natl Cancer Inst 91 (14): 1241-7, 1999. [PUBMED Abstract]
  188. Prevalence and penetrance of BRCA1 and BRCA2 mutations in a population-based series of breast cancer cases. Anglian Breast Cancer Study Group. Br J Cancer 83 (10): 1301-8, 2000. [PUBMED Abstract]
  189. Euhus DM, Smith KC, Robinson L, et al.: Pretest prediction of BRCA1 or BRCA2 mutation by risk counselors and the computer model BRCAPRO. J Natl Cancer Inst 94 (11): 844-51, 2002. [PUBMED Abstract]
  190. de la Hoya M, Díez O, Pérez-Segura P, et al.: Pre-test prediction models of BRCA1 or BRCA2 mutation in breast/ovarian families attending familial cancer clinics. J Med Genet 40 (7): 503-10, 2003. [PUBMED Abstract]
  191. Katki HA: Incorporating medical interventions into carrier probability estimation for genetic counseling. BMC Med Genet 8: 13, 2007. [PUBMED Abstract]
  192. Weitzel JN, Lagos VI, Cullinane CA, et al.: Limited family structure and BRCA gene mutation status in single cases of breast cancer. JAMA 297 (23): 2587-95, 2007. [PUBMED Abstract]
  193. Jervis S, Song H, Lee A, et al.: A risk prediction algorithm for ovarian cancer incorporating BRCA1, BRCA2, common alleles and other familial effects. J Med Genet 52 (7): 465-75, 2015. [PUBMED Abstract]
  194. Oros KK, Ghadirian P, Maugard CM, et al.: Application of BRCA1 and BRCA2 mutation carrier prediction models in breast and/or ovarian cancer families of French Canadian descent. Clin Genet 70 (4): 320-9, 2006. [PUBMED Abstract]
  195. Vogel KJ, Atchley DP, Erlichman J, et al.: BRCA1 and BRCA2 genetic testing in Hispanic patients: mutation prevalence and evaluation of the BRCAPRO risk assessment model. J Clin Oncol 25 (29): 4635-41, 2007. [PUBMED Abstract]
  196. Kurian AW, Gong GD, John EM, et al.: Performance of prediction models for BRCA mutation carriage in three racial/ethnic groups: findings from the Northern California Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 18 (4): 1084-91, 2009. [PUBMED Abstract]
  197. Kurian AW, Gong GD, Chun NM, et al.: Performance of BRCA1/2 mutation prediction models in Asian Americans. J Clin Oncol 26 (29): 4752-8, 2008. [PUBMED Abstract]
  198. Berry DA, Parmigiani G, Sanchez J, et al.: Probability of carrying a mutation of breast-ovarian cancer gene BRCA1 based on family history. J Natl Cancer Inst 89 (3): 227-38, 1997. [PUBMED Abstract]
  199. Barcenas CH, Hosain GM, Arun B, et al.: Assessing BRCA carrier probabilities in extended families. J Clin Oncol 24 (3): 354-60, 2006. [PUBMED Abstract]
  200. Kang HH, Williams R, Leary J, et al.: Evaluation of models to predict BRCA germline mutations. Br J Cancer 95 (7): 914-20, 2006. [PUBMED Abstract]
  201. Antoniou AC, Hardy R, Walker L, et al.: Predicting the likelihood of carrying a BRCA1 or BRCA2 mutation: validation of BOADICEA, BRCAPRO, IBIS, Myriad and the Manchester scoring system using data from UK genetics clinics. J Med Genet 45 (7): 425-31, 2008. [PUBMED Abstract]
  202. Fischer C, Kuchenbäcker K, Engel C, et al.: Evaluating the performance of the breast cancer genetic risk models BOADICEA, IBIS, BRCAPRO and Claus for predicting BRCA1/2 mutation carrier probabilities: a study based on 7352 families from the German Hereditary Breast and Ovarian Cancer Consortium. J Med Genet 50 (6): 360-7, 2013. [PUBMED Abstract]
  203. Biswas S, Tankhiwale N, Blackford A, et al.: Assessing the added value of breast tumor markers in genetic risk prediction model BRCAPRO. Breast Cancer Res Treat 133 (1): 347-55, 2012. [PUBMED Abstract]
  204. Tai YC, Chen S, Parmigiani G, et al.: Incorporating tumor immunohistochemical markers in BRCA1 and BRCA2 carrier prediction. Breast Cancer Res 10 (2): 401, 2008. [PUBMED Abstract]
  205. Ready KJ, Vogel KJ, Atchley DP, et al.: Accuracy of the BRCAPRO model among women with bilateral breast cancer. Cancer 115 (4): 725-30, 2009. [PUBMED Abstract]
  206. Huo D, Senie RT, Daly M, et al.: Prediction of BRCA Mutations Using the BRCAPRO Model in Clinic-Based African American, Hispanic, and Other Minority Families in the United States. J Clin Oncol 27 (8): 1184-90, 2009. [PUBMED Abstract]
  207. Daniels MS, Babb SA, King RH, et al.: Underestimation of risk of a BRCA1 or BRCA2 mutation in women with high-grade serous ovarian cancer by BRCAPRO: a multi-institution study. J Clin Oncol 32 (12): 1249-55, 2014. [PUBMED Abstract]
  208. Robson ME, Storm CD, Weitzel J, et al.: American Society of Clinical Oncology policy statement update: genetic and genomic testing for cancer susceptibility. J Clin Oncol 28 (5): 893-901, 2010. [PUBMED Abstract]
  209. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Version 2.2024. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2023. Available online with free registration. Last accessed September 18, 2024.
  210. Statement of the American Society of Human Genetics on genetic testing for breast and ovarian cancer predisposition. Am J Hum Genet 55 (5): i-iv, 1994. [PUBMED Abstract]
  211. Hampel H, Bennett RL, Buchanan A, et al.: A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 17 (1): 70-87, 2015. [PUBMED Abstract]
  212. Owens DK, Davidson KW, Krist AH, et al.: Risk Assessment, Genetic Counseling, and Genetic Testing for BRCA-Related Cancer: US Preventive Services Task Force Recommendation Statement. JAMA 322 (7): 652-665, 2019. [PUBMED Abstract]
  213. Lancaster JM, Powell CB, Kauff ND, et al.: Society of Gynecologic Oncologists Education Committee statement on risk assessment for inherited gynecologic cancer predispositions. Gynecol Oncol 107 (2): 159-62, 2007. [PUBMED Abstract]
  214. Manahan ER, Kuerer HM, Sebastian M, et al.: Consensus Guidelines on Genetic` Testing for Hereditary Breast Cancer from the American Society of Breast Surgeons. Ann Surg Oncol 26 (10): 3025-3031, 2019. [PUBMED Abstract]
  215. Beitsch PD, Whitworth PW, Hughes K, et al.: Underdiagnosis of Hereditary Breast Cancer: Are Genetic Testing Guidelines a Tool or an Obstacle? J Clin Oncol 37 (6): 453-460, 2019. [PUBMED Abstract]
  216. Cropper C, Woodson A, Arun B, et al.: Evaluating the NCCN Clinical Criteria for Recommending BRCA1 and BRCA2 Genetic Testing in Patients With Breast Cancer. J Natl Compr Canc Netw 15 (6): 797-803, 2017. [PUBMED Abstract]
  217. Grindedal EM, Heramb C, Karsrud I, et al.: Current guidelines for BRCA testing of breast cancer patients are insufficient to detect all mutation carriers. BMC Cancer 17 (1): 438, 2017. [PUBMED Abstract]
  218. Yadav S, Hu C, Hart SN, et al.: Evaluation of Germline Genetic Testing Criteria in a Hospital-Based Series of Women With Breast Cancer. J Clin Oncol 38 (13): 1409-1418, 2020. [PUBMED Abstract]
  219. Kurian AW, Bernhisel R, Larson K, et al.: Prevalence of Pathogenic Variants in Cancer Susceptibility Genes Among Women With Postmenopausal Breast Cancer. JAMA 323 (10): 995-997, 2020. [PUBMED Abstract]
  220. Couch FJ, Nathanson KL, Offit K: Two decades after BRCA: setting paradigms in personalized cancer care and prevention. Science 343 (6178): 1466-70, 2014. [PUBMED Abstract]
  221. Theobald KA, Susswein LR, Marshall ML, et al.: Utility of Expedited Hereditary Cancer Testing in the Surgical Management of Patients with a New Breast Cancer Diagnosis. Ann Surg Oncol 25 (12): 3556-3562, 2018. [PUBMED Abstract]
  222. Gornick MC, Kurian AW, An LC, et al.: Knowledge regarding and patterns of genetic testing in patients newly diagnosed with breast cancer participating in the iCanDecide trial. Cancer 124 (20): 4000-4009, 2018. [PUBMED Abstract]
  223. Chiba A, Hoskin TL, Hallberg EJ, et al.: Impact that Timing of Genetic Mutation Diagnosis has on Surgical Decision Making and Outcome for BRCA1/BRCA2 Mutation Carriers with Breast Cancer. Ann Surg Oncol 23 (10): 3232-8, 2016. [PUBMED Abstract]
  224. Obermair A, Youlden DR, Baade PD, et al.: The impact of risk-reducing hysterectomy and bilateral salpingo-oophorectomy on survival in patients with a history of breast cancer–a population-based data linkage study. Int J Cancer 134 (9): 2211-22, 2014. [PUBMED Abstract]
  225. Byrski T, Dent R, Blecharz P, et al.: Results of a phase II open-label, non-randomized trial of cisplatin chemotherapy in patients with BRCA1-positive metastatic breast cancer. Breast Cancer Res 14 (4): R110, 2012. [PUBMED Abstract]
  226. Robson M, Im SA, Senkus E, et al.: Olaparib for Metastatic Breast Cancer in Patients with a Germline BRCA Mutation. N Engl J Med 377 (6): 523-533, 2017. [PUBMED Abstract]
  227. Heymann S, Delaloge S, Rahal A, et al.: Radio-induced malignancies after breast cancer postoperative radiotherapy in patients with Li-Fraumeni syndrome. Radiat Oncol 5: 104, 2010. [PUBMED Abstract]
  228. Bougeard G, Renaux-Petel M, Flaman JM, et al.: Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 33 (21): 2345-52, 2015. [PUBMED Abstract]
  229. Rebbeck TR, Kauff ND, Domchek SM: Meta-analysis of risk reduction estimates associated with risk-reducing salpingo-oophorectomy in BRCA1 or BRCA2 mutation carriers. J Natl Cancer Inst 101 (2): 80-7, 2009. [PUBMED Abstract]
  230. Kotsopoulos J, Lubinski J, Lynch HT, et al.: Oophorectomy after menopause and the risk of breast cancer in BRCA1 and BRCA2 mutation carriers. Cancer Epidemiol Biomarkers Prev 21 (7): 1089-96, 2012. [PUBMED Abstract]
  231. Cass I, Baldwin RL, Varkey T, et al.: Improved survival in women with BRCA-associated ovarian carcinoma. Cancer 97 (9): 2187-95, 2003. [PUBMED Abstract]
  232. Tan DS, Rothermundt C, Thomas K, et al.: “BRCAness” syndrome in ovarian cancer: a case-control study describing the clinical features and outcome of patients with epithelial ovarian cancer associated with BRCA1 and BRCA2 mutations. J Clin Oncol 26 (34): 5530-6, 2008. [PUBMED Abstract]
  233. Moore K, Colombo N, Scambia G, et al.: Maintenance Olaparib in Patients with Newly Diagnosed Advanced Ovarian Cancer. N Engl J Med 379 (26): 2495-2505, 2018. [PUBMED Abstract]
  234. Practice Bulletin No. 149: Endometrial cancer. Obstet Gynecol 125 (4): 1006-26, 2015. [PUBMED Abstract]
  235. Ott PA, Bang YJ, Berton-Rigaud D, et al.: Safety and Antitumor Activity of Pembrolizumab in Advanced Programmed Death Ligand 1-Positive Endometrial Cancer: Results From the KEYNOTE-028 Study. J Clin Oncol 35 (22): 2535-2541, 2017. [PUBMED Abstract]
  236. Walsh T, Casadei S, Lee MK, et al.: Mutations in 12 genes for inherited ovarian, fallopian tube, and peritoneal carcinoma identified by massively parallel sequencing. Proc Natl Acad Sci U S A 108 (44): 18032-7, 2011. [PUBMED Abstract]
  237. Frey MK, Kim SH, Bassett RY, et al.: Rescreening for genetic mutations using multi-gene panel testing in patients who previously underwent non-informative genetic screening. Gynecol Oncol 139 (2): 211-5, 2015. [PUBMED Abstract]
  238. Desmond A, Kurian AW, Gabree M, et al.: Clinical Actionability of Multigene Panel Testing for Hereditary Breast and Ovarian Cancer Risk Assessment. JAMA Oncol 1 (7): 943-51, 2015. [PUBMED Abstract]
  239. Couch FJ, Shimelis H, Hu C, et al.: Associations Between Cancer Predisposition Testing Panel Genes and Breast Cancer. JAMA Oncol 3 (9): 1190-1196, 2017. [PUBMED Abstract]
  240. Weitzel JN, Neuhausen SL, Adamson A, et al.: Pathogenic and likely pathogenic variants in PALB2, CHEK2, and other known breast cancer susceptibility genes among 1054 BRCA-negative Hispanics with breast cancer. Cancer 125 (16): 2829-2836, 2019. [PUBMED Abstract]
  241. Frey MK, Kopparam RV, Ni Zhou Z, et al.: Prevalence of nonfounder BRCA1/2 mutations in Ashkenazi Jewish patients presenting for genetic testing at a hereditary breast and ovarian cancer center. Cancer 125 (5): 690-697, 2019. [PUBMED Abstract]
  242. Eoh KJ, Kim JE, Park HS, et al.: Detection of Germline Mutations in Patients with Epithelial Ovarian Cancer Using Multi-gene Panels: Beyond BRCA1/2. Cancer Res Treat 50 (3): 917-925, 2018. [PUBMED Abstract]
  243. Tung N, Lin NU, Kidd J, et al.: Frequency of Germline Mutations in 25 Cancer Susceptibility Genes in a Sequential Series of Patients With Breast Cancer. J Clin Oncol 34 (13): 1460-8, 2016. [PUBMED Abstract]
  244. Buys SS, Sandbach JF, Gammon A, et al.: A study of over 35,000 women with breast cancer tested with a 25-gene panel of hereditary cancer genes. Cancer 123 (10): 1721-1730, 2017. [PUBMED Abstract]
  245. Pritzlaff M, Summerour P, McFarland R, et al.: Male breast cancer in a multi-gene panel testing cohort: insights and unexpected results. Breast Cancer Res Treat 161 (3): 575-586, 2017. [PUBMED Abstract]
  246. Yadav S, Reeves A, Campian S, et al.: Outcomes of retesting BRCA negative patients using multigene panels. Fam Cancer 16 (3): 319-328, 2017. [PUBMED Abstract]
  247. Crawford B, Adams SB, Sittler T, et al.: Multi-gene panel testing for hereditary cancer predisposition in unsolved high-risk breast and ovarian cancer patients. Breast Cancer Res Treat 163 (2): 383-390, 2017. [PUBMED Abstract]
  248. Kurian AW, Ward KC, Howlader N, et al.: Genetic Testing and Results in a Population-Based Cohort of Breast Cancer Patients and Ovarian Cancer Patients. J Clin Oncol 37 (15): 1305-1315, 2019. [PUBMED Abstract]
  249. Carter NJ, Marshall ML, Susswein LR, et al.: Germline pathogenic variants identified in women with ovarian tumors. Gynecol Oncol 151 (3): 481-488, 2018. [PUBMED Abstract]
  250. Dorling L, Carvalho S, Allen J, et al.: Breast Cancer Risk Genes – Association Analysis in More than 113,000 Women. N Engl J Med 384 (5): 428-439, 2021. [PUBMED Abstract]
  251. Hu C, Hart SN, Gnanaolivu R, et al.: A Population-Based Study of Genes Previously Implicated in Breast Cancer. N Engl J Med 384 (5): 440-451, 2021. [PUBMED Abstract]
  252. Shimelis H, LaDuca H, Hu C, et al.: Triple-Negative Breast Cancer Risk Genes Identified by Multigene Hereditary Cancer Panel Testing. J Natl Cancer Inst 110 (8): 855-862, 2018. [PUBMED Abstract]
  253. Palmer JR, Polley EC, Hu C, et al.: Contribution of Germline Predisposition Gene Mutations to Breast Cancer Risk in African American Women. J Natl Cancer Inst 112 (12): 1213-1221, 2020. [PUBMED Abstract]
  254. Díaz-Zabala H, Guo X, Ping J, et al.: Evaluating breast cancer predisposition genes in women of African ancestry. Genet Med 24 (7): 1468-1475, 2022. [PUBMED Abstract]
  255. Southey MC, Goldgar DE, Winqvist R, et al.: PALB2, CHEK2 and ATM rare variants and cancer risk: data from COGS. J Med Genet 53 (12): 800-811, 2016. [PUBMED Abstract]
  256. Kurian AW, Ward KC, Hamilton AS, et al.: Uptake, Results, and Outcomes of Germline Multiple-Gene Sequencing After Diagnosis of Breast Cancer. JAMA Oncol 4 (8): 1066-1072, 2018. [PUBMED Abstract]

Penetrance of Inherited Susceptibility to Hereditary Breast and/or Gynecologic Cancers

The proportion of individuals carrying a pathogenic variant who will manifest a certain disease is referred to as penetrance. In general, common genetic variants that are associated with cancer susceptibility have a lower penetrance than rare genetic variants. This is depicted in Figure 4. For adult-onset diseases, penetrance is usually described by the individual carrier’s age, sex, and organ site. For example, the penetrance for breast cancer in female carriers of BRCA1 pathogenic variants is often quoted by age 50 years and by age 70 years. Of the numerous methods for estimating penetrance, none are without potential biases, and determining an individual carrier’s risk of cancer involves some level of imprecision.

EnlargeGraph shows relative risk on the x-axis and allele frequency on the y-axis. A line depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants and a higher relative risk associated with rare, high-penetrance genetic variants.
Figure 4. Genetic architecture of cancer risk. This graph depicts the general finding of a low relative risk associated with common, low-penetrance genetic variants, such as single-nucleotide polymorphisms identified in genome-wide association studies, and a higher relative risk associated with rare, high-penetrance genetic variants, such as pathogenic variants in the BRCA1/BRCA2 genes associated with hereditary breast and ovarian cancer and the mismatch repair genes associated with Lynch syndrome.

Throughout this summary, we discuss studies that report on relative and absolute risks (ARs). These are two important but different concepts. Relative risk (RR) refers to an estimate of risk relative to another group (e.g., risk of an outcome like breast cancer for women who are exposed to a risk factor relative to the risk of breast cancer for women who are unexposed to the same risk factor). RR measures that are greater than 1 mean that the risk for those captured in the numerator (i.e., the exposed) is higher than the risk for those captured in the denominator (i.e., the unexposed). RR measures that are less than 1 mean that the risk for those captured in the numerator (i.e., the exposed) is lower than the risk for those captured in the denominator (i.e., the unexposed). Measures with similar relative interpretations include the odds ratio (OR), hazard ratio, and risk ratio.

AR measures consider the number of people who have a particular outcome, the number of people in a population who could have the outcome, and person-time (the period of time during which an individual was at risk of having the outcome). AR measures also reflect the absolute burden of an outcome in a population. Absolute measures include risks and rates and can be expressed over a specific time frame (e.g., 1 year, 5 years) or overall lifetime. Cumulative risk is a measure of risk that occurs over a defined time period. For example, overall lifetime risk is a type of cumulative risk that is usually calculated on the basis of a given life expectancy (e.g., 80 or 90 years). Cumulative risk can also be presented over other time frames (e.g., up to age 50 years).

Large RR measures do not mean that there will be large effects in the actual number of individuals at a population level because the disease outcome may be quite rare. For example, the RR for smoking is much higher for lung cancer than for heart disease, but the absolute difference between smokers and nonsmokers is greater for heart disease, the more-common outcome, than for lung cancer, the more-rare outcome.

Therefore, in evaluating the effect of exposures and biological markers on disease prevention across the continuum, it is important to recognize the differences between relative and absolute effects in weighing the overall impact of a given risk factor. For example, the magnitude is in the range of 30% (e.g., ORs or RRs of 1.3) for many breast cancer risk factors, which means that women with a risk factor (e.g., alcohol consumption, late age at first birth, oral contraceptive use, postmenopausal body size) have a 30% relative increase in breast cancer in comparison with what they would have if they did not have that risk factor. But the absolute increase in risk is based on the underlying AR of disease. Figure 5 and Table 2 show the impact of a RR factor in the range of 1.3 on AR. As shown, women with a family history of breast cancer have a much higher benefit from risk factor reduction on an absolute scale.[1]

EnlargeFive pedigrees are shown depicting probands with varying degrees of family history of breast cancer ranging from no affected first-degree relatives and no known BRCA mutation in the family (family 1) to three affected first-degree relatives, including one relative with bilateral breast cancer, and a known BRCA1 mutation in the family (family 5).
Figure 5. These five pedigrees depict probands with varying degrees of family history. Table 2 accompanies this figure.
Table 2. Effect of Altering a Risk Factor With Relative Risk of 1.3 Across Women With Different Family Histories of Breast Cancera
Family History Lifetime Risk (%) Lifetime Risk After Risk Factor Modification (%) Absolute Risk Difference (%) Relative Risk
aRefer to Figure 5, which accompanies this table.
Low (Family 1) 10.9  8.4 2.50 1.29 (29% increased risk)
Moderate (Family 2) 21.6 16.8 4.80 1.28 (28% increased risk)
Moderate/high (Family 3) 27.1 21.3 5.80 1.27 (27% increased risk)
High (Family 4) 32.0 25.3 6.70 1.26 (26% increased risk)
BRCA1 pathogenic variant (Family 5) 53.7 44.2 9.50 1.21 (21% increased risk)

With the increasing use of multigene panel tests, a framework for cancer risk management among individuals with pathogenic variants detected in novel genes has been described [2] that incorporates data on age-specific, lifetime, and absolute cancer risks. The framework suggests initiating screening in these individuals at the age when their 5-year cancer risk approaches that at which screening is routinely initiated for women in the general population (approximately 1% for breast cancer in the United States). As a result, the age at which to begin screening will vary depending on the gene. (Refer to the Multigene [panel] testing section of this summary for more information on multigene panel tests.)

References
  1. Quante AS, Herz J, Whittemore AS, et al.: Assessing absolute changes in breast cancer risk due to modifiable risk factors. Breast Cancer Res Treat 152 (1): 193-7, 2015. [PUBMED Abstract]
  2. Tung N, Domchek SM, Stadler Z, et al.: Counselling framework for moderate-penetrance cancer-susceptibility mutations. Nat Rev Clin Oncol 13 (9): 581-8, 2016. [PUBMED Abstract]

Genes Associated With Breast and/or Gynecologic Cancer Susceptibility

Several genes are found to be associated with the development of breast and/or gynecologic cancers. These genes are categorized as high-penetrance, moderate-penetrance, and low-penetrance in this summary. The high- and moderate-penetrance genes are summarized in Table 3. Low-penetrance genes and loci primarily include polymorphisms that have been associated with cancer susceptibility. (Refer to the High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes, Moderate-Penetrance Genes Associated With Breast and/or Gynecologic Cancer, and Single Nucleotide Variant–Associated Cancer Risks sections of this summary for more information.)

Table 3. Genes Associated With Breast and/or Gynecologic Cancer Susceptibility
Cancer Susceptibilitya Moderate-Penetrance Genesb High-Penetrance Genes
aOther cancers may be associated with the genes in this table.
bOther genes discussed in the Moderate-Penetrance Genes Associated With Breast and/or Gynecologic Cancers section of this summary but for which penetrance is unknown include CASP8, TGFB1, Abraxas, and RECQL.
Breast cancer ATM, BRIP1, CHEK2, FANCD2, RAD51C BRCA1, BRCA2, CDH1, PALB2, PTEN, STK11, TP53
Ovarian cancer ATM, BRIP1, EPCAM, MLH1, MSH2, MSH6, RAD51C BRCA1, BRCA2
Endometrial cancer   EPCAM, MLH1, MSH2, MSH6, PMS2, PTEN

High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes

BRCA1 and BRCA2

Pathogenic variants in the BRCA1 and BRCA2 genes are associated with increased risks of breast, ovarian, prostate, pancreatic, and other cancers. For more information about BRCA1 and BRCA2 pathogenic variants and BRCA-associated cancer risks, see BRCA1 and BRCA2: Cancer Risks and Management.

Lynch Syndrome

Lynch syndrome is characterized by autosomal dominant inheritance of susceptibility to predominantly right-sided colon cancer, endometrial cancer, ovarian cancer, and other extracolonic cancers (including cancer of the renal pelvis, ureter, small bowel, and pancreas), multiple primary cancers, and a young age of onset of cancer.[1] The condition is caused by germline variants in the mismatch repair (MMR) genes, which are involved in repair of DNA mismatch variants.[2] The MLH1 and MSH2 genes are the most common susceptibility genes for Lynch syndrome, accounting for 80% to 90% of observed pathogenic variants,[3,4] followed by MSH6 and PMS2.[510] (Refer to the Lynch Syndrome section in Genetics of Colorectal Cancer for more information about this syndrome.)

After colorectal cancer, endometrial cancer is the second hallmark cancer of a family with Lynch syndrome. Even in the original Family G, described by Dr. Aldred Scott Warthin, numerous family members were noted to have extracolonic cancers including endometrial cancer. Although the first version of the Amsterdam criteria did not include endometrial cancer,[11] in 1999, the Amsterdam criteria were revised to include endometrial cancer as extracolonic tumors associated with Lynch syndrome to identify families at risk.[12] In addition, the Bethesda guidelines in 1997 (revised in 2004) did include endometrial and ovarian cancers as Lynch syndrome–related cancers to prompt tumor testing for Lynch syndrome.[13,14]

The lifetime risk of ovarian carcinoma in females with Lynch syndrome is estimated to be as high as 12%, and the reported relative risk (RR) of ovarian cancer has ranged from 3.6 to 13, based on families ascertained from high-risk clinics with known or suspected Lynch syndrome.[1520] There may be differences in ovarian cancer risk depending on the Lynch syndrome–associated pathogenic variant. In PMS2-associated Lynch syndrome, one study of 284 families was unable to identify an increased risk of ovarian cancer.[21] Another prospective registry of 3,119 Lynch syndrome–pathogenic variant carriers described the cumulative risk of ovarian cancer to range from 10% to 17% in MLH1, MSH2, and MSH6 carriers. In contrast, 0 of 67 women with a pathogenic variant in PMS2 developed ovarian cancer in 303 follow-up years.[22] Overall, there are too few cases of PMS2 pathogenic variant carriers to make definitive recommendations for ovarian cancer management. Characteristics of Lynch syndrome–associated ovarian cancers may include overrepresentation of the International Federation of Gynecology and Obstetrics stages I and II at diagnosis (reported as 81.5%), underrepresentation of serous subtypes (reported as 22.9%), and a better 10-year survival (reported as 80.6%) than reported both in population-based series and in carriers of BRCA pathogenic variants.[23,24]

The issue of breast cancer risk in Lynch syndrome has been controversial.

Retrospective studies have been inconsistent, but several have demonstrated microsatellite instability in a proportion of breast cancers from individuals with Lynch syndrome;[2528] one of these studies evaluated breast cancer risk in individuals with Lynch syndrome and found that it is not elevated.[28] However, the largest prospective study to date of 446 unaffected carriers of pathogenic variants from the Colon Cancer Family Registry [29] who were followed for up to 10 years reported an elevated SIR of 3.95 for breast cancer (95% CI, 1.59–8.13; P = .001).[29] The same group subsequently analyzed data on 764 carriers of MMR gene pathogenic variants with a prior diagnosis of colorectal cancer. Results showed that the 10-year risk of breast cancer following colorectal cancer was 2% (95% CI, 1%–4%) and that the SIR was 1.76 (95% CI, 1.07–2.59).[30] A series from the United Kingdom composed of clinically referred Lynch syndrome kindreds, with efforts to correct for ascertainment, showed a twofold increased risk of breast cancer in 157 MLH1 carriers but not in carriers of other MMR variants.[31] Results from a meta-analysis of breast cancer risk in Lynch syndrome among 15 studies with molecular tumor testing results revealed that 62 of 122 breast cancers (51%; 95% CI, 42%–60%) in MMR pathogenic variant carriers were MMR-deficient. In addition, breast cancer risk estimates among a total of 21 studies showed an increased risk of twofold to 18-fold in eight studies that compared MMR variant carriers with noncarriers, while 13 studies did not observe statistical evidence for an association of breast cancer risk with Lynch syndrome.[32]

A number of subsequent studies have suggested the presence of higher breast cancer risks than previously published,[3336] although this has not been consistently observed.[37] Through a study of 325 Canadian families with Lynch syndrome, primarily encompassing MLH1 and MSH2 carriers, the lifetime cumulative risk for breast cancer among MSH2 carriers was reported to be 22%.[33] Similarly, breast cancer risks were elevated in a study of 423 women with Lynch syndrome, with substantially higher risks among those with MSH6 and PMS2 pathogenic variants, compared with MLH1 and MSH2 pathogenic variants.[34] In fact, breast cancer risk to age 60 years was 37.7% for PMS2, 31.1% for MSH6, 16.1% for MSH2, and 15.5% for MLH1. These findings are consistent with another study of 528 patients with Lynch syndrome–associated pathogenic variants (including MLH1, MSH2, MSH6, PMS2, and EPCAM) in which PMS2 and MSH6 variants were much more frequent among patients with only breast cancer, compared with those with only colorectal cancer (P = 2.3 x 10-5).[35] Additional data to support an association of MSH6 with breast cancer were provided through a study of over 10,000 cancer patients across the United States who had genetic testing.[36] Findings indicated that MSH6 was associated with breast cancer with an odds ratio (OR) of 2.59 (95% CI, 1.35–5.44). Taken together, these studies highlight how the risk profile among patients with Lynch syndrome is continuing to evolve as more individuals are tested through multigene panel testing, with representation of larger numbers of individuals with PMS2 and MSH6 pathogenic variants compared with prior studies. In the absence of definitive risk estimates, individuals with Lynch syndrome are screened for breast cancer on the basis of family history.[38]

Li-Fraumeni Syndrome (LFS)

Breast cancer is also a component of the rare LFS, in which germline variants of the TP53 gene on chromosome 17p have been documented. Located on chromosome 17p, TP53 encodes a 53kd nuclear phosphoprotein that binds DNA sequences and functions as a negative regulator of cell growth and proliferation in the setting of DNA damage. It is also an active component of programmed cell death.[39] Inactivation of the TP53 gene or disruption of the protein product is thought to allow the persistence of damaged DNA and the possible development of malignant cells.[40,41] Widely used clinical diagnostic criteria for LFS were originally developed by Chompret et al. in 2001 (called the Chompret Criteria) [42] and revised in 2009 based on additional emerging data.[43]

LFS is characterized by premenopausal breast cancer in combination with childhood sarcoma, brain tumors, leukemia, and adrenocortical carcinoma.[40,44,45]

Germline variants in TP53 are thought to account for fewer than 1% of breast cancer cases.[46] TP53-associated breast cancer is often human epidermal growth factor receptor two (HER2/neu)–positive, in addition to being estrogen receptor (ER)–positive, progesterone receptor (PR)–positive, or both.[4749] Evidence also exists that patients treated for a TP53-related tumor with chemotherapy or radiation therapy may be at risk of a treatment-related second malignancy.

Historical criteria for defining LFS

The term LFS was used for the first time in 1982,[50] and the following criteria, which subsequently became the classical definition of the syndrome, were proposed by Li and Fraumeni in 1988 [51]:

  1. Sarcoma before age 45 years;
  2. A first-degree relative (FDR) with cancer before age 45 years; AND
  3. Another close relative (FDR or second-degree relative [SDR]) with either cancer before age 45 years or a sarcoma at any age.

Subsequently in 2001, Chompret et al. [42] systematically developed clinical criteria for recommending TP53 genetic testing, with the narrow LFS tumor spectrum defined as sarcoma, brain tumors, breast cancer, and adrenocortical carcinoma. The criteria were as follows:

  1. A proband affected by a narrow-spectrum tumor before age 36 years AND at least one FDR or SDR affected by a narrow-spectrum tumor (other than breast cancer if the proband is affected by breast cancer) before age 46 years or multiple primary tumors; OR
  2. A proband with multiple primary tumors, two of which belong to the narrow spectrum and the first of which occurred before age 36 years, irrespective of family history; OR
  3. A proband with adrenocortical carcinoma irrespective of the age at onset and family history.

These criteria were revised in 2009 [43] based on additional emerging data [41,52] as follows:

  1. A proband with a tumor belonging to the LFS tumor spectrum* before age 46 years AND at least one FDR or SDR with an LFS tumor (except breast cancer if proband has breast cancer) before age 56 years or with multiple tumors; OR
  2. A proband with multiple tumors (except multiple breast tumors), two of which belong to the LFS tumor spectrum and the first of which occurred before age 46 years; OR
  3. A patient with adrenocortical carcinoma or choroid plexus, irrespective of family history.

*The 2009 Chompret criteria defined the LFS tumor spectrum as including the following cancers: soft tissue sarcoma, osteosarcoma, brain tumor, premenopausal breast cancer, adrenocortical carcinoma, leukemia, and lung bronchoalveolar cancer.

In 2015, Bougeard et al. [45] revised the criteria based on data from 415 carriers of pathogenic variants, to include the presence of childhood anaplastic rhabdomyosarcoma and breast cancer before age 31 years as an indication for testing, similar to what is recommended for choroid plexus carcinoma and adrenocortical carcinoma. The criteria were revised as follows:

  1. A proband with a tumor belonging to the LFS tumor spectrum** before age 46 years AND at least one FDR or SDR with LFS tumor (except breast cancer if proband has breast cancer) before age 56 years or with multiple tumors; OR
  2. A proband with multiple tumors (except multiple breast tumors), two of which belong to the LFS tumor spectrum and the first of which occurred before age 46 years; OR
  3. A patient with adrenocortical carcinoma, choroid plexus tumor, or rhabdomyosarcoma of embryonal anaplastic subtype, irrespective of family history; OR
  4. Breast cancer before age 31 years.

**The 2015 Chompret criteria defined the LFS tumor spectrum as including the following cancers: premenopausal breast cancer, soft tissue sarcoma, osteosarcoma, central nervous system (CNS) tumor, and adrenocortical carcinoma.

Clinical characteristics of LFS

Germline TP53 pathogenic variants were identified in 17% (n = 91) of 525 samples submitted to City of Hope laboratories for clinical TP53 testing.[41] All families with a TP53 pathogenic variant had at least one family member with a sarcoma, breast cancer, brain cancer, or adrenocortical cancer (core cancers). In addition, all eight individuals with a choroid plexus tumor had a TP53 pathogenic variant, as did 14 of the 21 individuals with childhood adrenocortical cancer. In women aged 30 to 49 years who had breast cancer but no family history of other core cancers, no TP53 variants were found.

Subsequently, a large clinical series of patients from France who were tested primarily based on the 2009 version of the Chompret criteria [43] included 415 carriers of pathogenic variants from 214 families.[45] In this study, 43% of carriers had multiple malignancies, and the mean age at first tumor onset was 24.9 years. The childhood tumor spectrum was characterized by osteosarcomas, adrenocortical carcinomas, CNS tumors, and soft tissue sarcomas (present in 23%–30% collectively), whereas the adult tumor spectrum primarily encompassed breast cancer (79% of females) and soft tissue sarcomas (27% of carriers). The TP53 pathogenic variant detection rate was 6% among females younger than 31 years with breast cancer and no additional features suggestive of LFS. Evaluation of genotype-phenotype correlations indicated a gradient of clinical severity, with a significantly lower mean age at onset among those with dominant-negative missense variants (21.3 years), compared with those with all types of loss-of-function variants (28.5 years) or genomic rearrangements (35.8 years). With the exception of adrenocortical carcinoma, affected children mostly harbored dominant-negative missense pathogenic variants. Among 127 female carriers of pathogenic variants with breast cancer, 31% developed contralateral breast cancer (CBC). Receptor status information was available for 40 tumors, which indicated 55% were HER2-positive, and 37% were triple-positive (i.e., ER-positive, PR-positive, and HER2-positive). There was an exceptionally high rate of multiple malignancies (43%) among carriers of pathogenic variants, of which 83% were metachronous. Treatment records were available for 64 carriers who received radiation therapy for treatment of their first tumor; of these, 19 (30%) developed 26 secondary tumors within a radiation field, with a latency of 2 to 26 years (mean, 10.7 y).

Similarly, results of 286 TP53 pathogenic variant–positive individuals in the National Cancer Institute’s LFS Study indicated a cumulative cancer incidence of almost 100% by age 70 years for both males and females.[53] They reported substantial variations by sex, age, and cancer type. Specifically, cumulative cancer incidence reached 50% by age 31 years in females and age 46 years in males, although male risks were higher in childhood and late adulthood. Cumulative cancer incidence by sex for the top four cancers is included in Table 4. Of those with one cancer, 49% developed at least one additional cancer after a median of 10 years. Age-specific risks for developing first and second cancers were comparable.

Table 4. Cumulative Cancer Risks for the Most Common Li-Fraumeni Syndrome (LFS)-Associated Cancersa,b
  Cumulative Cancer Risk by Age 70 Years
aAdapted from Mai et al.[53]
bOther cancers, such as adrenocortical carcinoma, leukemia, and lung bronchoalveolar cancer, have been considered part of the LFS cancer spectrum.[43,45]
Cancer Type Females (%) Males (%)
Breast cancer 54
Soft tissue sarcoma 15 22
Brain cancer 6 19
Osteosarcoma 5 11

With the increasing use of multigene (panel) tests, it is important to recognize that pathogenic variants in TP53 are unexpectedly being identified in individuals without a family history characteristic of LFS.[54] The clinical significance of finding an isolated TP53 pathogenic variant in an individual or family who does not meet the Chompret criteria is uncertain. Consequently, it remains important to interpret cancer risks and determine optimal management strategies for individuals who are unexpectedly found to have a germline TP53 pathogenic variant, while considering their personal and family histories.

One cohort study evaluated 116 individuals with a germline TP53 pathogenic variant yearly at the National Institutes of Health Clinical Center using multimodality screening with and without gadolinium. Baseline screening identified a cancer in eight patients (6.9%) with a false-positive rate of 34.5% for MRI (n = 40).[55] Breast cancer screening with annual breast MRI with and without contrast is recommended.[56] Additional screening for other cancers has been studied and is evolving.[57,58]

PTEN Hamartoma Tumor Syndromes (Including Cowden Syndrome)

Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome (BRRS) are part of a spectrum of conditions known collectively as PTEN hamartoma tumor syndromes (PHTS). Approximately 85% of patients diagnosed with Cowden syndrome, and approximately 60% of patients with BRRS have an identifiable PTEN pathogenic variant.[59] In addition, PTEN pathogenic variants have been identified in patients with very diverse clinical phenotypes.[60] The term PHTS refers to any patient with a PTEN pathogenic variant, irrespective of clinical presentation.

PTEN functions as a dual-specificity phosphatase that removes phosphate groups from tyrosine, serine, and threonine. PTEN pathogenic variants are diverse and can present as nonsense, missense, frameshift, or splice-site variants. Approximately 40% of variants are found in exon 5, which encodes the phosphatase core motif; several recurrent pathogenic variants have been observed at this location.[61] Pathogenic variants in the 5’ end of PTEN or within the phosphatase core of PTEN tend to affect more organ systems.[62]

Operational criteria for the diagnosis of Cowden syndrome have been published and subsequently updated.[63,64] These include major, minor, and pathognomonic criteria that consist of certain mucocutaneous manifestations and adult-onset dysplastic gangliocytoma of the cerebellum (Lhermitte-Duclos disease). An updated set of criteria based on a systematic literature review has been suggested [65] and is currently utilized in the National Comprehensive Cancer Network (NCCN) guidelines.[66] Contrary to previous criteria, the authors concluded that there was insufficient evidence for any features to be classified as pathognomonic. Increased genetic testing (especially multigene panels) has identified individuals with germline PTEN pathogenic variants who do not meet diagnostic criteria for PHTS. Diagnostic criteria will need to be reconciled with these recently discovered phenotypes. Hence, it is unclear whether PHTS diagnoses should be based on clinical features or a positive PTEN genetic test result. The American College of Medical Genetics and Genomics (ACMG) suggests that referral for genetics consultation be considered for individuals with a personal history of or a first-degree relative with the following: 1) adult-onset Lhermitte-Duclos disease or 2) any three of the major or minor criteria that have been established for the diagnosis of Cowden syndrome.[67] Detailed recommendations, including diagnostic criteria for Cowden syndrome, can be found in the NCCN and ACMG guidelines.[66,67] Additionally, a predictive model that uses clinical criteria to estimate the probability of a PTEN pathogenic variant is available; a cost-effectiveness analysis suggests that germline PTEN testing is cost effective if the probability of a variant is greater than 10%.[68]

Over a 10-year period, the International Cowden Consortium (ICC) prospectively recruited a consecutive series of adult and pediatric patients meeting relaxed ICC criteria for PTEN testing in the United States, Europe, and Asia.[69] Most individuals did not meet the clinical criteria for a diagnosis of Cowden syndrome or BRRS. Of the 3,399 individuals recruited and tested, 295 probands (8.8%) and an additional 73 family members carried a germline PTEN pathogenic variant. The authors concluded that melanoma, kidney cancer, and colorectal cancer should be added to the spectrum of cancers associated with PTEN germline pathogenic variants (in addition to breast cancer, thyroid cancer, and endometrial cancer). This conclusion was based on the high melanoma, kidney, and colorectal cancer lifetime risk estimates found in individuals with PTEN pathogenic variants. A second study of approximately 100 patients with a germline PTEN pathogenic variant confirmed these findings and suggested a cumulative cancer risk of 85% by age 70 years.[70]

Although PTEN pathogenic variants, which are estimated to occur in 1 in 200,000 individuals,[63] account for a small fraction of hereditary breast cancer, the characterization of PTEN function will provide valuable insights into the signal pathway and the maintenance of normal cell physiology.[63,71] Lifetime breast cancer risk is estimated to be between 25% and 50% among women with Cowden syndrome.[72] Other studies have reported risks as high as 85%;[69,70,73,74] however, there are concerns regarding selection bias in these studies. As in other forms of hereditary breast cancer, onset is often at a young age and may be bilateral.[75] Lifetime risk of endometrial cancer is estimated to be between 19% and 28%, depending on the cohort studied, with an increased risk of premenopausal onset.[69,70,76] Because of the low prevalence of PTEN pathogenic variants in the population, the proportion of endometrial cancer attributable to Cowden syndrome is small. There are no data that link PTEN pathogenic variants to an increased risk of ovarian cancer. Skin manifestations include multiple trichilemmomas, oral fibromas and papillomas, and acral, palmar, and plantar keratoses. History or observation of the characteristic skin features raises a suspicion of Cowden syndrome. CNS manifestations include macrocephaly, developmental delay, and dysplastic gangliocytomas of the cerebellum.[77,78] (Refer to the PDQ summaries on Genetics of Colorectal Cancer and Genetics of Skin Cancer for more information about PTEN hamartoma tumor syndromes [including Cowden syndrome].)

Hereditary Diffuse Gastric Cancer (HDGC)

For more information about HDGC, see the following:

Peutz-Jeghers Syndrome (PJS)

PJS is an early-onset autosomal dominant disorder characterized by melanocytic macules on the lips, the perioral region, and buccal region; and multiple GI polyps, both hamartomatous and adenomatous.[7981] Germline pathogenic variants in the STK11 gene at chromosome 19p13.3 have been identified in the vast majority of PJS families.[8286] GI cancers (including colorectal adenocarcinoma, gastric adenocarcinoma, small intestinal adenocarcinoma, and pancreatic adenocarcinoma) are some of the most common malignancies seen in individuals with PJS. PJS also increases the risk of developing cancers in other organs. For example, the cumulative risks have been estimated to be 32% to 54% for breast cancer [8789] and 21% for ovarian cancer (mainly ovarian sex-cord tumors).[87] The risk of developing pancreatic cancer in individuals with PJS is estimated to be more than 100-fold higher than that of the general population (although these statistics are based on calculations from a small number of individuals with PJS).[87] A systematic review found a lifetime cumulative cancer risk, all sites combined, of up to 93% in patients with PJS.[87,90] Table 5 shows the cumulative risk of these tumors.

Females with PJS are also predisposed to the development of cervical adenoma malignum, a rare and very aggressive adenocarcinoma of the cervix.[91] In addition, females with PJS commonly develop benign ovarian sex-cord tumors with annular tubules, whereas males with PJS are predisposed to development of Sertoli-cell testicular tumors;[92] although neither of these two tumor types is malignant, they can cause symptoms related to increased estrogen production.

Although the risk of malignancy appears to be exceedingly high in individuals with PJS based on the published literature, the possibility that selection and referral biases have resulted in overestimates of these risks should be considered.

Table 5. Cumulative Cancer Risks in Peutz-Jeghers Syndrome Up To Specified Agea
Site Age (y) Cumulative Risk (%)b Reference(s)
GI = gastrointestinal.
aReprinted with permission from Macmillan Publishers Ltd: Gastroenterology [90], copyright 2010.
bAll cumulative risks were increased compared with the general population (P < .05), with the exception of cervix and testes.
cGI cancers include colorectal, small intestinal, gastric, esophageal, and pancreatic.
dWesterman et al.: GI cancer does not include pancreatic cancer.[93]
eDid not include adenoma malignum of the cervix or Sertoli cell tumors of the testes.
Any cancer 60–70 37–93 [8689,93,94]
Any GI cancerc,d 60–70 38–66 [88,89,93,94]
Gynecological cancer 60–70 13–18 [88,89]
Per origin      
Stomach 65 29 [87]
Small bowel 65 13 [87]
Colorectum 65 39 [87,88]
Pancreas 65–70 11–36 [87,88]
Lung 65–70 7–17 [8789]
Breast 60–70 32–54 [8789]
Uterus 65 9 [87]
Ovary 65 21 [87]
Cervixe 65 10 [87]
Testese 65 9 [87]

PJS is caused by pathogenic variants in the STK11 (also called LKB1) tumor suppressor gene located on chromosome 19p13.[83,84] Unlike the adenomas seen in familial adenomatous polyposis, the polyps arising in PJS are hamartomas. Studies of the hamartomatous polyps and cancers of PJS show allelic imbalance (LOH) consistent with the two-hit hypothesis, demonstrating that STK11 is a tumor suppressor gene.[95,96] However, heterozygous STK11 knockout mice develop hamartomas without inactivation of the remaining wild-type allele, suggesting that haploinsufficiency may be sufficient for initial tumor development in PJS.[97] Subsequently, the cancers that develop in STK11 +/- mice do show LOH;[98] indeed, compound mutant mice heterozygous for pathogenic variants in STK11 +/- and homozygous for pathogenic variants in TP53 -/- have accelerated development of both hamartomas and cancers.[99]

Germline variants of the STK11 gene represent a spectrum of nonsense, frameshift, and missense variants, and splice-site variants and large deletions.[82,88]

Approximately 85% of variants are localized to regions of the kinase domain of the expressed protein. No strong genotype-phenotype correlations have been identified.[88] Up to 30% of variants are large deletions involving one or more exons of STK11, underscoring the importance of deletion analysis in suspected cases of PJS.[82]

STK11 has been unequivocally demonstrated to cause PJS. Although earlier estimates using direct DNA sequencing showed a 50% pathogenic variant detection rate in STK11, studies adding techniques to detect large deletions have found pathogenic variants in up to 94% of individuals meeting clinical criteria for PJS.[82,90,100] Given the results of these studies, it is unlikely that other major genes cause PJS.

Clinical management

NCCN and the U.S. Multi-Society Task Force (USMSTF) on Colorectal Cancer recommend upper endoscopy and high-quality colonoscopy with polypectomy beginning between the ages of 8 to 10 years.[101,102]

Management of small bowel hamartomas is important because patients with PJS have risks of bleeding, intussusception, and malignancy. In PJS, cumulative lifetime risk of small bowel cancer is approximately 13%. NCCN guidelines recommend computed tomography enterography (CTE), magnetic resonance enterography (MRE), or video capsule endoscopy (VCE) beginning between the ages of 8 to 10 years for small bowel surveillance in PJS.[101] These studies are repeated at intervals that are based on study findings up to age 18 years. Afterwards, screening is repeated every 2 to 3 years. Few studies have directly compared yields of these different small bowel cancer surveillance tools. One Australian study of 20 patients with PJS undergoing paired VCE and MRE found that more small bowel polyps (>1 cm) were detected by VCE than MRE.[103] However, balloon enteroscopy detected more small bowel polyps (>1 cm) than both VCE and MRE. NCCN guidelines also include recommendations for other PJS manifestations.

PALB2

Pathogenic variants in the PALB2 gene are associated with increased risks of breast, pancreatic, and ovarian cancers. For more information about PALB2 cancer risks and management options, see PALB2: Cancer Risks and Management.

De Novo Pathogenic Variant Rate

Until the 1990s, the diagnosis of genetically inherited breast and ovarian cancer syndromes was based on clinical manifestations and family history. Now that some of the genes involved in these syndromes have been identified, a few studies have attempted to estimate the spontaneous pathogenic variant rate (de novo pathogenic variant rate) in these populations. Interestingly, PJS, PTEN hamartoma syndromes, and LFS are all thought to have high rates of spontaneous pathogenic variants, in the 10% to 30% range,[104107] while estimates of de novo pathogenic variants in the BRCA genes are thought to be low, primarily on the basis of the few case reports published.[108116] Additionally, there has been only one case series of breast cancer patients who were tested for BRCA pathogenic variants in which a de novo variant was identified. Specifically, in this study of 193 patients with sporadic breast cancer, 17 pathogenic variants were detected, one of which was confirmed to be a de novo pathogenic variant.[108] As such, the de novo pathogenic variant rate appears to be low and fall into the 5% or less range, based on the limited studies performed.[108116] Similarly, estimates of de novo pathogenic variants in the MMR genes associated with Lynch syndrome are thought to be low, in the 0.9% to 5% range.[117119] However, these estimates of spontaneous pathogenic variant rates in the BRCA genes and Lynch syndrome genes seem to overlap with the estimates of nonpaternity rates in various populations (0.6%–3.3%),[120122] making the de novo pathogenic variant rate for these genes relatively low.

References
  1. Vasen HF: Clinical description of the Lynch syndrome [hereditary nonpolyposis colorectal cancer (HNPCC)]. Fam Cancer 4 (3): 219-25, 2005. [PUBMED Abstract]
  2. Jascur T, Boland CR: Structure and function of the components of the human DNA mismatch repair system. Int J Cancer 119 (9): 2030-5, 2006. [PUBMED Abstract]
  3. Papadopoulos N, Nicolaides NC, Wei YF, et al.: Mutation of a mutL homolog in hereditary colon cancer. Science 263 (5153): 1625-9, 1994. [PUBMED Abstract]
  4. Peltomäki P, Vasen HF: Mutations predisposing to hereditary nonpolyposis colorectal cancer: database and results of a collaborative study. The International Collaborative Group on Hereditary Nonpolyposis Colorectal Cancer. Gastroenterology 113 (4): 1146-58, 1997. [PUBMED Abstract]
  5. Akiyama Y, Sato H, Yamada T, et al.: Germ-line mutation of the hMSH6/GTBP gene in an atypical hereditary nonpolyposis colorectal cancer kindred. Cancer Res 57 (18): 3920-3, 1997. [PUBMED Abstract]
  6. Miyaki M, Konishi M, Tanaka K, et al.: Germline mutation of MSH6 as the cause of hereditary nonpolyposis colorectal cancer. Nat Genet 17 (3): 271-2, 1997. [PUBMED Abstract]
  7. Huang J, Kuismanen SA, Liu T, et al.: MSH6 and MSH3 are rarely involved in genetic predisposition to nonpolypotic colon cancer. Cancer Res 61 (4): 1619-23, 2001. [PUBMED Abstract]
  8. Nicolaides NC, Papadopoulos N, Liu B, et al.: Mutations of two PMS homologues in hereditary nonpolyposis colon cancer. Nature 371 (6492): 75-80, 1994. [PUBMED Abstract]
  9. Hendriks YM, Jagmohan-Changur S, van der Klift HM, et al.: Heterozygous mutations in PMS2 cause hereditary nonpolyposis colorectal carcinoma (Lynch syndrome). Gastroenterology 130 (2): 312-22, 2006. [PUBMED Abstract]
  10. Worthley DL, Walsh MD, Barker M, et al.: Familial mutations in PMS2 can cause autosomal dominant hereditary nonpolyposis colorectal cancer. Gastroenterology 128 (5): 1431-6, 2005. [PUBMED Abstract]
  11. Vasen HF, Mecklin JP, Khan PM, et al.: The International Collaborative Group on Hereditary Non-Polyposis Colorectal Cancer (ICG-HNPCC). Dis Colon Rectum 34 (5): 424-5, 1991. [PUBMED Abstract]
  12. Vasen HF, Watson P, Mecklin JP, et al.: New clinical criteria for hereditary nonpolyposis colorectal cancer (HNPCC, Lynch syndrome) proposed by the International Collaborative group on HNPCC. Gastroenterology 116 (6): 1453-6, 1999. [PUBMED Abstract]
  13. Rodriguez-Bigas MA, Boland CR, Hamilton SR, et al.: A National Cancer Institute Workshop on Hereditary Nonpolyposis Colorectal Cancer Syndrome: meeting highlights and Bethesda guidelines. J Natl Cancer Inst 89 (23): 1758-62, 1997. [PUBMED Abstract]
  14. Umar A, Boland CR, Terdiman JP, et al.: Revised Bethesda Guidelines for hereditary nonpolyposis colorectal cancer (Lynch syndrome) and microsatellite instability. J Natl Cancer Inst 96 (4): 261-8, 2004. [PUBMED Abstract]
  15. Watson P, Lynch HT: Cancer risk in mismatch repair gene mutation carriers. Fam Cancer 1 (1): 57-60, 2001. [PUBMED Abstract]
  16. Vasen HF, Wijnen JT, Menko FH, et al.: Cancer risk in families with hereditary nonpolyposis colorectal cancer diagnosed by mutation analysis. Gastroenterology 110 (4): 1020-7, 1996. [PUBMED Abstract]
  17. Aarnio M, Mecklin JP, Aaltonen LA, et al.: Life-time risk of different cancers in hereditary non-polyposis colorectal cancer (HNPCC) syndrome. Int J Cancer 64 (6): 430-3, 1995. [PUBMED Abstract]
  18. Watson P, Lynch HT: Extracolonic cancer in hereditary nonpolyposis colorectal cancer. Cancer 71 (3): 677-85, 1993. [PUBMED Abstract]
  19. Brown GJ, St John DJ, Macrae FA, et al.: Cancer risk in young women at risk of hereditary nonpolyposis colorectal cancer: implications for gynecologic surveillance. Gynecol Oncol 80 (3): 346-9, 2001. [PUBMED Abstract]
  20. Aarnio M, Sankila R, Pukkala E, et al.: Cancer risk in mutation carriers of DNA-mismatch-repair genes. Int J Cancer 81 (2): 214-8, 1999. [PUBMED Abstract]
  21. Ten Broeke SW, van der Klift HM, Tops CMJ, et al.: Cancer Risks for PMS2-Associated Lynch Syndrome. J Clin Oncol 36 (29): 2961-2968, 2018. [PUBMED Abstract]
  22. Møller P, Seppälä TT, Bernstein I, et al.: Cancer risk and survival in path_MMR carriers by gene and gender up to 75 years of age: a report from the Prospective Lynch Syndrome Database. Gut 67 (7): 1306-1316, 2018. [PUBMED Abstract]
  23. Grindedal EM, Renkonen-Sinisalo L, Vasen H, et al.: Survival in women with MMR mutations and ovarian cancer: a multicentre study in Lynch syndrome kindreds. J Med Genet 47 (2): 99-102, 2010. [PUBMED Abstract]
  24. Pal T, Permuth-Wey J, Sellers TA: A review of the clinical relevance of mismatch-repair deficiency in ovarian cancer. Cancer 113 (4): 733-42, 2008. [PUBMED Abstract]
  25. Jensen UB, Sunde L, Timshel S, et al.: Mismatch repair defective breast cancer in the hereditary nonpolyposis colorectal cancer syndrome. Breast Cancer Res Treat 120 (3): 777-82, 2010. [PUBMED Abstract]
  26. Shanley S, Fung C, Milliken J, et al.: Breast cancer immunohistochemistry can be useful in triage of some HNPCC families. Fam Cancer 8 (3): 251-5, 2009. [PUBMED Abstract]
  27. Walsh MD, Buchanan DD, Cummings MC, et al.: Lynch syndrome-associated breast cancers: clinicopathologic characteristics of a case series from the colon cancer family registry. Clin Cancer Res 16 (7): 2214-24, 2010. [PUBMED Abstract]
  28. Buerki N, Gautier L, Kovac M, et al.: Evidence for breast cancer as an integral part of Lynch syndrome. Genes Chromosomes Cancer 51 (1): 83-91, 2012. [PUBMED Abstract]
  29. Win AK, Young JP, Lindor NM, et al.: Colorectal and other cancer risks for carriers and noncarriers from families with a DNA mismatch repair gene mutation: a prospective cohort study. J Clin Oncol 30 (9): 958-64, 2012. [PUBMED Abstract]
  30. Win AK, Lindor NM, Young JP, et al.: Risks of primary extracolonic cancers following colorectal cancer in lynch syndrome. J Natl Cancer Inst 104 (18): 1363-72, 2012. [PUBMED Abstract]
  31. Harkness EF, Barrow E, Newton K, et al.: Lynch syndrome caused by MLH1 mutations is associated with an increased risk of breast cancer: a cohort study. J Med Genet 52 (8): 553-6, 2015. [PUBMED Abstract]
  32. Win AK, Lindor NM, Jenkins MA: Risk of breast cancer in Lynch syndrome: a systematic review. Breast Cancer Res 15 (2): R27, 2013. [PUBMED Abstract]
  33. Goldberg M, Bell K, Aronson M, et al.: Association between the Lynch syndrome gene MSH2 and breast cancer susceptibility in a Canadian familial cancer registry. J Med Genet 54 (11): 742-746, 2017. [PUBMED Abstract]
  34. Roberts ME, Jackson SA, Susswein LR, et al.: MSH6 and PMS2 germ-line pathogenic variants implicated in Lynch syndrome are associated with breast cancer. Genet Med 20 (10): 1167-1174, 2018. [PUBMED Abstract]
  35. Espenschied CR, LaDuca H, Li S, et al.: Multigene Panel Testing Provides a New Perspective on Lynch Syndrome. J Clin Oncol 35 (22): 2568-2575, 2017. [PUBMED Abstract]
  36. Lu HM, Li S, Black MH, et al.: Association of Breast and Ovarian Cancers With Predisposition Genes Identified by Large-Scale Sequencing. JAMA Oncol 5 (1): 51-57, 2019. [PUBMED Abstract]
  37. Latham A, Srinivasan P, Kemel Y, et al.: Microsatellite Instability Is Associated With the Presence of Lynch Syndrome Pan-Cancer. J Clin Oncol 37 (4): 286-295, 2019. [PUBMED Abstract]
  38. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Version 1.2021. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2020. Available online with free registration. Last accessed May 24, 2024.
  39. Harris CC, Hollstein M: Clinical implications of the p53 tumor-suppressor gene. N Engl J Med 329 (18): 1318-27, 1993. [PUBMED Abstract]
  40. Malkin D: The Li-Fraumeni syndrome. Cancer: Principles and Practice of Oncology Updates 7(7): 1-14, 1993.
  41. Gonzalez KD, Noltner KA, Buzin CH, et al.: Beyond Li Fraumeni Syndrome: clinical characteristics of families with p53 germline mutations. J Clin Oncol 27 (8): 1250-6, 2009. [PUBMED Abstract]
  42. Chompret A, Abel A, Stoppa-Lyonnet D, et al.: Sensitivity and predictive value of criteria for p53 germline mutation screening. J Med Genet 38 (1): 43-7, 2001. [PUBMED Abstract]
  43. Tinat J, Bougeard G, Baert-Desurmont S, et al.: 2009 version of the Chompret criteria for Li Fraumeni syndrome. J Clin Oncol 27 (26): e108-9; author reply e110, 2009. [PUBMED Abstract]
  44. Bottomley RH, Condit PT: Cancer families. Cancer Bull 20: 22-24, 1968.
  45. Bougeard G, Renaux-Petel M, Flaman JM, et al.: Revisiting Li-Fraumeni Syndrome From TP53 Mutation Carriers. J Clin Oncol 33 (21): 2345-52, 2015. [PUBMED Abstract]
  46. Sidransky D, Tokino T, Helzlsouer K, et al.: Inherited p53 gene mutations in breast cancer. Cancer Res 52 (10): 2984-6, 1992. [PUBMED Abstract]
  47. Wilson JR, Bateman AC, Hanson H, et al.: A novel HER2-positive breast cancer phenotype arising from germline TP53 mutations. J Med Genet 47 (11): 771-4, 2010. [PUBMED Abstract]
  48. Melhem-Bertrandt A, Bojadzieva J, Ready KJ, et al.: Early onset HER2-positive breast cancer is associated with germline TP53 mutations. Cancer 118 (4): 908-13, 2012. [PUBMED Abstract]
  49. Masciari S, Dillon DA, Rath M, et al.: Breast cancer phenotype in women with TP53 germline mutations: a Li-Fraumeni syndrome consortium effort. Breast Cancer Res Treat 133 (3): 1125-30, 2012. [PUBMED Abstract]
  50. Pearson AD, Craft AW, Ratcliffe JM, et al.: Two families with the Li-Fraumeni cancer family syndrome. J Med Genet 19 (5): 362-5, 1982. [PUBMED Abstract]
  51. Li FP, Fraumeni JF, Mulvihill JJ, et al.: A cancer family syndrome in twenty-four kindreds. Cancer Res 48 (18): 5358-62, 1988. [PUBMED Abstract]
  52. Bougeard G, Sesboüé R, Baert-Desurmont S, et al.: Molecular basis of the Li-Fraumeni syndrome: an update from the French LFS families. J Med Genet 45 (8): 535-8, 2008. [PUBMED Abstract]
  53. Mai PL, Best AF, Peters JA, et al.: Risks of first and subsequent cancers among TP53 mutation carriers in the National Cancer Institute Li-Fraumeni syndrome cohort. Cancer 122 (23): 3673-3681, 2016. [PUBMED Abstract]
  54. Kamihara J, Rana HQ, Garber JE: Germline TP53 mutations and the changing landscape of Li-Fraumeni syndrome. Hum Mutat 35 (6): 654-62, 2014. [PUBMED Abstract]
  55. Mai PL, Khincha PP, Loud JT, et al.: Prevalence of Cancer at Baseline Screening in the National Cancer Institute Li-Fraumeni Syndrome Cohort. JAMA Oncol 3 (12): 1640-1645, 2017. [PUBMED Abstract]
  56. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Version 2.2024. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2023. Available online with free registration. Last accessed September 18, 2024.
  57. Villani A, Tabori U, Schiffman J, et al.: Biochemical and imaging surveillance in germline TP53 mutation carriers with Li-Fraumeni syndrome: a prospective observational study. Lancet Oncol 12 (6): 559-67, 2011. [PUBMED Abstract]
  58. Masciari S, Van den Abbeele AD, Diller LR, et al.: F18-fluorodeoxyglucose-positron emission tomography/computed tomography screening in Li-Fraumeni syndrome. JAMA 299 (11): 1315-9, 2008. [PUBMED Abstract]
  59. Zhou XP, Waite KA, Pilarski R, et al.: Germline PTEN promoter mutations and deletions in Cowden/Bannayan-Riley-Ruvalcaba syndrome result in aberrant PTEN protein and dysregulation of the phosphoinositol-3-kinase/Akt pathway. Am J Hum Genet 73 (2): 404-11, 2003. [PUBMED Abstract]
  60. Mester J, Eng C: When overgrowth bumps into cancer: the PTEN-opathies. Am J Med Genet C Semin Med Genet 163C (2): 114-21, 2013. [PUBMED Abstract]
  61. Eng C: PTEN: one gene, many syndromes. Hum Mutat 22 (3): 183-98, 2003. [PUBMED Abstract]
  62. Marsh DJ, Kum JB, Lunetta KL, et al.: PTEN mutation spectrum and genotype-phenotype correlations in Bannayan-Riley-Ruvalcaba syndrome suggest a single entity with Cowden syndrome. Hum Mol Genet 8 (8): 1461-72, 1999. [PUBMED Abstract]
  63. Pilarski R, Eng C: Will the real Cowden syndrome please stand up (again)? Expanding mutational and clinical spectra of the PTEN hamartoma tumour syndrome. J Med Genet 41 (5): 323-6, 2004. [PUBMED Abstract]
  64. Eng C: PTEN Hamartoma Tumor Syndrome (PHTS). In: Adam MP, Feldman J, Mirzaa GM, et al., eds.: GeneReviews. University of Washington, Seattle, 1993-2024, pp. Available online. Last accessed May 8, 2025.
  65. Pilarski R, Burt R, Kohlman W, et al.: Cowden syndrome and the PTEN hamartoma tumor syndrome: systematic review and revised diagnostic criteria. J Natl Cancer Inst 105 (21): 1607-16, 2013. [PUBMED Abstract]
  66. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Version 2.2022. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2022. Available online with free registration. Last accessed May 24, 2024.
  67. Hampel H, Bennett RL, Buchanan A, et al.: A practice guideline from the American College of Medical Genetics and Genomics and the National Society of Genetic Counselors: referral indications for cancer predisposition assessment. Genet Med 17 (1): 70-87, 2015. [PUBMED Abstract]
  68. Ngeow J, Liu C, Zhou K, et al.: Detecting Germline PTEN Mutations Among At-Risk Patients With Cancer: An Age- and Sex-Specific Cost-Effectiveness Analysis. J Clin Oncol 33 (23): 2537-44, 2015. [PUBMED Abstract]
  69. Tan MH, Mester JL, Ngeow J, et al.: Lifetime cancer risks in individuals with germline PTEN mutations. Clin Cancer Res 18 (2): 400-7, 2012. [PUBMED Abstract]
  70. Bubien V, Bonnet F, Brouste V, et al.: High cumulative risks of cancer in patients with PTEN hamartoma tumour syndrome. J Med Genet 50 (4): 255-63, 2013. [PUBMED Abstract]
  71. Myers MP, Tonks NK: PTEN: sometimes taking it off can be better than putting it on. Am J Hum Genet 61 (6): 1234-8, 1997. [PUBMED Abstract]
  72. Hobert JA, Eng C: PTEN hamartoma tumor syndrome: an overview. Genet Med 11 (10): 687-94, 2009. [PUBMED Abstract]
  73. Nieuwenhuis MH, Kets CM, Murphy-Ryan M, et al.: Cancer risk and genotype-phenotype correlations in PTEN hamartoma tumor syndrome. Fam Cancer 13 (1): 57-63, 2014. [PUBMED Abstract]
  74. Ngeow J, Stanuch K, Mester JL, et al.: Second malignant neoplasms in patients with Cowden syndrome with underlying germline PTEN mutations. J Clin Oncol 32 (17): 1818-24, 2014. [PUBMED Abstract]
  75. Olopade OI, Weber BL: Breast cancer genetics: toward molecular characterization of individuals at increased risk for breast cancer: part I. Cancer: Principles and Practice of Oncology Updates 12 (10): 1-12, 1998.
  76. Pilarski R, Stephens JA, Noss R, et al.: Predicting PTEN mutations: an evaluation of Cowden syndrome and Bannayan-Riley-Ruvalcaba syndrome clinical features. J Med Genet 48 (8): 505-12, 2011. [PUBMED Abstract]
  77. Nelen MR, Padberg GW, Peeters EA, et al.: Localization of the gene for Cowden disease to chromosome 10q22-23. Nat Genet 13 (1): 114-6, 1996. [PUBMED Abstract]
  78. Lachlan KL, Lucassen AM, Bunyan D, et al.: Cowden syndrome and Bannayan Riley Ruvalcaba syndrome represent one condition with variable expression and age-related penetrance: results of a clinical study of PTEN mutation carriers. J Med Genet 44 (9): 579-85, 2007. [PUBMED Abstract]
  79. Peutz JL: Very remarkable case of familial polyposis of mucous membrane of intestinal tract and nasopharynx accompanied by peculiar pigmentations of skin and mucous membrane. Ned Tijdschr Geneeskd 10: 134-146, 1921.
  80. Jeghers H, McKusick VA, Katz KH: Generalized intestinal polyposis and melanin spots of the oral mucosa, lips and digits; a syndrome of diagnostic significance. N Engl J Med 241 (26): 1031-6, 1949. [PUBMED Abstract]
  81. Spigelman AD, Murday V, Phillips RK: Cancer and the Peutz-Jeghers syndrome. Gut 30 (11): 1588-90, 1989. [PUBMED Abstract]
  82. Aretz S, Stienen D, Uhlhaas S, et al.: High proportion of large genomic STK11 deletions in Peutz-Jeghers syndrome. Hum Mutat 26 (6): 513-9, 2005. [PUBMED Abstract]
  83. Hemminki A, Markie D, Tomlinson I, et al.: A serine/threonine kinase gene defective in Peutz-Jeghers syndrome. Nature 391 (6663): 184-7, 1998. [PUBMED Abstract]
  84. Jenne DE, Reimann H, Nezu J, et al.: Peutz-Jeghers syndrome is caused by mutations in a novel serine threonine kinase. Nat Genet 18 (1): 38-43, 1998. [PUBMED Abstract]
  85. Boudeau J, Kieloch A, Alessi DR, et al.: Functional analysis of LKB1/STK11 mutants and two aberrant isoforms found in Peutz-Jeghers Syndrome patients. Hum Mutat 21 (2): 172, 2003. [PUBMED Abstract]
  86. Lim W, Hearle N, Shah B, et al.: Further observations on LKB1/STK11 status and cancer risk in Peutz-Jeghers syndrome. Br J Cancer 89 (2): 308-13, 2003. [PUBMED Abstract]
  87. Giardiello FM, Brensinger JD, Tersmette AC, et al.: Very high risk of cancer in familial Peutz-Jeghers syndrome. Gastroenterology 119 (6): 1447-53, 2000. [PUBMED Abstract]
  88. Hearle N, Schumacher V, Menko FH, et al.: Frequency and spectrum of cancers in the Peutz-Jeghers syndrome. Clin Cancer Res 12 (10): 3209-15, 2006. [PUBMED Abstract]
  89. Lim W, Olschwang S, Keller JJ, et al.: Relative frequency and morphology of cancers in STK11 mutation carriers. Gastroenterology 126 (7): 1788-94, 2004. [PUBMED Abstract]
  90. van Lier MG, Wagner A, Mathus-Vliegen EM, et al.: High cancer risk in Peutz-Jeghers syndrome: a systematic review and surveillance recommendations. Am J Gastroenterol 105 (6): 1258-64; author reply 1265, 2010. [PUBMED Abstract]
  91. Srivatsa PJ, Keeney GL, Podratz KC: Disseminated cervical adenoma malignum and bilateral ovarian sex cord tumors with annular tubules associated with Peutz-Jeghers syndrome. Gynecol Oncol 53 (2): 256-64, 1994. [PUBMED Abstract]
  92. Scully RE: Sex cord tumor with annular tubules a distinctive ovarian tumor of the Peutz-Jeghers syndrome. Cancer 25 (5): 1107-21, 1970. [PUBMED Abstract]
  93. Westerman AM, Entius MM, de Baar E, et al.: Peutz-Jeghers syndrome: 78-year follow-up of the original family. Lancet 353 (9160): 1211-5, 1999. [PUBMED Abstract]
  94. Mehenni H, Resta N, Park JG, et al.: Cancer risks in LKB1 germline mutation carriers. Gut 55 (7): 984-90, 2006. [PUBMED Abstract]
  95. Gruber SB, Entius MM, Petersen GM, et al.: Pathogenesis of adenocarcinoma in Peutz-Jeghers syndrome. Cancer Res 58 (23): 5267-70, 1998. [PUBMED Abstract]
  96. Wang ZJ, Ellis I, Zauber P, et al.: Allelic imbalance at the LKB1 (STK11) locus in tumours from patients with Peutz-Jeghers’ syndrome provides evidence for a hamartoma-(adenoma)-carcinoma sequence. J Pathol 188 (1): 9-13, 1999. [PUBMED Abstract]
  97. Miyoshi H, Nakau M, Ishikawa TO, et al.: Gastrointestinal hamartomatous polyposis in Lkb1 heterozygous knockout mice. Cancer Res 62 (8): 2261-6, 2002. [PUBMED Abstract]
  98. Nakau M, Miyoshi H, Seldin MF, et al.: Hepatocellular carcinoma caused by loss of heterozygosity in Lkb1 gene knockout mice. Cancer Res 62 (16): 4549-53, 2002. [PUBMED Abstract]
  99. Takeda H, Miyoshi H, Kojima Y, et al.: Accelerated onsets of gastric hamartomas and hepatic adenomas/carcinomas in Lkb1+/-p53-/- compound mutant mice. Oncogene 25 (12): 1816-20, 2006. [PUBMED Abstract]
  100. Amos CI, Keitheri-Cheteri MB, Sabripour M, et al.: Genotype-phenotype correlations in Peutz-Jeghers syndrome. J Med Genet 41 (5): 327-33, 2004. [PUBMED Abstract]
  101. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Colorectal. Version 2.2023 . Plymouth Meeting, PA: National Comprehensive Cancer Network, 2023. Available with free registration. Last accessed March 13, 2024.
  102. Boland CR, Idos GE, Durno C, et al.: Diagnosis and Management of Cancer Risk in the Gastrointestinal Hamartomatous Polyposis Syndromes: Recommendations From the US Multi-Society Task Force on Colorectal Cancer. Gastroenterology 162 (7): 2063-2085, 2022. [PUBMED Abstract]
  103. Urquhart P, Grimpen F, Lim GJ, et al.: Capsule endoscopy versus magnetic resonance enterography for the detection of small bowel polyps in Peutz-Jeghers syndrome. Fam Cancer 13 (2): 249-55, 2014. [PUBMED Abstract]
  104. Westerman AM, Entius MM, Boor PP, et al.: Novel mutations in the LKB1/STK11 gene in Dutch Peutz-Jeghers families. Hum Mutat 13 (6): 476-81, 1999. [PUBMED Abstract]
  105. Schreibman IR, Baker M, Amos C, et al.: The hamartomatous polyposis syndromes: a clinical and molecular review. Am J Gastroenterol 100 (2): 476-90, 2005. [PUBMED Abstract]
  106. Gonzalez KD, Buzin CH, Noltner KA, et al.: High frequency of de novo mutations in Li-Fraumeni syndrome. J Med Genet 46 (10): 689-93, 2009. [PUBMED Abstract]
  107. Bendig I, Mohr N, Kramer F, et al.: Identification of novel TP53 mutations in familial and sporadic cancer cases of German and Swiss origin. Cancer Genet Cytogenet 154 (1): 22-6, 2004. [PUBMED Abstract]
  108. De Leeneer K, Coene I, Crombez B, et al.: Prevalence of BRCA1/2 mutations in sporadic breast/ovarian cancer patients and identification of a novel de novo BRCA1 mutation in a patient diagnosed with late onset breast and ovarian cancer: implications for genetic testing. Breast Cancer Res Treat 132 (1): 87-95, 2012. [PUBMED Abstract]
  109. Diez O, Gutiérrez-Enríquez S, Mediano C, et al.: A novel de novo BRCA2 mutation of paternal origin identified in a Spanish woman with early onset bilateral breast cancer. Breast Cancer Res Treat 121 (1): 221-5, 2010. [PUBMED Abstract]
  110. Garcia-Casado Z, Romero I, Fernandez-Serra A, et al.: A de novo complete BRCA1 gene deletion identified in a Spanish woman with early bilateral breast cancer. BMC Med Genet 12: 134, 2011. [PUBMED Abstract]
  111. Hansen TV, Bisgaard ML, Jønson L, et al.: Novel de novo BRCA2 mutation in a patient with a family history of breast cancer. BMC Med Genet 9: 58, 2008. [PUBMED Abstract]
  112. Kwong A, Ng EK, Tang EY, et al.: A novel de novo BRCA1 mutation in a Chinese woman with early onset breast cancer. Fam Cancer 10 (2): 233-7, 2011. [PUBMED Abstract]
  113. Marshall M, Solomon S, Lawrence Wickerham D: Case report: de novo BRCA2 gene mutation in a 35-year-old woman with breast cancer. Clin Genet 76 (5): 427-30, 2009. [PUBMED Abstract]
  114. Robson M, Scheuer L, Nafa K, et al.: Unique de novo mutation of BRCA2 in a woman with early onset breast cancer. J Med Genet 39 (2): 126-8, 2002. [PUBMED Abstract]
  115. Tesoriero A, Andersen C, Southey M, et al.: De novo BRCA1 mutation in a patient with breast cancer and an inherited BRCA2 mutation. Am J Hum Genet 65 (2): 567-9, 1999. [PUBMED Abstract]
  116. van der Luijt RB, van Zon PH, Jansen RP, et al.: De novo recurrent germline mutation of the BRCA2 gene in a patient with early onset breast cancer. J Med Genet 38 (2): 102-5, 2001. [PUBMED Abstract]
  117. Morak M, Laner A, Scholz M, et al.: Report on de-novo mutation in the MSH2 gene as a rare event in hereditary nonpolyposis colorectal cancer. Eur J Gastroenterol Hepatol 20 (11): 1101-5, 2008. [PUBMED Abstract]
  118. Plasilova M, Zhang J, Okhowat R, et al.: A de novo MLH1 germ line mutation in a 31-year-old colorectal cancer patient. Genes Chromosomes Cancer 45 (12): 1106-10, 2006. [PUBMED Abstract]
  119. Win AK, Jenkins MA, Buchanan DD, et al.: Determining the frequency of de novo germline mutations in DNA mismatch repair genes. J Med Genet 48 (8): 530-4, 2011. [PUBMED Abstract]
  120. Anderson KG: How well does paternity confidence match actual paternity? Evidence from worldwide nonpaternity rates. Curr Anthropol 47 (3): 513-20, 2006. Also available online. Last accessed May 13, 2025.
  121. Sasse G, Müller H, Chakraborty R, et al.: Estimating the frequency of nonpaternity in Switzerland. Hum Hered 44 (6): 337-43, 1994 Nov-Dec. [PUBMED Abstract]
  122. Voracek M, Haubner T, Fisher ML: Recent decline in nonpaternity rates: a cross-temporal meta-analysis. Psychol Rep 103 (3): 799-811, 2008. [PUBMED Abstract]

Moderate-Penetrance Genes Associated With Breast and/or Gynecologic Cancers

Background

Pathogenic variants in BRCA1, BRCA2, PALB2, and the genes involved in other rare syndromes discussed in the High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes section of this summary account for less than 25% of the familial risk of breast cancer.[1] Despite intensive genetic linkage studies, there do not appear to be other high-penetrance genes that account for a significant fraction of the remaining multiple-case familial clusters.[2] However, several moderate-penetrance genes associated with breast and/or gynecologic cancers have been identified. Genes such as CHEK2 and ATM are associated with a 20% or higher lifetime risk of breast cancer;[3,4] similarly, genes such as RAD51C, RAD51D, and BRIP1 are associated with a 5% to 10% risk of ovarian cancer.[5,6] Many of these genes are now included on multigene panels, although the clinical actionability of these findings remains uncertain and under investigation.

Breast and Gynecologic Cancer Susceptibility Genes Identified Through Candidate Gene Approaches

There is a very large literature of genetic epidemiology studies describing associations between various loci and breast cancer risk. Many of these studies suffer from significant design limitations. Perhaps as a consequence, most reported associations do not replicate in follow-up studies. This section is not a comprehensive review of all reported associations. This section describes associations that are believed by the editors to be clinically valid, in that they have been described in several studies or are supported by robust meta-analyses. The clinical utility of these observations remains unclear, however, as the risks associated with these variations usually fall below a threshold that would justify a clinical response.

Fanconi anemia genes

Fanconi anemia (FA) is a rare, inherited condition characterized by bone marrow failure, increased risk of malignancy, and physical abnormalities. To date, 16 FA-related genes, including BRCA1 and BRCA2, have been identified (as outlined in Table 6). FA is mainly an autosomal recessive condition, except when caused by pathogenic variants in FANCB, which is X-linked recessive. FANCA accounts for 60% to 70% of pathogenic variants, FANCC accounts for approximately 14%, and the remaining genes each account for 3% or fewer.[7]

Table 6. Fanconi Anemia Genes and Breast Cancer Risk
aRefer to the BRCA1 and BRCA2 summary for information about the cumulative risk of breast cancer in carriers of BRCA1 and BRCA2 pathogenic variants.
bRefer to the PALB2 section for information about the cumulative risk of breast cancer in carriers of PALB2 pathogenic variants.
cModerate risk is defined as a statistically significant, twofold or lower increased risk estimate.
High-Risk Genes
BRCA1 (FANCS)a
BRCA2 (FANCD1)a
PALB2 (FANCN)b
Moderate-Risk Genesc
BRIP1 (FANCJ/BACH1)
FANCD2
RAD51C (FANCO)
Genes With Uncertain or No Significantly Increased Risk
FANCA
FANCB
FANCC
FANCE
FANCF
FANCG (XRCC9)
FANCI (KIAA1794)
FANCL
SLX4 (FANCP)
ERCC4 (FANCQ/XPF)

Progressive bone marrow failure typically occurs in the first decade, with patients often presenting with thrombocytopenia or leucopenia. The incidence of bone marrow failure is 90% by age 40 to 50 years. The incidence is 10% to 30% for hematologic malignancies (primarily acute myeloid leukemia) and 25% to 30% for nonhematologic malignancies (solid tumors, particularly of the head and neck, skin, gastrointestinal [GI] tract, and genital tract). Physical abnormalities, including short stature, abnormal skin pigmentation, radial ray defects (including malformation of the thumbs), abnormalities of the urinary tract, eyes, ears, heart, GI system, and central nervous system, hypogonadism, and developmental delay are present in 60% to 75% of affected individuals.[7]

Variants in some of the FA genes, most notably BRCA1 and BRCA2, but also PALB2, RAD51C, and BRIP1, among others, may predispose to breast cancer in heterozygotes. Given the widespread availability of multigene (panel) tests, genetic testing of many of the FA genes is frequently performed despite uncertain cancer risks and the lack of available evidence-based medical management recommendations for many of these genes.

FA gene pathogenic variant carrier status can have implications for reproductive decision making because pathogenic variants in these genes can lead to serious childhood onset of disease if both parents are carriers of pathogenic variants in the same gene. Partner testing may be considered.

BRIP1

BRIP1 (also known as BACH1) encodes a helicase that interacts with the BRCA1 C-terminal domain. This gene also has a role in BRCA1-dependent DNA repair and cell cycle checkpoint function. Biallelic pathogenic variants in BRIP1 are a cause of FA,[810] much like such pathogenic variants in BRCA2.

Monoallelic pathogenic variants in BRIP1 have emerged as having a significant association with increased ovarian cancer risk. Nine-tenths to two and half percent of women with ovarian cancer carry a pathogenic variant in BRIP1.[11] Odds ratios (ORs) for ovarian cancer in individuals with a BRIP1 pathogenic variant range from 2.2 to 5.0.[12] The median age of ovarian cancer diagnosis in individuals with BRIP1 pathogenic variants ranges from the mid-50s to 70 years. BRIP1 pathogenic variants have been seen in high-grade serous, borderline, and endometrioid ovarian cancers, but not in clear-cell or mucinous types.[13] Per current National Comprehensive Cancer Network (NCCN) guidelines, risk-reducing salpingo-oophorectomy is recommended for women who carry a BRIP1 pathogenic variant.[14]

With respect to breast cancer risk, several studies consistently report ORs less than 2.0. A meta-analysis of 148 studies found an OR for breast cancer of 1.62 in individuals with BRIP1 pathogenic variants (95% confidence interval [CI], 1.20–2.20).[15] ORs for breast cancer in BRIP1 carriers ranged from 0.60 to 1.81 in other studies. There is a growing consensus that BRIP1 is not a moderate- to high-risk breast cancer susceptibility gene. However, studies are looking at the possible associations between BRIP1 pathogenic variants and certain subtypes of breast cancer, such as triple-negative breast cancer. Limitations of these BRIP1 association studies include the following: rarity of BRIP1 pathogenic variants, heterogeneity of study methodologies, and inconsistent reporting of family histories in many of the published studies.

CHEK2

CHEK2 is a gene involved in the DNA damage repair response pathway. Based on numerous studies, a polymorphism, 1100delC, appears to be a rare, moderate-penetrance cancer susceptibility allele.[1621] One study identified the pathogenic variant in 1.2% of the European controls, 4.2% of the European BRCA1/BRCA2-negative familial breast cancer cases, and 1.4% of unselected female breast cancer cases.[16] In a group of 1,479 Dutch women younger than 50 years with invasive breast cancer, 3.7% were found to have the CHEK2 1100delC pathogenic variant.[22] In additional European and U.S. (where the pathogenic variant appears to be slightly less common) studies, including a large prospective study,[23] the frequency of CHEK2 pathogenic variants detected in familial breast or ovarian cancer cases has ranged from 0% [24] to 11%; overall, these studies have found an approximately 1.5-fold to 3-fold increased risk of female breast cancer.[23,2528] A multicenter combined analysis and reanalysis of nearly 20,000 subjects from ten case-control studies, however, has verified a significant 2.3-fold excess of breast cancer among carriers of pathogenic variants.[29] A subsequent meta-analysis based on 29,154 cases and 37,064 controls from 25 case-control studies found a significant association between CHEK2 1100delC heterozygotes and breast cancer risk (OR, 2.75; 95% CI, 2.25–3.36). The ORs and CIs in unselected, familial, and early-onset breast cancer subgroups were 2.33 (1.79–3.05), 3.72 (2.61–5.31), and 2.78 (2.28–3.39), respectively. However, study limitations included pooling of populations without subgroup analysis, using a mix of population-based and hospital-based controls, and basing results on unadjusted estimates (as cases and controls were matched on only a few common factors); therefore, results should be interpreted in the context of these limitations.[30] In a series of male breast cancer patients, the CHEK2 1100delC variant was significantly more frequently identified than in controls, suggesting that this variant is also associated with an increased risk of male breast cancer.[31]

Two studies have suggested that the risk associated with a CHEK2 1100delC pathogenic variant was stronger in the families of probands ascertained because of bilateral breast cancer.[32,33] Furthermore, a meta-analysis of carriers of 1100delC pathogenic variants estimated the risk of breast cancer to be 42% by age 70 years in women with a family history of breast cancer.[34] Similarly, a Polish study reported that CHEK2 truncating pathogenic variants confer breast cancer risks based on a family history of breast cancer as follows: no family history, 20%; one second-degree relative (SDR), 28%; one first-degree relative (FDR), 34%; and both FDRs and SDRs, 44%.[3] Moreover, a Dutch study suggested that female homozygotes for the CHEK2 1100delC variant have a greater-than-twofold increased breast cancer risk compared with heterozygotes.[35] Although there have been conflicting reports regarding cancers other than breast cancer associated with CHEK2 pathogenic variants, this may be dependent on variant type (i.e., missense vs. truncating) or population studied and is not currently of clinical utility.[21,26,3641] The contribution of CHEK2 variants to breast cancer may depend on the population studied, with a potentially higher variant prevalence in Poland.[42] Carriers of CHEK2 variants in Poland may be more susceptible to estrogen receptor (ER)–positive breast cancer.[43]

A large Dutch study of 86,975 individuals reported an increased risk of cancers other than breast and colon for carriers of the CHEK2 1100delC pathogenic variant,[44] although additional studies are needed to further refine these risks.

(Refer to the CHEK2 section in Genetics of Colorectal Cancer for more information.)

ATM

Ataxia telangiectasia (AT) is an autosomal recessive disorder characterized by neurologic deterioration, telangiectasias, immunodeficiency states, and hypersensitivity to ionizing radiation. It is estimated that 1% of the general population may be heterozygote carriers of ATM variants.[45] More than 300 variants in the gene have been identified, most of which are truncating variants.[46] ATM proteins have been shown to play a role in cell cycle control.[4749] In vitro, AT-deficient cells are sensitive to ionizing radiation and radiomimetic drugs, and lack cell cycle regulatory properties after exposure to radiation.[50] There is insufficient evidence to recommend against radiation therapy in carriers of a single ATM pathogenic variant (heterozygotes).

Initial, large epidemiological studies demonstrated a statistically increased relative risk (RR) of approximately 2.0 for breast cancer among female ATM heterozygotes.[4,51] Subsequent, large international consortium-based studies have refined risk estimates.[52,53] An international study based on 113,000 females from 25 countries reported an OR of 2.10 (95% CI, 1.71–2.57) for breast cancer in ATM heterozygotes. ATM pathogenic variants were also associated with ER-positive tumors.[52] Domains specifically associated with higher breast cancer risks included the FRAP–ATM–TRRAP (FAT) domain (P = .00019 in all studies) and protein kinase domains (P = .00092 in all studies). Similarly, a United States–based study of 63,000 women reported an OR of 1.82 for breast cancer in ATM heterozygotes (95% CI, 1.46–2.27) and also reported an association between ATM pathogenic variants and ER-positive breast cancers.[53] A similar OR of 2.03 (95% CI, 1.89–2.19) was estimated for invasive ductal breast cancer through a commercial, lab-based study of 4,607 individuals with ATM pathogenic or likely pathogenic variants.[54]

Age-specific cumulative breast cancer risks modeled through a meta-analysis were reported to be 6.02% by age 50 years and 32.83% by age 80 years.[55] Another meta-analysis reported the RR for female breast cancer as 3.0 in ATM carriers (95% CI, 2.1–4.5).[56] A subsequent systematic review and meta-analysis estimated an adjusted OR of 1.67 for breast cancer risk in individuals with ATM pathogenic variants (95% CI, 0.73–3.82) based on seven adjusted case-control studies.[57] The crude OR was 2.27 (95% CI, 1.17–4.40) based on nine unadjusted case-control studies. The RR was estimated as 1.68 (95% CI, 1.17–2.40) based on two cohort studies. Overall, the findings suggested genotype-phenotype correlations, with the ATM c.7271T>G variant (also known as the ATM Val2424Gly variant) as the most predisposing factor and with limited predictive ability for Asp1853Val, Leu546Val, and Ser707Pro ATM variants. Per NCCN guidelines, it is recommended that women who carry an ATM pathogenic variant have annual mammograms starting at age 40 years with consideration of breast magnetic resonance imaging with and without contrast beginning at age 30 to 35 years.[14]

While multiple studies have reported that most ATM pathogenic variants impart moderate risks for breast cancer, the c.7271T>G missense variant has been shown to predispose individuals to higher breast cancer risks.[58,59] Specifically, in a commercial laboratory, data-based study of patients referred for hereditary cancer testing with a multi-gene panel (N = 627,742) including 4,607 ATM pathogenic or likely pathogenic variant carriers, risk of invasive ductal breast cancer was higher for the c.7271T>G missense variant (OR, 3.76; 95% CI, 2.76–5.12) than for other missense and truncating ATM variants.[54]

Some studies reported an association between ATM and ovarian cancer, with ovarian cancer lifetime risk approaching ~3%.[60,61] A commercial laboratory, data-based study reported an OR of 1.57 (95% CI, 1.35–1.83) for ovarian cancer in ATM pathogenic variant carriers.[54]

Pancreatic cancer has also been associated with ATM pathogenic variants, with an OR of 4.21 (95% CI, 3.24–5.47) reported through a commercial lab–based study.[54] Among 130 pancreatic cancer kindreds with a germline ATM pathogenic variant, the cumulative risk of pancreatic cancer was 1.1% (95% CI, 0.8%–1.3%) by age 50 years, 6.3% (95% CI, 3.9%–8.7%) by age 70 years, and 9.5% (95% CI, 5.0%–14.0%) by age 80 years.[62] Overall, the RR of pancreatic cancer was 6.5 (95% CI, 4.5–9.5) in ATM pathogenic variant carriers when compared with noncarriers. The average age at diagnosis was 64 years (range, 31–98 y).

The association between ATM pathogenic variants and prostate cancer risk have been inconclusive, with a commercial lab–based study reporting an OR of 2.58 (95% CI, 1.93–3.44).[54] For more information, see the ATM section in Genetics of Prostate Cancer.

RAD51

RAD51 and the family of RAD51-related genes, also known as RAD51 paralogs, are thought to encode proteins that are involved in DNA damage repair through homologous recombination and interaction with numerous other DNA repair proteins, including BRCA1 and BRCA2. The RAD51 protein plays a central role in single-strand annealing in the DNA damage response. RAD51 recruitment to break sites and recombinational DNA repair depend on the RAD51 paralogs, although their precise cellular functions are poorly characterized.[63] Variants in these genes are thought to result in loss of RAD51 focus formation in response to DNA damage.[64]

One of five RAD51-related genes, RAD51C has been reported to be linked to both FA-like disorders and familial breast and ovarian cancers. The literature, however, has produced contradictory findings. In a study of 480 German families characterized by breast and ovarian cancers who were negative for BRCA1 and BRCA2 pathogenic variants, six monoallelic variants in RAD51C were found (frequency of 1.3%).[65] Another study screened 286 BRCA1/BRCA2-negative patients with breast cancer and/or ovarian cancer and found one likely pathogenic variant in RAD51C-G153D.[66] RAD51C pathogenic variants have also been reported in Australian, British, Finnish, and Spanish non-BRCA1/BRCA2 ovarian cancer–only and breast/ovarian cancer families, and in unselected ovarian cancer cases, with frequencies ranging from 0% to 3% in these populations.[5,6773] In a sample of 206 high-risk Jewish women (including 79 of Ashkenazi origin) previously tested for the common Jewish pathogenic variants, two previously described and possibly pathogenic missense variants were detected.[74] Four additional studies were unable to confirm an association between the RAD51C gene and hereditary breast cancer or ovarian cancer.[7578]

In addition to carriers of RAD51C pathogenic variants, there are other RAD51 paralogs, including RAD51B, RAD51D, RAD51L1, XRCC2, and XRCC3, that may be associated with breast and/or ovarian cancer risk,[6,71,7983] although the clinical significance of these findings is unknown. In a case-control study of 3,429 ovarian cancer patients, RAD51C and RAD51D pathogenic variants were more commonly found in ovarian cancer cases (0.82%) than in controls (0.11%, P < .001).[84]

In addition to germline variants, different polymorphisms of RAD51 have been hypothesized to have reduced capacity to repair DNA defects, resulting in increased susceptibility to familial breast cancer. The Consortium of Investigators of Modifiers of BRCA1/BRCA2 (CIMBA) pooled data from 8,512 carriers of BRCA1 and BRCA2 pathogenic variants and found evidence of an increased risk of breast cancer among women who were BRCA2 carriers and who were homozygous for CC at the RAD51 135G→C SNV (hazard ratio, 1.17; 95% CI, 0.91–1.51).[85]

Several meta-analyses have investigated the association between the RAD51 135G→C polymorphism and breast cancer risk. There is significant overlap in the studies reported in these meta-analyses, significant variability in the characteristics of the populations included, and significant methodologic limitations to their findings.[8689] A meta-analysis of nine epidemiologic studies involving 13,241 cases and 13,203 controls of unknown BRCA1/BRCA2 status found that women carrying the CC genotype had an increased risk of breast cancer compared with women with the GG or GC genotype (OR, 1.35; 95% CI, 1.04–1.74). A meta-analysis of 14 case-control studies involving 12,183 cases and 10,183 controls confirmed an increased risk only for women who were known BRCA2 carriers (OR, 4.92; 95% CI, 1.10–21.83).[90] Another meta-analysis of 12 studies included only studies of known BRCA-negative cases and found no association between RAD51 135G→C and breast cancer.[91]

In summary, among this conflicting data is substantial evidence for a modest association between germline variants in RAD51C and breast cancer and ovarian cancer. There is also evidence of an association between polymorphisms in RAD51 135G→C among women with homozygous CC genotypes and breast cancer, particularly among BRCA2 carriers. These associations are plausible given the known role of RAD51 in the maintenance of genomic stability.

References
  1. Easton DF: How many more breast cancer predisposition genes are there? Breast Cancer Res 1 (1): 14-7, 1999. [PUBMED Abstract]
  2. Smith P, McGuffog L, Easton DF, et al.: A genome wide linkage search for breast cancer susceptibility genes. Genes Chromosomes Cancer 45 (7): 646-55, 2006. [PUBMED Abstract]
  3. Cybulski C, Wokołorczyk D, Jakubowska A, et al.: Risk of breast cancer in women with a CHEK2 mutation with and without a family history of breast cancer. J Clin Oncol 29 (28): 3747-52, 2011. [PUBMED Abstract]
  4. Thompson D, Duedal S, Kirner J, et al.: Cancer risks and mortality in heterozygous ATM mutation carriers. J Natl Cancer Inst 97 (11): 813-22, 2005. [PUBMED Abstract]
  5. Pelttari LM, Heikkinen T, Thompson D, et al.: RAD51C is a susceptibility gene for ovarian cancer. Hum Mol Genet 20 (16): 3278-88, 2011. [PUBMED Abstract]
  6. Loveday C, Turnbull C, Ramsay E, et al.: Germline mutations in RAD51D confer susceptibility to ovarian cancer. Nat Genet 43 (9): 879-82, 2011. [PUBMED Abstract]
  7. Mehta PA, Tolar J: Fanconi Anemia. In: Adam MP, Feldman J, Mirzaa GM, et al., eds.: GeneReviews. University of Washington, Seattle, 1993-2024, pp. Available online. Last accessed November 8, 2023.
  8. Levitus M, Waisfisz Q, Godthelp BC, et al.: The DNA helicase BRIP1 is defective in Fanconi anemia complementation group J. Nat Genet 37 (9): 934-5, 2005. [PUBMED Abstract]
  9. Levran O, Attwooll C, Henry RT, et al.: The BRCA1-interacting helicase BRIP1 is deficient in Fanconi anemia. Nat Genet 37 (9): 931-3, 2005. [PUBMED Abstract]
  10. Litman R, Peng M, Jin Z, et al.: BACH1 is critical for homologous recombination and appears to be the Fanconi anemia gene product FANCJ. Cancer Cell 8 (3): 255-65, 2005. [PUBMED Abstract]
  11. Moyer CL, Ivanovich J, Gillespie JL, et al.: Rare BRIP1 Missense Alleles Confer Risk for Ovarian and Breast Cancer. Cancer Res 80 (4): 857-867, 2020. [PUBMED Abstract]
  12. Suszynska M, Ratajska M, Kozlowski P: BRIP1, RAD51C, and RAD51D mutations are associated with high susceptibility to ovarian cancer: mutation prevalence and precise risk estimates based on a pooled analysis of ~30,000 cases. J Ovarian Res 13 (1): 50, 2020. [PUBMED Abstract]
  13. Lhotova K, Stolarova L, Zemankova P, et al.: Multigene Panel Germline Testing of 1333 Czech Patients with Ovarian Cancer. Cancers (Basel) 12 (4): , 2020. [PUBMED Abstract]
  14. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Genetic/Familial High-Risk Assessment: Breast, Ovarian, and Pancreatic. Version 2.2024. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2023. Available online with free registration. Last accessed September 18, 2024.
  15. Alter BP, Best AF: Frequency of heterozygous germline pathogenic variants in genes for Fanconi anemia in patients with non-BRCA1/BRCA2 breast cancer: a meta-analysis. Breast Cancer Res Treat 182 (2): 465-476, 2020. [PUBMED Abstract]
  16. Meijers-Heijboer H, van den Ouweland A, Klijn J, et al.: Low-penetrance susceptibility to breast cancer due to CHEK2(*)1100delC in noncarriers of BRCA1 or BRCA2 mutations. Nat Genet 31 (1): 55-9, 2002. [PUBMED Abstract]
  17. Kuschel B, Auranen A, Gregory CS, et al.: Common polymorphisms in checkpoint kinase 2 are not associated with breast cancer risk. Cancer Epidemiol Biomarkers Prev 12 (8): 809-12, 2003. [PUBMED Abstract]
  18. Sodha N, Bullock S, Taylor R, et al.: CHEK2 variants in susceptibility to breast cancer and evidence of retention of the wild type allele in tumours. Br J Cancer 87 (12): 1445-8, 2002. [PUBMED Abstract]
  19. Ingvarsson S, Sigbjornsdottir BI, Huiping C, et al.: Mutation analysis of the CHK2 gene in breast carcinoma and other cancers. Breast Cancer Res 4 (3): R4, 2002. [PUBMED Abstract]
  20. Vahteristo P, Bartkova J, Eerola H, et al.: A CHEK2 genetic variant contributing to a substantial fraction of familial breast cancer. Am J Hum Genet 71 (2): 432-8, 2002. [PUBMED Abstract]
  21. Meijers-Heijboer H, Wijnen J, Vasen H, et al.: The CHEK2 1100delC mutation identifies families with a hereditary breast and colorectal cancer phenotype. Am J Hum Genet 72 (5): 1308-14, 2003. [PUBMED Abstract]
  22. Schmidt MK, Tollenaar RA, de Kemp SR, et al.: Breast cancer survival and tumor characteristics in premenopausal women carrying the CHEK2*1100delC germline mutation. J Clin Oncol 25 (1): 64-9, 2007. [PUBMED Abstract]
  23. Weischer M, Bojesen SE, Tybjaerg-Hansen A, et al.: Increased risk of breast cancer associated with CHEK2*1100delC. J Clin Oncol 25 (1): 57-63, 2007. [PUBMED Abstract]
  24. Iniesta MD, Gorin MA, Chien LC, et al.: Absence of CHEK2*1100delC mutation in families with hereditary breast cancer in North America. Cancer Genet Cytogenet 202 (2): 136-40, 2010. [PUBMED Abstract]
  25. Offit K, Pierce H, Kirchhoff T, et al.: Frequency of CHEK2*1100delC in New York breast cancer cases and controls. BMC Med Genet 4 (1): 1, 2003. [PUBMED Abstract]
  26. Oldenburg RA, Kroeze-Jansema K, Kraan J, et al.: The CHEK2*1100delC variant acts as a breast cancer risk modifier in non-BRCA1/BRCA2 multiple-case families. Cancer Res 63 (23): 8153-7, 2003. [PUBMED Abstract]
  27. Neuhausen S, Dunning A, Steele L, et al.: Role of CHEK2*1100delC in unselected series of non-BRCA1/2 male breast cancers. Int J Cancer 108 (3): 477-8, 2004. [PUBMED Abstract]
  28. Ohayon T, Gal I, Baruch RG, et al.: CHEK2*1100delC and male breast cancer risk in Israel. Int J Cancer 108 (3): 479-80, 2004. [PUBMED Abstract]
  29. CHEK2 Breast Cancer Case-Control Consortium: CHEK2*1100delC and susceptibility to breast cancer: a collaborative analysis involving 10,860 breast cancer cases and 9,065 controls from 10 studies. Am J Hum Genet 74 (6): 1175-82, 2004. [PUBMED Abstract]
  30. Yang Y, Zhang F, Wang Y, et al.: CHEK2 1100delC variant and breast cancer risk in Caucasians: a meta-analysis based on 25 studies with 29,154 cases and 37,064 controls. Asian Pac J Cancer Prev 13 (7): 3501-5, 2012. [PUBMED Abstract]
  31. Hallamies S, Pelttari LM, Poikonen-Saksela P, et al.: CHEK2 c.1100delC mutation is associated with an increased risk for male breast cancer in Finnish patient population. BMC Cancer 17 (1): 620, 2017. [PUBMED Abstract]
  32. Johnson N, Fletcher O, Naceur-Lombardelli C, et al.: Interaction between CHEK2*1100delC and other low-penetrance breast-cancer susceptibility genes: a familial study. Lancet 366 (9496): 1554-7, 2005 Oct 29-Nov 4. [PUBMED Abstract]
  33. Fletcher O, Johnson N, Dos Santos Silva I, et al.: Family history, genetic testing, and clinical risk prediction: pooled analysis of CHEK2 1100delC in 1,828 bilateral breast cancers and 7,030 controls. Cancer Epidemiol Biomarkers Prev 18 (1): 230-4, 2009. [PUBMED Abstract]
  34. Weischer M, Bojesen SE, Ellervik C, et al.: CHEK2*1100delC genotyping for clinical assessment of breast cancer risk: meta-analyses of 26,000 patient cases and 27,000 controls. J Clin Oncol 26 (4): 542-8, 2008. [PUBMED Abstract]
  35. Adank MA, Jonker MA, Kluijt I, et al.: CHEK2*1100delC homozygosity is associated with a high breast cancer risk in women. J Med Genet 48 (12): 860-3, 2011. [PUBMED Abstract]
  36. Gronwald J, Cybulski C, Piesiak W, et al.: Cancer risks in first-degree relatives of CHEK2 mutation carriers: effects of mutation type and cancer site in proband. Br J Cancer 100 (9): 1508-12, 2009. [PUBMED Abstract]
  37. Wasielewski M, den Bakker MA, van den Ouweland A, et al.: CHEK2 1100delC and male breast cancer in the Netherlands. Breast Cancer Res Treat 116 (2): 397-400, 2009. [PUBMED Abstract]
  38. Osorio A, Rodríguez-López R, Díez O, et al.: The breast cancer low-penetrance allele 1100delC in the CHEK2 gene is not present in Spanish familial breast cancer population. Int J Cancer 108 (1): 54-6, 2004. [PUBMED Abstract]
  39. Syrjäkoski K, Kuukasjärvi T, Auvinen A, et al.: CHEK2 1100delC is not a risk factor for male breast cancer population. Int J Cancer 108 (3): 475-6, 2004. [PUBMED Abstract]
  40. Tsou HC, Teng DH, Ping XL, et al.: The role of MMAC1 mutations in early-onset breast cancer: causative in association with Cowden syndrome and excluded in BRCA1-negative cases. Am J Hum Genet 61 (5): 1036-43, 1997. [PUBMED Abstract]
  41. Olopade OI, Weber BL: Breast cancer genetics: toward molecular characterization of individuals at increased risk for breast cancer: part I. Cancer: Principles and Practice of Oncology Updates 12 (10): 1-12, 1998.
  42. Cybulski C, Górski B, Huzarski T, et al.: CHEK2-positive breast cancers in young Polish women. Clin Cancer Res 12 (16): 4832-5, 2006. [PUBMED Abstract]
  43. Cybulski C, Huzarski T, Byrski T, et al.: Estrogen receptor status in CHEK2-positive breast cancers: implications for chemoprevention. Clin Genet 75 (1): 72-8, 2009. [PUBMED Abstract]
  44. Näslund-Koch C, Nordestgaard BG, Bojesen SE: Increased Risk for Other Cancers in Addition to Breast Cancer for CHEK2*1100delC Heterozygotes Estimated From the Copenhagen General Population Study. J Clin Oncol 34 (11): 1208-16, 2016. [PUBMED Abstract]
  45. Savitsky K, Bar-Shira A, Gilad S, et al.: A single ataxia telangiectasia gene with a product similar to PI-3 kinase. Science 268 (5218): 1749-53, 1995. [PUBMED Abstract]
  46. Telatar M, Teraoka S, Wang Z, et al.: Ataxia-telangiectasia: identification and detection of founder-effect mutations in the ATM gene in ethnic populations. Am J Hum Genet 62 (1): 86-97, 1998. [PUBMED Abstract]
  47. Uhrhammer N, Bay JO, Bignon YJ: Seventh International Workshop on Ataxia-Telangiectasia. Cancer Res 58 (15): 3480-5, 1998. [PUBMED Abstract]
  48. Ahmed M, Rahman N: ATM and breast cancer susceptibility. Oncogene 25 (43): 5906-11, 2006. [PUBMED Abstract]
  49. Khanna KK, Chenevix-Trench G: ATM and genome maintenance: defining its role in breast cancer susceptibility. J Mammary Gland Biol Neoplasia 9 (3): 247-62, 2004. [PUBMED Abstract]
  50. Gilad S, Chessa L, Khosravi R, et al.: Genotype-phenotype relationships in ataxia-telangiectasia and variants. Am J Hum Genet 62 (3): 551-61, 1998. [PUBMED Abstract]
  51. Renwick A, Thompson D, Seal S, et al.: ATM mutations that cause ataxia-telangiectasia are breast cancer susceptibility alleles. Nat Genet 38 (8): 873-5, 2006. [PUBMED Abstract]
  52. Dorling L, Carvalho S, Allen J, et al.: Breast Cancer Risk Genes – Association Analysis in More than 113,000 Women. N Engl J Med 384 (5): 428-439, 2021. [PUBMED Abstract]
  53. Hu C, Hart SN, Gnanaolivu R, et al.: A Population-Based Study of Genes Previously Implicated in Breast Cancer. N Engl J Med 384 (5): 440-451, 2021. [PUBMED Abstract]
  54. Hall MJ, Bernhisel R, Hughes E, et al.: Germline Pathogenic Variants in the Ataxia Telangiectasia Mutated (ATM) Gene are Associated with High and Moderate Risks for Multiple Cancers. Cancer Prev Res (Phila) 14 (4): 433-440, 2021. [PUBMED Abstract]
  55. Marabelli M, Cheng SC, Parmigiani G: Penetrance of ATM Gene Mutations in Breast Cancer: A Meta-Analysis of Different Measures of Risk. Genet Epidemiol 40 (5): 425-31, 2016. [PUBMED Abstract]
  56. van Os NJ, Roeleveld N, Weemaes CM, et al.: Health risks for ataxia-telangiectasia mutated heterozygotes: a systematic review, meta-analysis and evidence-based guideline. Clin Genet 90 (2): 105-17, 2016. [PUBMED Abstract]
  57. Moslemi M, Moradi Y, Dehghanbanadaki H, et al.: The association between ATM variants and risk of breast cancer: a systematic review and meta-analysis. BMC Cancer 21 (1): 27, 2021. [PUBMED Abstract]
  58. Bernstein JL, Teraoka S, Southey MC, et al.: Population-based estimates of breast cancer risks associated with ATM gene variants c.7271T>G and c.1066-6T>G (IVS10-6T>G) from the Breast Cancer Family Registry. Hum Mutat 27 (11): 1122-8, 2006. [PUBMED Abstract]
  59. Goldgar DE, Healey S, Dowty JG, et al.: Rare variants in the ATM gene and risk of breast cancer. Breast Cancer Res 13 (4): R73, 2011. [PUBMED Abstract]
  60. Lu HM, Li S, Black MH, et al.: Association of Breast and Ovarian Cancers With Predisposition Genes Identified by Large-Scale Sequencing. JAMA Oncol 5 (1): 51-57, 2019. [PUBMED Abstract]
  61. Pennington KP, Walsh T, Harrell MI, et al.: Germline and somatic mutations in homologous recombination genes predict platinum response and survival in ovarian, fallopian tube, and peritoneal carcinomas. Clin Cancer Res 20 (3): 764-75, 2014. [PUBMED Abstract]
  62. Hsu FC, Roberts NJ, Childs E, et al.: Risk of Pancreatic Cancer Among Individuals With Pathogenic Variants in the ATM Gene. JAMA Oncol 7 (11): 1664-1668, 2021. [PUBMED Abstract]
  63. Suwaki N, Klare K, Tarsounas M: RAD51 paralogs: roles in DNA damage signalling, recombinational repair and tumorigenesis. Semin Cell Dev Biol 22 (8): 898-905, 2011. [PUBMED Abstract]
  64. Vaz F, Hanenberg H, Schuster B, et al.: Mutation of the RAD51C gene in a Fanconi anemia-like disorder. Nat Genet 42 (5): 406-9, 2010. [PUBMED Abstract]
  65. Meindl A, Hellebrand H, Wiek C, et al.: Germline mutations in breast and ovarian cancer pedigrees establish RAD51C as a human cancer susceptibility gene. Nat Genet 42 (5): 410-4, 2010. [PUBMED Abstract]
  66. Clague J, Wilhoite G, Adamson A, et al.: RAD51C germline mutations in breast and ovarian cancer cases from high-risk families. PLoS One 6 (9): e25632, 2011. [PUBMED Abstract]
  67. Thompson ER, Boyle SE, Johnson J, et al.: Analysis of RAD51C germline mutations in high-risk breast and ovarian cancer families and ovarian cancer patients. Hum Mutat 33 (1): 95-9, 2012. [PUBMED Abstract]
  68. Vuorela M, Pylkäs K, Hartikainen JM, et al.: Further evidence for the contribution of the RAD51C gene in hereditary breast and ovarian cancer susceptibility. Breast Cancer Res Treat 130 (3): 1003-10, 2011. [PUBMED Abstract]
  69. Romero A, Pérez-Segura P, Tosar A, et al.: A HRM-based screening method detects RAD51C germ-line deleterious mutations in Spanish breast and ovarian cancer families. Breast Cancer Res Treat 129 (3): 939-46, 2011. [PUBMED Abstract]
  70. Osorio A, Endt D, Fernández F, et al.: Predominance of pathogenic missense variants in the RAD51C gene occurring in breast and ovarian cancer families. Hum Mol Genet 21 (13): 2889-98, 2012. [PUBMED Abstract]
  71. Ramus SJ, Song H, Dicks E, et al.: Germline Mutations in the BRIP1, BARD1, PALB2, and NBN Genes in Women With Ovarian Cancer. J Natl Cancer Inst 107 (11): , 2015. [PUBMED Abstract]
  72. Blanco A, Gutiérrez-Enríquez S, Santamariña M, et al.: RAD51C germline mutations found in Spanish site-specific breast cancer and breast-ovarian cancer families. Breast Cancer Res Treat 147 (1): 133-43, 2014. [PUBMED Abstract]
  73. Norquist BM, Harrell MI, Brady MF, et al.: Inherited Mutations in Women With Ovarian Carcinoma. JAMA Oncol 2 (4): 482-90, 2016. [PUBMED Abstract]
  74. Kushnir A, Laitman Y, Shimon SP, et al.: Germline mutations in RAD51C in Jewish high cancer risk families. Breast Cancer Res Treat 136 (3): 869-74, 2012. [PUBMED Abstract]
  75. Wong MW, Nordfors C, Mossman D, et al.: BRIP1, PALB2, and RAD51C mutation analysis reveals their relative importance as genetic susceptibility factors for breast cancer. Breast Cancer Res Treat 127 (3): 853-9, 2011. [PUBMED Abstract]
  76. Zheng Y, Zhang J, Hope K, et al.: Screening RAD51C nucleotide alterations in patients with a family history of breast and ovarian cancer. Breast Cancer Res Treat 124 (3): 857-61, 2010. [PUBMED Abstract]
  77. Akbari MR, Tonin P, Foulkes WD, et al.: RAD51C germline mutations in breast and ovarian cancer patients. Breast Cancer Res 12 (4): 404, 2010. [PUBMED Abstract]
  78. De Leeneer K, Van Bockstal M, De Brouwer S, et al.: Evaluation of RAD51C as cancer susceptibility gene in a large breast-ovarian cancer patient population referred for genetic testing. Breast Cancer Res Treat 133 (1): 393-8, 2012. [PUBMED Abstract]
  79. Thomas G, Jacobs KB, Kraft P, et al.: A multistage genome-wide association study in breast cancer identifies two new risk alleles at 1p11.2 and 14q24.1 (RAD51L1). Nat Genet 41 (5): 579-84, 2009. [PUBMED Abstract]
  80. Figueroa JD, Garcia-Closas M, Humphreys M, et al.: Associations of common variants at 1p11.2 and 14q24.1 (RAD51L1) with breast cancer risk and heterogeneity by tumor subtype: findings from the Breast Cancer Association Consortium. Hum Mol Genet 20 (23): 4693-706, 2011. [PUBMED Abstract]
  81. Osher DJ, De Leeneer K, Michils G, et al.: Mutation analysis of RAD51D in non-BRCA1/2 ovarian and breast cancer families. Br J Cancer 106 (8): 1460-3, 2012. [PUBMED Abstract]
  82. Pelttari LM, Kiiski J, Nurminen R, et al.: A Finnish founder mutation in RAD51D: analysis in breast, ovarian, prostate, and colorectal cancer. J Med Genet 49 (7): 429-32, 2012. [PUBMED Abstract]
  83. Golmard L, Castéra L, Krieger S, et al.: Contribution of germline deleterious variants in the RAD51 paralogs to breast and ovarian cancers. Eur J Hum Genet 25 (12): 1345-1353, 2017. [PUBMED Abstract]
  84. Song H, Dicks E, Ramus SJ, et al.: Contribution of Germline Mutations in the RAD51B, RAD51C, and RAD51D Genes to Ovarian Cancer in the Population. J Clin Oncol 33 (26): 2901-7, 2015. [PUBMED Abstract]
  85. Antoniou AC, Sinilnikova OM, Simard J, et al.: RAD51 135G–>C modifies breast cancer risk among BRCA2 mutation carriers: results from a combined analysis of 19 studies. Am J Hum Genet 81 (6): 1186-200, 2007. [PUBMED Abstract]
  86. He XF, Su J, Zhang Y, et al.: Need for clarification of data in the recent meta-analysis about RAD51 135G>C polymorphism and breast cancer risk. Breast Cancer Res Treat 129 (2): 649-51; author reply 652-3, 2011. [PUBMED Abstract]
  87. Lu W, Wang X, Lin H, et al.: Mutation screening of RAD51C in high-risk breast and ovarian cancer families. Fam Cancer 11 (3): 381-5, 2012. [PUBMED Abstract]
  88. Wang WW, Spurdle AB, Kolachana P, et al.: A single nucleotide polymorphism in the 5′ untranslated region of RAD51 and risk of cancer among BRCA1/2 mutation carriers. Cancer Epidemiol Biomarkers Prev 10 (9): 955-60, 2001. [PUBMED Abstract]
  89. Wang Z, Dong H, Fu Y, et al.: RAD51 135G>C polymorphism contributes to breast cancer susceptibility: a meta-analysis involving 26,444 subjects. Breast Cancer Res Treat 124 (3): 765-9, 2010. [PUBMED Abstract]
  90. Zhou GW, Hu J, Peng XD, et al.: RAD51 135G>C polymorphism and breast cancer risk: a meta-analysis. Breast Cancer Res Treat 125 (2): 529-35, 2011. [PUBMED Abstract]
  91. Yu KD, Yang C, Fan L, et al.: RAD51 135G>C does not modify breast cancer risk in non-BRCA1/2 mutation carriers: evidence from a meta-analysis of 12 studies. Breast Cancer Res Treat 126 (2): 365-71, 2011. [PUBMED Abstract]

Single Nucleotide Variant–Associated Cancer Risks

Polymorphisms underlying polygenic susceptibility to breast and gynecologic cancers are considered low penetrance, a term often applied to sequence variants associated with a minimal to moderate risk. This is in contrast to high-penetrance variants or alleles that are typically associated with more severe phenotypes, for example BRCA1/BRCA2 pathogenic variants leading to an autosomal dominant inheritance pattern in a family, and moderate-penetrance variants such as BRIP1, CHEK2, and RAD51C. (Refer to the High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes and the Moderate-Penetrance Genes Associated With Breast and/or Gynecologic Cancer sections of this summary for more information.) Because these types of sequence variants (also called low-penetrance genes, alleles, variants, and polymorphisms) are relatively common in the general population, their overall contribution to cancer risk is estimated to be much greater than the attributable risk in the population from pathogenic variants in BRCA1 and BRCA2. For example, it is estimated by segregation analysis that half of all breast cancer occurs in 12% of the population that is deemed most susceptible.[1] There are no known low-penetrance variants in BRCA1/BRCA2. The N372H variation in BRCA2, initially thought to be a low-penetrance allele, was not verified in a large combined analysis.[2]

Two strategies have attempted to identify low-penetrance polymorphisms leading to breast cancer susceptibility: candidate gene and genome-wide searches. Both involve the epidemiologic case-control study design. The candidate gene approach involves selecting genes based on their known or presumed biological function, relevance to carcinogenesis or organ physiology, and then searching for or testing known genetic variants for an association with cancer risk. This strategy relies on imperfect and incomplete biological knowledge, and, despite some confirmed associations (described below), has been relatively disappointing.[2,3] The candidate gene approach has largely been replaced by genome-wide association studies (GWAS) in which a very large number of single nucleotide variants (SNVs) (approximately 1 million to 5 million) are chosen within the genome and tested, mostly without regard to their possible biological function, but instead to more uniformly capture all genetic variation throughout the genome.

Genome-Wide Searches

In contrast to assessing candidate genes and/or alleles, GWAS involve comparing a very large set of genetic variants spread throughout the genome. The current paradigm uses sets of as many as 5 million SNVs that are chosen to capture a large portion of common variation within the genome based on the HapMap and the 1000 Genomes Project.[4,5] By comparing allele frequencies between a large number of cases and controls, typically 1,000 or more of each, and validating promising signals in replication sets of subjects, very robust statistical signals of association have been obtained.[68] The strong correlation between many SNVs that are physically close to each other on the chromosome (linkage disequilibrium) allows one to “scan” the genome for susceptibility alleles even if the biologically relevant variant is not within the tested set of SNVs. Although this between-SNV correlation allows one to interrogate the majority of the genome without having to assay every SNV, when a validated association is obtained, it is not usually obvious which of the many correlated variants is causal.

Genome-wide searches are showing great promise in identifying common, low-penetrance susceptibility alleles for many complex diseases,[9] including breast cancer.[1013] The first study involved an initial scan in familial breast cancer cases followed by replication in two large sample sets of sporadic breast cancer, the final being a collection of over 20,000 cases and 20,000 controls from the Breast Cancer Association Consortium (BCAC).[10] Five distinct genomic regions were identified that were within or near the FGFR2, TNRC9, MAP3K1, and LSP1 genes or at the chromosome 8q region. The 8q region and others may harbor multiple independent loci associated with risk. Subsequent genome-wide studies have replicated these loci and identified additional ones.[11,12,1419] Numerous SNVs identified through large studies of sporadic breast cancer appear to be associated more strongly with estrogen receptor (ER)–positive disease;[20] however, some are associated primarily or exclusively with other subtypes, including triple-negative disease.[21,22] An online catalog is available of SNV-trait associations from published GWAS for use in investigating genomic characteristics of trait/disease-associated SNVs.

Although the statistical evidence for an association between genetic variation at these loci and breast and ovarian cancer risk is overwhelming, the biologically relevant variants and the mechanism by which they lead to increased risk are unknown and will require further genetic and functional characterization. Additionally, these loci are associated with very modest risk (typically, an odds ratio [OR] <1.5), with more risk variants likely to be identified. No interaction between the SNVs and epidemiologic risk factors for breast cancer have been identified.[23,24] Furthermore, theoretical models have suggested that common moderate-risk SNVs have limited potential to improve models for individualized risk assessment.[2527] These models used receiver operating characteristic (ROC) curve analysis to calculate the area under the curve (AUC) as a measure of discriminatory accuracy. A subsequent study used ROC curve analysis to examine the utility of SNVs in a clinical dataset of more than 5,500 breast cancer cases and nearly 6,000 controls, using a model with traditional risk factors compared with a model using both standard risk factors and ten previously identified SNVs. The addition of genetic information modestly changed the AUC from 58% to 61.8%, a result that was not felt to be clinically significant. Despite this, 32.5% of patients were in a higher quintile of breast cancer risk when genetic information was included, and 20.4% were in a lower quintile of risk. Whether such information has clinical utility is unclear.[25,28]

More limited data are available regarding ovarian cancer risk. Three GWAS involving staged analysis of more than 10,000 cases and 13,000 controls have been carried out for ovarian cancer.[2931] As in other GWAS, the ORs are modest, generally about 1.2 or weaker but implicate a number of genes with plausible biological ties to ovarian cancer, such as BABAM1, whose protein complexes with and may regulate BRCA1, and TIRAPR, which codes for a poly (ADP-ribose) polymerase, molecules that may be important in BRCA1/BRCA2-deficient cells.

Polygenic risk scores for breast and ovarian cancer

The collective influence of many genetic variants has more recently been evaluated using an aggregate score. In 2015, a polygenic risk score (PRS) comprising all of the known breast cancer risk genetic variants or SNVs was estimated in women of European ancestry using 41 studies in the BCAC, including more than 33,000 breast cancer cases and 33,000 controls.[32] This early attempt at estimating a PRS for breast cancer included 77 SNVs, which collectively conferred lifetime risks of developing breast cancer by age 80 years of 3.5% and 29% for women in the lowest and highest 1% of the PRS, respectively.[32] Since then, PRSs incorporating additional genetic variants and examining other breast cancer–related outcomes including tumor and pathological characteristics, mode of detection, and contralateral breast cancer (CBC) have been estimated.[3340] In 2019, the PRS with the highest discriminatory ability to date was developed and prospectively validated in the largest GWAS datasets available (79 studies in BCAC and more than 190,000 women in the U.K. Biobank), which incorporates information on 313 genetic variants and is optimized for ER-positive and ER-negative breast cancer.[39] Compared with women in the middle quintile, those in the highest 1% of PRS313 had 4.04-, 4.37-, and 2.78-fold risks of developing breast cancer overall, ER-positive disease, and ER-negative disease, respectively.[39] Lifetime absolute risk (AR) of breast cancer by age 80 years for women in the lowest and highest 1% of PRS313 ranged from 2% to 31% for ER-positive breast cancer, while for ER-negative disease, the ARs ranged from 0.55% to 4%.[39]

Common genomic variants associated with the development of a first primary breast cancer are also associated with the development of CBC.[40] Women in the highest quartile of the PRS had a 1.6-fold increased risk of developing CBC compared with the lowest quartile.[40] Moreover, PRSs of breast and ovarian cancers have been assessed in women who are carriers of BRCA1 and BRCA2 pathogenic variants, and have been found to be predictive of cancer risk in these women, supporting the hypothesis of a shared polygenic component of cancer risk between the general population and variant carriers.[36] The PRS for ER-negative disease had the strongest association with breast cancer risk in BRCA1 variant carriers, while the strongest association in BRCA2 variant carriers was seen for the overall breast cancer PRS. BRCA1 variant carriers had cumulative lifetime risks of 56% and 75% of developing breast cancer at the 10th and 90th percentile of the PRS, respectively. The ovarian cancer PRS was strongly associated with risk for both BRCA1 and BRCA2 variant carriers. For BRCA2 variant carriers, the ovarian cancer risk was 6% and 19% by age 80 years for those at the 10th and 90th percentile of PRS, respectively. The authors noted that the incorporation of the PRS into risk prediction models may better inform decisions on cancer risk management for this population.[36]

Two large studies have supported that PRSs can improve breast cancer risk stratification.[41,42] PRSs were most important in the breast cancer risk stratification of individuals with CHEK2 and ATM pathogenic variants. After PRSs were incorporated, 30% of individuals with a CHEK2 pathogenic variant and nearly half of the individuals with an ATM pathogenic variant dipped below a 20% lifetime risk of breast cancer. This is significant, since lifetime risk values greater than 20% can prompt more frequent breast cancer screening and other types of clinical management.[41] PRSs were also effective when stratifying breast cancer risk in noncarriers. Gallagher et al. analyzed case-control data from 150,962 women who had multigene hereditary cancer genetic testing. This study examined the impact of a PRS with 86 SNVs on individuals with pathogenic variants in BRCA1, BRCA2, CHEK2, ATM, and PALB2. The PRS was predictive of breast cancer in individuals with pathogenic variants. However, breast cancer risk stratification was more pronounced in noncarriers (OR, 1.47; 95% confidence interval [CI], 1.45–1.49) and CHEK2 pathogenic variant carriers (OR, 1.49; 95% CI, 1.36–1.64) than in carriers of BRCA1 (OR, 1.20; 95% CI, 1.10–1.32) or BRCA2 (OR, 1.23; 95% CI, 1.12–1.34) pathogenic variants. The ORs for ATM (OR, 1.37; 95% CI, 1.21–1.55) and PALB2 (OR, 1.34; 95% CI, 1.16–1.55) pathogenic variant carriers were intermediate when compared with those of BRCA1/2 pathogenic variant carriers, CHEK2 pathogenic variant carriers, and noncarriers. Even though the PRS improved breast cancer risk stratification across all groups, the PRS was most important for individuals with CHEK2 pathogenic variants and for noncarriers.[42] Similarly, Gao et al. analyzed case-control data from 26,798 non-Hispanic White individuals with breast cancer and 26,127 controls using a PRS based on 105 SNVs. More than 95% of BRCA1, BRCA2, and PALB2 pathogenic variant carriers had a 20% lifetime risk of breast cancer. In contrast, 52.5% of ATM pathogenic variant carriers and 69.7% of CHEK2 pathogenic variant carriers without first-degree relatives (FDRs) with breast cancer had a 20% lifetime risk of breast cancer. This was also true in 78.8% of ATM carriers and 89.9% of CHEK2 carriers with an FDR with breast cancer.[41]

Several studies have also examined the extent to which clinical breast cancer risk prediction models can be improved by including information on known susceptibility SNVs, and reporting improved discriminatory accuracy after inclusion of the PRS.[4348] For example, in a study combining PRS77 with clinical models, the AUC for predicting breast cancer before age 50 years improved by more than 20%.[44] Clinical trials, including WISDOM and MyPeBs, are in progress to study the potential clinical utility of the PRS for making screening decisions and understanding outcomes.[49] Because PRSs have been largely developed and validated in populations of European ancestry, the utility and prediction accuracy of these PRSs in non-European populations is unknown.

A large study examined whether known reproductive and lifestyle risk factors interact with PRSs to increase breast cancer risk and did not find a multiplicative interaction with established risk factors.[50]

Whole-Genome and Whole-Exome Sequencing

In addition to GWAS interrogating common genetic variants, sequencing-based studies involving whole-genome or whole-exome sequencing [51] are also identifying genes associated with breast cancer, such as XRCC2, a rare, moderate-penetrance breast cancer susceptibility gene.[52] (Refer to the Clinical Sequencing section in Cancer Genetics Overview for more information about whole-exome sequencing.)

References
  1. Pharoah PD, Antoniou A, Bobrow M, et al.: Polygenic susceptibility to breast cancer and implications for prevention. Nat Genet 31 (1): 33-6, 2002. [PUBMED Abstract]
  2. Breast Cancer Association Consortium: Commonly studied single-nucleotide polymorphisms and breast cancer: results from the Breast Cancer Association Consortium. J Natl Cancer Inst 98 (19): 1382-96, 2006. [PUBMED Abstract]
  3. Dunning AM, Healey CS, Pharoah PD, et al.: A systematic review of genetic polymorphisms and breast cancer risk. Cancer Epidemiol Biomarkers Prev 8 (10): 843-54, 1999. [PUBMED Abstract]
  4. Thorisson GA, Smith AV, Krishnan L, et al.: The International HapMap Project Web site. Genome Res 15 (11): 1592-3, 2005. [PUBMED Abstract]
  5. Clarke L, Zheng-Bradley X, Smith R, et al.: The 1000 Genomes Project: data management and community access. Nat Methods 9 (5): 459-62, 2012. [PUBMED Abstract]
  6. Evans DM, Cardon LR: Genome-wide association: a promising start to a long race. Trends Genet 22 (7): 350-4, 2006. [PUBMED Abstract]
  7. Cardon LR: Genetics. Delivering new disease genes. Science 314 (5804): 1403-5, 2006. [PUBMED Abstract]
  8. Chanock SJ, Manolio T, Boehnke M, et al.: Replicating genotype-phenotype associations. Nature 447 (7145): 655-60, 2007. [PUBMED Abstract]
  9. Wellcome Trust Case Control Consortium: Genome-wide association study of 14,000 cases of seven common diseases and 3,000 shared controls. Nature 447 (7145): 661-78, 2007. [PUBMED Abstract]
  10. Easton DF, Pooley KA, Dunning AM, et al.: Genome-wide association study identifies novel breast cancer susceptibility loci. Nature 447 (7148): 1087-93, 2007. [PUBMED Abstract]
  11. Stacey SN, Manolescu A, Sulem P, et al.: Common variants on chromosomes 2q35 and 16q12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 39 (7): 865-9, 2007. [PUBMED Abstract]
  12. Hunter DJ, Kraft P, Jacobs KB, et al.: A genome-wide association study identifies alleles in FGFR2 associated with risk of sporadic postmenopausal breast cancer. Nat Genet 39 (7): 870-4, 2007. [PUBMED Abstract]
  13. Turnbull C, Ahmed S, Morrison J, et al.: Genome-wide association study identifies five new breast cancer susceptibility loci. Nat Genet 42 (6): 504-7, 2010. [PUBMED Abstract]
  14. Gold B, Kirchhoff T, Stefanov S, et al.: Genome-wide association study provides evidence for a breast cancer risk locus at 6q22.33. Proc Natl Acad Sci U S A 105 (11): 4340-5, 2008. [PUBMED Abstract]
  15. Zheng W, Long J, Gao YT, et al.: Genome-wide association study identifies a new breast cancer susceptibility locus at 6q25.1. Nat Genet 41 (3): 324-8, 2009. [PUBMED Abstract]
  16. Kibriya MG, Jasmine F, Argos M, et al.: A pilot genome-wide association study of early-onset breast cancer. Breast Cancer Res Treat 114 (3): 463-77, 2009. [PUBMED Abstract]
  17. Murabito JM, Rosenberg CL, Finger D, et al.: A genome-wide association study of breast and prostate cancer in the NHLBI’s Framingham Heart Study. BMC Med Genet 8 (Suppl 1): S6, 2007. [PUBMED Abstract]
  18. Stacey SN, Manolescu A, Sulem P, et al.: Common variants on chromosome 5p12 confer susceptibility to estrogen receptor-positive breast cancer. Nat Genet 40 (6): 703-6, 2008. [PUBMED Abstract]
  19. Ahmed S, Thomas G, Ghoussaini M, et al.: Newly discovered breast cancer susceptibility loci on 3p24 and 17q23.2. Nat Genet 41 (5): 585-90, 2009. [PUBMED Abstract]
  20. Reeves GK, Travis RC, Green J, et al.: Incidence of breast cancer and its subtypes in relation to individual and multiple low-penetrance genetic susceptibility loci. JAMA 304 (4): 426-34, 2010. [PUBMED Abstract]
  21. Haiman CA, Chen GK, Vachon CM, et al.: A common variant at the TERT-CLPTM1L locus is associated with estrogen receptor-negative breast cancer. Nat Genet 43 (12): 1210-4, 2011. [PUBMED Abstract]
  22. Stevens KN, Fredericksen Z, Vachon CM, et al.: 19p13.1 is a triple-negative-specific breast cancer susceptibility locus. Cancer Res 72 (7): 1795-803, 2012. [PUBMED Abstract]
  23. Campa D, Kaaks R, Le Marchand L, et al.: Interactions between genetic variants and breast cancer risk factors in the breast and prostate cancer cohort consortium. J Natl Cancer Inst 103 (16): 1252-63, 2011. [PUBMED Abstract]
  24. Milne RL, Gaudet MM, Spurdle AB, et al.: Assessing interactions between the associations of common genetic susceptibility variants, reproductive history and body mass index with breast cancer risk in the breast cancer association consortium: a combined case-control study. Breast Cancer Res 12 (6): R110, 2010. [PUBMED Abstract]
  25. Pharoah PD, Antoniou AC, Easton DF, et al.: Polygenes, risk prediction, and targeted prevention of breast cancer. N Engl J Med 358 (26): 2796-803, 2008. [PUBMED Abstract]
  26. Gail MH: Discriminatory accuracy from single-nucleotide polymorphisms in models to predict breast cancer risk. J Natl Cancer Inst 100 (14): 1037-41, 2008. [PUBMED Abstract]
  27. Gail MH: Value of adding single-nucleotide polymorphism genotypes to a breast cancer risk model. J Natl Cancer Inst 101 (13): 959-63, 2009. [PUBMED Abstract]
  28. Wacholder S, Hartge P, Prentice R, et al.: Performance of common genetic variants in breast-cancer risk models. N Engl J Med 362 (11): 986-93, 2010. [PUBMED Abstract]
  29. Song H, Ramus SJ, Tyrer J, et al.: A genome-wide association study identifies a new ovarian cancer susceptibility locus on 9p22.2. Nat Genet 41 (9): 996-1000, 2009. [PUBMED Abstract]
  30. Goode EL, Chenevix-Trench G, Song H, et al.: A genome-wide association study identifies susceptibility loci for ovarian cancer at 2q31 and 8q24. Nat Genet 42 (10): 874-9, 2010. [PUBMED Abstract]
  31. Bolton KL, Tyrer J, Song H, et al.: Common variants at 19p13 are associated with susceptibility to ovarian cancer. Nat Genet 42 (10): 880-4, 2010. [PUBMED Abstract]
  32. Mavaddat N, Pharoah PD, Michailidou K, et al.: Prediction of breast cancer risk based on profiling with common genetic variants. J Natl Cancer Inst 107 (5): , 2015. [PUBMED Abstract]
  33. Curtit E, Pivot X, Henriques J, et al.: Assessment of the prognostic role of a 94-single nucleotide polymorphisms risk score in early breast cancer in the SIGNAL/PHARE prospective cohort: no correlation with clinico-pathological characteristics and outcomes. Breast Cancer Res 19 (1): 98, 2017. [PUBMED Abstract]
  34. Cuzick J, Brentnall AR, Segal C, et al.: Impact of a Panel of 88 Single Nucleotide Polymorphisms on the Risk of Breast Cancer in High-Risk Women: Results From Two Randomized Tamoxifen Prevention Trials. J Clin Oncol 35 (7): 743-750, 2017. [PUBMED Abstract]
  35. Khera AV, Chaffin M, Aragam KG, et al.: Genome-wide polygenic scores for common diseases identify individuals with risk equivalent to monogenic mutations. Nat Genet 50 (9): 1219-1224, 2018. [PUBMED Abstract]
  36. Kuchenbaecker KB, McGuffog L, Barrowdale D, et al.: Evaluation of Polygenic Risk Scores for Breast and Ovarian Cancer Risk Prediction in BRCA1 and BRCA2 Mutation Carriers. J Natl Cancer Inst 109 (7): , 2017. [PUBMED Abstract]
  37. Li H, Feng B, Miron A, et al.: Breast cancer risk prediction using a polygenic risk score in the familial setting: a prospective study from the Breast Cancer Family Registry and kConFab. Genet Med 19 (1): 30-35, 2017. [PUBMED Abstract]
  38. Li J, Ugalde-Morales E, Wen WX, et al.: Differential Burden of Rare and Common Variants on Tumor Characteristics, Survival, and Mode of Detection in Breast Cancer. Cancer Res 78 (21): 6329-6338, 2018. [PUBMED Abstract]
  39. Mavaddat N, Michailidou K, Dennis J, et al.: Polygenic Risk Scores for Prediction of Breast Cancer and Breast Cancer Subtypes. Am J Hum Genet 104 (1): 21-34, 2019. [PUBMED Abstract]
  40. Robson ME, Reiner AS, Brooks JD, et al.: Association of Common Genetic Variants With Contralateral Breast Cancer Risk in the WECARE Study. J Natl Cancer Inst 109 (10): , 2017. [PUBMED Abstract]
  41. Gao C, Polley EC, Hart SN, et al.: Risk of Breast Cancer Among Carriers of Pathogenic Variants in Breast Cancer Predisposition Genes Varies by Polygenic Risk Score. J Clin Oncol 39 (23): 2564-2573, 2021. [PUBMED Abstract]
  42. Gallagher S, Hughes E, Wagner S, et al.: Association of a Polygenic Risk Score With Breast Cancer Among Women Carriers of High- and Moderate-Risk Breast Cancer Genes. JAMA Netw Open 3 (7): e208501, 2020. [PUBMED Abstract]
  43. Allman R, Dite GS, Hopper JL, et al.: SNPs and breast cancer risk prediction for African American and Hispanic women. Breast Cancer Res Treat 154 (3): 583-9, 2015. [PUBMED Abstract]
  44. Dite GS, MacInnis RJ, Bickerstaffe A, et al.: Breast Cancer Risk Prediction Using Clinical Models and 77 Independent Risk-Associated SNPs for Women Aged Under 50 Years: Australian Breast Cancer Family Registry. Cancer Epidemiol Biomarkers Prev 25 (2): 359-65, 2016. [PUBMED Abstract]
  45. Shieh Y, Hu D, Ma L, et al.: Breast cancer risk prediction using a clinical risk model and polygenic risk score. Breast Cancer Res Treat 159 (3): 513-25, 2016. [PUBMED Abstract]
  46. Starlard-Davenport A, Allman R, Dite GS, et al.: Validation of a genetic risk score for Arkansas women of color. PLoS One 13 (10): e0204834, 2018. [PUBMED Abstract]
  47. van Veen EM, Brentnall AR, Byers H, et al.: Use of Single-Nucleotide Polymorphisms and Mammographic Density Plus Classic Risk Factors for Breast Cancer Risk Prediction. JAMA Oncol 4 (4): 476-482, 2018. [PUBMED Abstract]
  48. Zhang X, Rice M, Tworoger SS, et al.: Addition of a polygenic risk score, mammographic density, and endogenous hormones to existing breast cancer risk prediction models: A nested case-control study. PLoS Med 15 (9): e1002644, 2018. [PUBMED Abstract]
  49. Esserman LJ; WISDOM Study and Athena Investigators: The WISDOM Study: breaking the deadlock in the breast cancer screening debate. NPJ Breast Cancer 3: 34, 2017. [PUBMED Abstract]
  50. Rudolph A, Song M, Brook MN, et al.: Joint associations of a polygenic risk score and environmental risk factors for breast cancer in the Breast Cancer Association Consortium. Int J Epidemiol 47 (2): 526-536, 2018. [PUBMED Abstract]
  51. Shendure J: Next-generation human genetics. Genome Biol 12 (9): 408, 2011. [PUBMED Abstract]
  52. Park DJ, Lesueur F, Nguyen-Dumont T, et al.: Rare mutations in XRCC2 increase the risk of breast cancer. Am J Hum Genet 90 (4): 734-9, 2012. [PUBMED Abstract]

Psychosocial Issues in Hereditary Breast and Gynecologic Cancers

Introduction

Psychosocial research in the context of cancer genetic testing helps to define psychological outcomes, interpersonal and familial effects, and cultural and community responses. This type of research also identifies behavioral factors that encourage or impede screening and other health behaviors. It can enhance decision making about risk-reduction interventions, evaluate psychosocial interventions to reduce distress and/or other negative sequelae related to risk notification and genetic testing, provide data to help resolve ethical concerns, and predict the interest in testing of various groups.

Psychosocial and screening issues related to gynecologic cancers associated with Lynch syndrome are discussed in the Psychosocial Issues in Hereditary Colon Cancer Syndromes section in Genetics of Colorectal Cancer.

Uptake of Genetic Counseling and Genetic Testing

Degree of uptake of genetic counseling and genetic testing

Comparison of uptake rates among studies in which counseling and testing were offered is challenging because of differences in methodologies, including the sampling strategy used, the recruitment setting, and testing through a research protocol with high-risk cohorts or kindreds. In a systematic review of 40 studies conducted before 2002 that had assessed genetic testing utilization, uptake rates varied widely and ranged from 25% to 96%, with an average uptake rate of 59%.[1] Results of multivariate analysis found that BRCA1/BRCA2 genetic testing uptake was associated with having a personal or family history of breast or ovarian cancer, and with methodological features of the studies, including sampling strategies, recruitment settings, and how studies defined actual uptake versus the intention to have testing.

Other factors have been positively correlated with uptake of BRCA1/BRCA2 genetic testing, although these findings are not consistent across all studies. Psychological factors that have been positively correlated with testing uptake include greater cancer-specific distress and greater perceived risk of developing breast or ovarian cancer. Having more cancer-affected relatives also has been correlated with greater testing uptake.

Table 7 summarizes the uptake of genetic testing in clinical and research cohorts in the United States.

Table 7. Predictors Associated with Uptake of Genetic Testing (GT)
Study Citation Study Population Sample Size (N) Uptake of GT Predictors Associated With Uptake of GT Comments
GC = genetic counseling; HMO = health maintenance organization.
aSelf-report as data source.
bMedical records as data source.
Schwartz et al. (2005) [2] Newly diagnosed and locally untreated breast cancer patients with ≥10% risk of having a BRCA1/BRCA2 pathogenic variant a 231 177/231 (77%) underwent GT Having decided on definitive local treatment. Women who were undecided on a definitive local treatment were more likely to be tested Testing was offered free of charge
34/231 (15%) had baseline interview but declined GT
Physician recommendation for testing. Women whose physician had recommended GT were more likely to be tested 38/177 chose to proceed with treatment before receiving test results
20/231 declined baseline interview
Kieran et al. (2007) [3] Women who received GC between 2002 and 2004a 250 88/250 (35%) underwent GT Ability to pay for GT (entire cost or cost not covered by insurance). Nonuptake was 5.5 times more likely in women who could not afford testing 450 women received GC for breast and ovarian cancer risk during study period. 250 women were retrospectively identified as eligible and were mailed a study questionnaire
36/88 returned surveys
Ability to recall risk estimates that were provided post-GC. Nonuptake was 15.5 times more likely in women who could not recall their risk estimates All women had some form of insurance
162/250 (65%) eligible
65/162 returned surveys
Susswein et al. (2008) [4] African American women and White women with breast cancerb 768 529/768 (69%) underwent GT Race and ethnicity. African American women were less likely to be tested than White women Sample obtained from a clinical database. Testing was offered free of charge when it was not covered by insurance. This effect for time of diagnosis was significant in the African American subgroup but not in the White subgroup
African American women: 77/132 (58%) underwent GT
Recent diagnosis. African American women who were recently diagnosed were more likely to be tested
White women: 452/636 (71%) underwent GT
Olaya et al. (2009) [5] Patients referred for GT between 2001 and 2008b 213 111/213 (52%) underwent GT Personal history of breast cancer. Having a personal history was associated with 3 times greater odds of being tested Insurance coverage for testing was available for 91.1% (175/213) of patients. Of those who had coverage for GT, 51.4% underwent testing and 48.6% did not. Of those without coverage, 41.2% had GT and 58.9% did not
102/213 (48%) declined GT Higher level of education. Those with a high school education or less had one-third the odds of being tested, compared with those with at least some college
Levy et al. (2010) [6] Women aged 20–40 y with newly diagnosed early-onset breast cancer.b 1,474 446/1,474 (30%) underwent GT Race and ethnicity. Women of Jewish ethnicity were 3 times more likely to be tested than non-Jewish White women. African American and Hispanic women were significantly less likely to receive testing than non-Jewish White women Sample obtained from a national database of commercially insured individuals
Jewish women: 18/32 (56%) underwent GT Home location. Women living in the south were more likely to be tested than women living in the northeast
African American women: 10/82 (12%) underwent GT Insurance type. Women with point-of-service plans were more likely to be tested than women with HMO plans
Recent diagnosis. Women diagnosed in 2007 were 3.8 times more likely to be tested than women diagnosed in 2004

Several studies conducted in non-U.S. settings have examined the uptake of genetic testing.[711] In studies examining the uptake of testing among at-risk relatives of carriers of BRCA1/BRCA2 pathogenic variants, uptake rates have averaged below 50% (range, 36%–48%), with higher uptake reported among female relatives than in male relatives. Other factors associated with higher uptake of testing were not consistently reported among studies but have most commonly included being a parent and wanting to learn information about a child’s risk.

Factors influencing uptake of genetic counseling and genetic testing

In reviews that have examined the cumulative evidence concerning the predictors of uptake of BRCA1/BRCA2 genetic testing, important predictors of testing uptake include older age, Ashkenazi Jewish (AJ) heritage, unmarried status, a personal history of breast cancer, and a family history of breast cancer. Studies recruiting participants in hospital settings had significantly higher recruitment rates than did studies recruiting participants in community settings. Studies that required an immediate decision to test, rather than allowing delayed decision making, tended to report higher uptake rates.[1] However, there is evidence that women diagnosed with breast cancer are equally satisfied with genetic counseling (including information received and strength and timing of physician recommendations for counseling), whether they received genetic counseling before or after their definitive surgery for breast cancer.[12] Another review [13] found that uptake of genetic testing for BRCA1/BRCA2 pathogenic variants was related to psychological factors (e.g., anxiety about breast cancer and perceived risk of breast cancer) and demographic and medical factors (e.g., history of breast cancer or ovarian cancer, presence of children, and higher number of affected first-degree relatives [FDRs]). Family members with a known BRCA1/BRCA2 pathogenic variant were more likely to pursue testing; those with more extensive knowledge of BRCA1/BRCA2 testing, heightened risk perceptions, beliefs that mammography would promote health benefit, and high intentions to undergo testing were more likely to follow through with testing.[14]

In a review of racial and ethnic differences that affect the uptake of BRCA1/BRCA2 testing, intention to undergo genetic testing in African American women was related to having at least one FDR with breast cancer or ovarian cancer, higher perceived risk of being a carrier, and less anticipatory guilt about the possibility of being a gene carrier.[15] A systematic review found that certain racial and ethnic minority groups, including African American and Hispanic individuals, had more negative views and greater concerns about genetic counseling and testing when compared with White individuals. African American and Hispanic individuals were more likely to believe genetic testing could be used to show their ethnic group was inferior to other groups. Additionally, African American and Hispanic individuals were found to have low awareness and knowledge about the importance of genetics in cancer, BRCA status, and genetic testing.[16]

Reasons cited for following through with testing included a desire to learn about a child’s risk, to feel relief from uncertainty, to inform screening or risk-reducing surgery decisions, and to inform important life decisions such as marriage and childbearing.[14,17] Among African American women, the most important reason for testing included motivation to help other relatives decide on genetic testing.[15]

Physician recommendation may be another motivator for testing. In a retrospective study of 335 women considering genetic testing, 77% reported that they wanted the opinion of a genetics physician about whether they should be tested, and 49% wanted the opinion of their primary care provider.[18] However, there is some evidence of referral bias favoring those with a maternal family history of breast cancer or ovarian cancer. In a Canadian retrospective review of 315 patients, those with a maternal family history of breast cancer or ovarian cancer were 4.9 times (95% confidence interval, 3.6–6.7) more likely to be referred for a cancer genetics consultation by their physician than were those with a paternal family history (P < .001).[19] Studies have found that physicians may not adequately assess paternal family history [20] or may underestimate the significance of a paternal family history for genetic risk.[2022] Other studies have shown that physician referral of patients who meet U.S. Preventive Services Task Force guidelines for BRCA genetic counseling has been suboptimal.[23]

The uptake of BRCA testing to inform surgical treatment decisions when offered appears to be high in research cohorts;[2,24] however, findings from other studies suggest that testing is underutilized in clinical practice to inform breast cancer treatment decisions.[6,25,26] Barriers to the use of BRCA testing to inform surgical treatment decisions, including lack of physician referral of newly diagnosed patients for genetic counseling, type of insurance coverage (such as Medicare or Medicaid), and challenges in the timing and coordination of testing, have been reported.[6,2730] In a randomized trial that provided proactive rapid genetic counseling (delivery of genetic counseling prior to surgery) compared with usual care for patients with newly diagnosed breast cancer, results suggested that although genetic counseling uptake was higher in the intervention arm, this did not translate into higher rates of genetic testing, receipt of results before surgery, or bilateral mastectomy decisions.[31]

Insurance coverage

Insurance coverage is an important consideration for individuals deciding whether to undergo genetic testing. (Refer to the Insurance coverage section in the PDQ summary on Cancer Genetics Risk Assessment and Counseling for more information.)

Uptake of genetic counseling and genetic testing in diverse populations

Degree of uptake of genetic counseling and genetic testing in diverse populations

There are limited data on uptake of genetic counseling and testing among non-White populations, and further research will be needed to define factors influencing uptake in these populations.[32] The uptake of BRCA testing appears to vary across some racial and ethnic groups. A few studies have compared uptake rates between African American and White women.[4,33] In a case-control study of women who had been seen in a university-based primary care system, African American women with family histories of breast cancer or ovarian cancer were less likely to undergo BRCA1/BRCA2 testing than were White women who had similar histories.[33] In another study among breast cancer patients who were counseled about BRCA1/BRCA2 risk in a clinical setting, lower uptake was reported among African American women than among White women.[4]

Notably, the racial differences observed in these studies do not appear to be explained by factors related to cost, access to care, risk factors for carrying a BRCA1 or BRCA2 pathogenic variant, or differences in psychosocial factors, including risk perceptions, worry, or attitudes toward testing.

Factors influencing uptake of genetic counseling and genetic testing in diverse populations

Several studies have examined uptake or “acceptance” of BRCA testing among African American individuals enrolled in genetic research programs. Among study enrollees from an African American kindred in Utah, 83% underwent BRCA1 testing.[34] Age, perceived risk of being a carrier, and more extensive cancer knowledge predicted testing acceptance. Another study that recruited African American women through physician and community referrals reported a BRCA1/BRCA2 testing acceptance rate of 22%.[35] Predictors of test acceptance included having a higher probability of having a pathogenic variant, being married, and being less certain about one’s cancer risk. Finally, a third study that recruited at-risk African American women from an urban cancer screening clinic found that acceptors of BRCA testing were more knowledgeable about breast cancer genetics and perceived fewer barriers to testing, including negative emotional reactions, stigmatization concerns, and family-related guilt.[36] While these are independent predictors of genetic testing uptake, they do not explain the disparities in testing uptake across different ethnic groups. What may explain these differences are several attitudes and beliefs held about testing by individuals from diverse populations.

Work examining attitudes toward breast cancer genetic testing in Latino and African American populations indicates limited knowledge and awareness about testing but a generally receptive view once they are informed; in comparison with White populations, Latino and African American populations have relatively more concerns about testing.

For example, in a qualitative study with 51 Latino individuals unselected for risk status, important findings included the fact that participants were highly interested in genetic testing for inherited cancer susceptibility, despite very limited knowledge about genetics. One important barrier involved secrecy or embarrassment about family discussions of cancer and genetics, which could be addressed in intervention strategies.[37] Another qualitative study with 54 Latina women at risk of hereditary breast cancer showed that knowledge about BRCA1/BRCA2 counseling was low, although the women were interested in learning more about counseling to gain risk information for family members. Barriers to counseling included life demands, cost, and language issues.[38]

A telephone survey of 314 patients from an inner-city network of Pittsburgh, Pennsylvania, health centers, 50% of whom were African American, found that most participants (57%) (both African American and White participants) felt that genetic testing to evaluate disease risk was a good idea; however, more African American participants than White participants thought that genetic testing would lead to racial discrimination (37% vs. 22%, respectively) and that genetics research was unethical and tampered with nature (20% vs. 11%, respectively).[39] Finally, in a study of 222 women in Savannah, Georgia, where most had neither a personal history (70%) nor a family history (60%) of breast cancer, African American women (who comprised 26% of the sample) were less likely to be aware of breast cancer genes and genetic testing. Awareness was also related to higher income, higher education level, and having a family breast cancer history. However, 74% of the entire sample expressed willingness to be tested for breast cancer susceptibility.[40]

In a sample of 146 African American women meeting criteria for BRCA1/BRCA2 pathogenic variant testing, women born outside the United States reported higher levels of anticipated negative emotional reactions (e.g., fear, hopelessness, and lack of confidence that they could emotionally handle testing). Higher levels of breast cancer–specific distress were associated with anticipated negative emotional reactions, confidentiality concerns, and anticipated guilt regarding the family impact of breast cancer genetic testing.[41] A future orientation (e.g., “I often think about how my actions today will affect my health when I am older”) was associated with overall perceived benefits of breast cancer genetic testing in this population (n = 140); however, future orientation was also found to be positively associated with family-related cons of testing, including family guilt and worry regarding the impact of testing on the family.[42]

There are racial differences in provider discussion and patient uptake of genetic testing for variants in BRCA1/BRCA2. A study of women aged 18 to 64 years and diagnosed with invasive breast cancer between 2007 and 2009 found that, even after adjusting for pathogenic variant risk, African American women were less likely to report having received a physician recommendation for genetic testing. There was no difference across all races in concerns that BRCA1/BRCA2 testing was too expensive and only minimal differences in testing attitudes or insurance concerns were found, none of which influenced testing uptake.[43] A study of breast or ovarian cancer survivors (N = 50) eligible for BRCA1/BRCA2 genetic testing found that 48% were referred for genetic counseling and testing and/or had undergone genetic testing. Individuals with higher breast cancer genetics knowledge and higher self-efficacy were more likely to have engaged in genetic counseling and testing.[44] In a study of women with invasive breast cancer diagnosed before age 50 years between 2009 and 2012 who were identified through the Florida Cancer Data System state registry and eligible for BRCA1/BRCA2 genetic testing on the basis of existing guidelines, African American individuals were less likely to report a discussion with their health care provider and undergo genetic testing.[45] The same study found similar overall testing rates in Hispanic (61%) and non-Hispanic (65%) White individuals. However, testing rates were lower among Hispanic individuals who spoke primarily Spanish at home (50% Spanish speaking vs. 69% English speaking; P = .0009), and in general, Hispanic individuals were less likely to have been referred for genetic testing.[46] However, this finding is not consistent across all studies. In a study of women aged 20 to 79 years with ductal carcinoma in situ or invasive breast cancer identified through the Surveillance, Epidemiology, and End Results (SEER) registry in Georgia and Los Angeles County, all eligible for BRCA1/BRCA2 genetic testing on the basis of existing guidelines, no ethnic differences were detected in receipt of genetic counseling or physician-directed discussion about genetic testing.[30]

Factors associated with declining genetic counseling and testing

There is evidence that primary reasons for declining testing involves being childless, which reduces any family motivations for testing; and concerns about the negative ramifications of testing, including difficulty retaining insurance or concerns about personal health.

Limited data are available about the characteristics of at-risk individuals who decline to be tested or have never been tested. It is difficult to access samples of test decliners because they may be reluctant to participate in research studies. Studies of genetic testing uptake are difficult to compare because people may decline at different points and with different amounts of pretest education and counseling. One study found that 43% of affected and unaffected individuals from hereditary breast/ovarian cancer families who completed a baseline interview regarding testing declined to be tested. Most individuals who declined testing chose not to participate in educational sessions. Decliners were more likely to be male and be unmarried and have fewer relatives with breast cancer. Decliners who had high levels of cancer-related stress had higher levels of depression. Decliners lost to follow-up were significantly more likely to be affected with cancer.[47]

Another study looked at a small number (n = 13) of women decliners who carried a 25% to 50% probability of harboring a BRCA pathogenic variant; these nontested women were more likely to be childless and to have higher levels of education. This study showed that most women decided not to undergo the test after serious deliberation about the risks and benefits. Satisfaction with frequent surveillance was given as one reason for nontesting by most of these women.[48] Other reasons for declining included having no children and becoming acquainted with breast/ovarian cancer in the family relatively early in their lives.[47,48]

A third study evaluated characteristics of 34 individuals who declined BRCA1/BRCA2 testing in a large multicenter study in the United Kingdom. Decliners were younger than a national sample of test acceptors, and female decliners had lower mean scores on a measure of cancer worry. Although 78% of test decliners/deferrers felt that their health was at risk, they reported that learning about their BRCA1/BRCA2 pathogenic variant status would cause them to worry about the following:

  • Their children’s health (76%).
  • Their life insurance (60%).
  • Their own health (56%).
  • Loss of their job (5%).
  • Receiving less screening if they did not carry a BRCA1/BRCA2 pathogenic variant (62%).

Apprehension about the impact of the test result was a more important factor in the decision to decline testing than were concrete burdens such as time required to travel to a genetics clinic and time spent away from work, family, and social obligations.[49] In 15% (n = 31) of individuals from 13 hereditary breast and ovarian cancer (HBOC) families who underwent genetic education and counseling and declined testing for a documented pathogenic variant in the family, positive changes in family relationships were reported—specifically, greater expressiveness and cohesion—compared with those who pursued testing.[50]

Genetic counseling and testing in children

Testing for BRCA1/BRCA2 pathogenic variants has been almost universally limited to adults older than 18 years. The risks of testing children for adult-onset disorders, such as breast and ovarian cancers, as inferred from developmental data on children’s medical understanding and ability to provide informed consent, have been outlined in several reports.[5154]

Studies suggest that individuals who have undergone BRCA1/BRCA2 genetic testing or who are adult offspring of individuals who have had testing are generally not in favor of testing minors.[55,56] Although the data are limited, research suggests that males, pathogenic variant noncarriers, and those whose mothers did not have personal histories of breast cancer may be more likely to favor genetic testing in minors in general.[55] Of those who had minor children at the time the study was conducted, only 17% stated a preference for having their own children tested. Concerns regarding testing of minors included psychological risks and insufficient maturity. Potential benefits included the ability to influence health behaviors.[56]

No data exist on the testing of children for BRCA1/BRCA2 pathogenic variants, although some researchers believe it is necessary to test the validity of assumptions underlying the general prohibition of testing children for genetic variants associated with breast and ovarian cancers and other adult-onset diseases.[5759] In one study, 20 children (aged 11–17 y) of a selected group of mothers undergoing genetic testing (80% of whom previously had breast cancer and all of whom had discussed BRCA1/BRCA2 testing with their children) completed self-report questionnaires on their health beliefs and attitudes toward cancer, feelings related to cancer, and behavioral problems.[60] Ninety percent of children thought they would want cancer risk information as adults; half worried about themselves or a family member developing cancer. There was no evidence of emotional distress or behavioral problems.

What People Bring to Genetic Testing: Impact of Risk Perception, Health Beliefs, and Personality Characteristics

The emerging literature in this area suggests that risk perceptions, health beliefs, psychological status, and personality characteristics are important factors in decision making about breast/ovarian cancer genetic testing. Many women presenting at academic centers for BRCA1/BRCA2 testing arrive with a strong belief that they have a pathogenic variant, having decided they want genetic testing, but possessing little information about the risks or limitations of testing.[61] Most mean scores of psychological functioning at baseline for subjects in genetic counseling studies were within normal limits.[62] Nonetheless, a subset of subjects in many genetic counseling studies present with elevated anxiety, depression, or cancer worry.[63,64] Identification of these individuals is essential to prevent adverse outcomes. In a study of 205 women pursuing genetic counseling, interactions among cancer worry, breast cancer risk perception, and perceived severity of having a breast cancer genetic variant were found such that those with high worry, high breast cancer risk perception, and low perceived severity were twice as likely to follow through with BRCA1/BRCA2 testing than others.[65]

A general tendency to overestimate inherited risk of breast and ovarian cancer has been noted in at-risk populations,[6669] in cancer patients,[67,70,71] in spouses of breast and ovarian cancer patients,[72] and among women in the general population.[7375] but underestimation of breast cancer risk in higher-risk and average-risk women also has been reported.[76] This overestimation may encourage a belief that BRCA1/BRCA2 genetic testing will be more informative than it is currently thought to be. Some evidence exists that even counseling does not dissuade women at low to moderate risk from the belief that BRCA1 testing could be valuable.[32] Overestimation of both breast and ovarian cancer risk has been associated with nonadherence to physician-recommended screening practices.[77,78] A meta-analysis of 12 studies of outcomes of genetic counseling for breast/ovarian cancer showed that counseling improved the accuracy of risk perception.[79]

Women appear to be the prime communicators within families about the family history of breast cancer.[80] Higher numbers of maternal versus paternal transmission cases are reported,[81] likely due to family communication patterns, to the misconception that breast cancer risk can only be transmitted through the mother, and to the greater difficulty in recognizing paternal family histories because of the need to identify more distant relatives with cancer. In an analysis of 2,505 women participating in the Family Healthware Impact Trial,[82] not only was evidence of underreporting of paternal family history identified, but also women reported a lower level of perceived breast cancer risk with a paternal versus maternal breast cancer family history.[83] Physicians and counselors taking a family history are encouraged to elicit paternal and maternal family histories of breast, ovarian, or other associated cancers.[80]

The accuracy of reported family history of breast or ovarian cancer varies; some studies found levels of accuracy above 90%,[84,85] with others finding more errors in the reporting of cancer in second-degree relatives (SDRs) or more distant relatives [86] or in age of onset of cancer.[87] Less accuracy has been found in the reporting of cancers other than breast cancer. Ovarian cancer history was reported with 60% accuracy in one study compared with 83% accuracy in breast cancer history.[88] Providers should be aware that there are a few published cases of Munchausen syndrome in reporting of false family breast cancer history.[89] Much more common is erroneous reporting of family cancer history due to unintentional errors or gaps in knowledge, related in some cases to the early death of potential maternal informants about cancer family history.[80] (Refer to the Documenting the Family History section in Cancer Genetics Risk Assessment and Counseling for more information.)

Targeted written,[90,91] video, CD-ROM, interactive computer programs and websites,[9299] and culturally targeted educational materials [100102] may be effective and efficient methods of increasing knowledge about the pros and cons of genetic testing. Such supplemental materials may allow more efficient use of the time allotted for pretest education and counseling by genetics and primary care providers and may discourage individuals without appropriate indication of risk from seeking genetic testing.[90]

Genetic Counseling for Hereditary Predisposition to Breast Cancer

Counseling for breast cancer risk typically involves individuals with family histories that are potentially attributable to BRCA1 or BRCA2. It also, however, may include individuals with family histories of Li-Fraumeni syndrome, ataxia-telangiectasia, Cowden syndrome, or Peutz-Jeghers syndrome.[103] (Refer to the High-Penetrance Breast and/or Gynecologic Cancer Susceptibility Genes section of this summary for more information.)

Management strategies for carriers may involve decisions about the nature, frequency, and timing of screening and surveillance procedures, chemoprevention, risk-reducing surgery, and use of hormone replacement therapy (HRT). The utilization of breast conservation and radiation as cancer therapy for women who are carriers may be influenced by knowledge of pathogenic variant status. (Refer to the Management of Cancer Risks in BRCA1/2 Carriers section in BRCA1 and BRCA2: Cancer Risks and Management for more information.)

Counseling also includes consideration of related psychosocial concerns and discussion of planned family communication and the responsibility to warn other family members about the possibility of having an increased risk of breast, ovarian, and other cancers. Data suggest that individual responses to being tested as adults are influenced by the results status of other family members.[104,105] Management of anxiety and distress are important not only as quality-of-life factors, but also because high anxiety may interfere with the understanding and integration of complex genetic and medical information and adherence to screening.[106108] Formal, objective evaluation of these outcomes are well documented. (Refer to the Emotional Outcomes and Behavioral Outcomes sections of this summary for more information.)

Published descriptions of counseling programs for BRCA1 (and subsequently for BRCA2) testing include strategies for gathering a family history, assessing eligibility for testing, communicating the considerable volume of relevant information about breast/ovarian cancer genetics and associated medical and psychosocial risks and benefits, and discussion of specialized ethical considerations about confidentiality and family communication.[109116] Participant distress, intrusive thoughts about cancer, coping style, and social support were assessed in many prospective testing candidates. The psychosocial outcomes evaluated in these programs have included changes in knowledge about the genetics of breast/ovarian cancer after counseling, risk comprehension, psychological adjustment, family and social functioning, and reproductive and health behaviors.[117] A Dutch study of communication processes and satisfaction levels of consultands going through cancer genetic counseling for inherited cancer syndromes indicated that asking more medical questions (by the counselor), providing more psychosocial information, and longer eye contact by the counselor were associated with lower satisfaction levels. The provision of medical information by the counselor was most highly related to satisfaction and perception that needs have been fulfilled.[118]

Many of the psychosocial outcome studies involve specialized, highly selected research populations, some of which were utilized to map and clone BRCA1 and BRCA2. One such example is K2082, an extensively studied kindred of more than 800 members of a Utah Mormon family in which a BRCA1 pathogenic variant accounts for the observed increased rates of breast and ovarian cancer. A study of the understanding that members of this kindred have about breast/ovarian cancer genetics found that, even in breast cancer research populations, there was incomplete knowledge about associated risks of colon and prostate cancer, the existence of options for risk-reducing mastectomy (RRM) and risk-reducing salpingo-oophorectomy (RRSO), and the complexity of existing psychosocial risks.[109] A meta-analysis of 21 studies found that genetic counseling was effective in increasing knowledge and improved the accuracy of perceived risk. Genetic counseling did not have a statistically significant long-term impact on affective outcomes including anxiety, distress, or cancer-specific worry and the behavioral outcome of cancer surveillance activities.[62] These prospective studies, however, were characterized by a heterogeneity of measures of cancer-specific worry and inconsistent findings in effects of change from baseline.[62]

Emotional Outcomes

Although there were initial concerns about the possibility of adverse emotional consequences from BRCA testing, most studies conducted over the years have shown low levels of psychological distress among both carriers and noncarriers, particularly over the longer term.[119121] In a meta-analysis examining cancer-specific distress over short (0–4 weeks), moderate (5–24 weeks), and long (25–52 weeks) periods of time since the receipt of testing results, carriers were found to demonstrate increased levels of distress shortly after receiving results, with levels returning to baseline within moderate and long periods of time.[119] In contrast, noncarriers and those with inconclusive results showed reduced levels of distress over time.[119,122] Psychological distress patterns were found to vary as a function of several factors, including the cancer history of the individual and the country within which the study was conducted. Carriers with a personal history of cancer experienced small decreases in distress over time, whereas no changes were observed among carriers without a personal history of cancer. Among individuals with inconclusive results, greater decreases in distress were observed among those without a cancer history than among those with a cancer history. Among noncarriers, those in the United States experienced significantly greater decreases in psychological distress than noncarriers from Europe and Australia. A study conducted in Austria noted that certain subgroups of consultands experienced greater distress, including those who were older, had a more recent cancer diagnosis, or those who had received counseling but declined BRCA testing.[123]

Several studies have reported on emotional outcomes over longer follow-up periods (i.e., greater than 12 months after disclosure) than those reported in the meta-analysis described above.[119] In a U.K. study, cancer-related worry did not differ between carriers and noncarriers at 3 years of follow-up.[124] Two U.S.-based studies published since the meta-analytic review [119] have reported similar findings among women who were surveyed more than 3 years after receipt of BRCA test results.[125,126] In a cross-sectional study,[125] 167 women who were surveyed more than 4 years after receiving BRCA test results reported low levels of genetic testing–specific concerns, as measured using the Multidimensional Impact of Cancer Risk Assessment Scale.[127] In multivariate regression models, carriers of pathogenic variants were significantly more likely to experience distress than were noncarriers. In a second study,[126] 464 women were followed prospectively for a median of 5 years (range, 3.4–9.1 y) after testing. Among both affected and unaffected participants, BRCA carriers reported significantly higher levels of distress, uncertainty (affected only), perceived stress (affected only), and lower positive testing experiences (unaffected only) than women who received negative results for a known pathogenic variant in the family.[126] Although both studies [125,126] reported greater distress among BRCA carriers than among noncarriers, the level of distress was not reflective of clinically significant dysfunction.

Although most studies have reported that a positive BRCA test result has a relatively minimal impact on psychological distress, many of these studies were conducted among families with a strong family history of breast or ovarian cancer who underwent extensive pretest genetic counseling. Therefore, emotional responses may not generalize to individuals who test under different contexts. For example, individuals who are tested with population BRCA screening may not have a family history of cancer.[128130] Although pretest genetic counseling is recommended, this is not always done when genetic testing is ordered by nongenetic providers [131] or directly through commercial companies.[132,133]

For example, in a Canadian study of 2,080 Jewish women who participated in a population-based genetic screening study to test for three BRCA pathogenic variants common in families of Jewish heritage, women were not offered in-person genetic counseling but were given a pamphlet on genetic testing for BRCA1/BRCA2 before they provided a DNA sample. One year after genetic testing, women who were positive for a pathogenic variant (n = 18) showed significant increases in cancer-specific distress, whereas no changes in distress were observed among women who were negative for a pathogenic variant.[129] The mean distress score on the Impact of Event Scale for the 18 women with a known pathogenic variant was 25.3 (range, 2–51); 10 of 18 women (56%) scored within moderate (26–43) (n = 7) or severe (44+) (n = 3) ranges. It is unclear from this study whether the increase in distress observed at 1 year of follow-up was due to the lack of in-person genetic counseling, or whether the lower levels of distress at baseline observed were because the women in the study were low risk but eligible for testing because of their ancestry. A follow-up study with this cohort found that distress decreased between 1 to 2 years after testing and that changes in distress varied by risk-reduction options undertaken by carriers. Specifically, those who had undergone RRM or risk-reducing oophorectomy experienced significant decreases in distress compared with those who did not have either surgery.[130] Another smaller qualitative study also supports these findings.[134]

Similarly, the impact of direct-to-consumer (DTC) BRCA testing through commercial companies requires further evaluation. Case studies have reported adverse emotional responses after receipt of a positive BRCA result from DTC genetic testing, suggesting the need for further evaluation of the emotional outcomes of women undergoing genetic testing through commercial companies.[132,133] Only one study, conducted by a commercial company, has attempted to evaluate the impact of BRCA testing in this context.[135] A total of 32 individuals (16 women and 16 men) who tested positive for one of three BRCA founder pathogenic variants common in AJs completed semi-structured interviews. None of the carriers reported extreme anxiety, although some experienced moderate anxiety (13%) or initial disappointment and anxiety that dissipated over time (28%). These findings should be interpreted with caution given that only 24% (32 of 136) of invited carriers of BRCA pathogenic variants participated in the study, raising concerns about selection bias.

Despite evidence of a short-term increase in distress after the receipt of genetic testing results, any adverse responses to a positive carrier status dissipate within 12 months.[119] Additional research is needed to examine emotional outcomes for those who are not provided genetic counseling before testing.[131]

Emotional outcomes in newly diagnosed breast cancer patients

It is increasingly common for women with breast cancer to pursue genetic counseling and testing at the time of diagnosis to assist with treatment decision making. (Refer to the Benefits of offering genetic testing at the time of cancer diagnosis section for more information.) Given that women with new breast cancer diagnoses are likely to experience some distress, concerns have been raised about the potential for additional adverse psychological implications of rapid genetic counseling and testing (RGT) between diagnosis and surgery.[136,137] However, data from several studies,[138140] including a large observational study [141] and a randomized trial,[142] provided evidence indicating that there were no adverse psychological effects associated with RGT. For example, an observational study analyzed 1,007 with newly diagnosed breast cancers from four Canadian academic centers. These patients underwent RGT and adverse psychological effects were not noted at one week or one year posttesting.[141] There were no differences in anxiety, distress, or depression between BRCA carriers (6% of the study population) and those with uninformative results in the short-term. However, after one year, BRCA carriers had significantly lower depression scores when compared with patients who had uninformative, negative results. Depression scores were within the normal range for both groups, and these scores did not reach depression levels that were clinically significant. Factors associated with lower levels of psychological functioning included lower educational levels, not having family histories of cancer, and undergoing bilateral mastectomies. Of note, women who had a variant of uncertain significance in the BRCA1/2 g

Breast Cancer Treatment (PDQ®)–Patient Version

Breast Cancer Treatment (PDQ®)–Patient Version

General Information About Breast Cancer

Key Points

  • Breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast.
  • A family history of breast cancer and other factors increase the risk of breast cancer.
  • Breast cancer is sometimes caused by inherited gene mutations (changes).
  • The use of certain medicines and other factors decrease the risk of breast cancer.
  • Signs of breast cancer include a lump or change in the breast.
  • Tests that examine the breasts are used to diagnose breast cancer.
  • If cancer is found, tests are done to study the cancer cells.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Breast cancer is a disease in which malignant (cancer) cells form in the tissues of the breast.

The breast is made up of lobes and ducts. Each breast has 15 to 20 sections called lobes. Each lobe has many smaller sections called lobules. Lobules end in dozens of tiny bulbs that can make milk. The lobes, lobules, and bulbs are linked by thin tubes called ducts.

EnlargeIllustration of the female breast anatomy. On the left, a front view shows lymph nodes inside the breast going from the breast to the armpit. On the right, a cross-section shows the chest wall, ribs, fatty tissue, lobes, ducts, and lobules. Also shown in both panels are the muscle, nipple, and areola.
The female breast contains lobes, lobules, and ducts that produce and transport milk to the nipple. Fatty tissue gives the breast its shape, while muscles and the chest wall provide support. The lymphatic system, including lymph nodes, filter lymph and store white blood cells that help fight infection and disease.

Each breast also has blood vessels and lymph vessels. The lymph vessels carry an almost colorless, watery fluid called lymph. Lymph vessels carry lymph between lymph nodes. Lymph nodes are small, bean-shaped structures found throughout the body. They filter lymph and store white blood cells that help fight infection and disease. Groups of lymph nodes are found near the breast in the axilla (under the arm), above the collarbone, and in the chest.

The most common type of breast cancer is ductal carcinoma, which begins in the cells of the ducts and makes up about 70% to 80% of all breast cancer cases. The second most common type of breast cancer is lobular carcinoma, which begins in the lobes or lobules and makes up 10% to 15% of all breast cancer cases. Lobular carcinoma is more often found in both breasts at the same time than are other types of breast cancer. Inflammatory breast cancer is a rare type of fast-growing breast cancer in which cancer cells block lymph vessels in the skin of the breast.

EnlargeInvasive ductal carcinoma (IDC) of the breast; drawing shows a lobe, ducts, and fatty tissue in a cross section of the breast. An inset shows a normal duct and a duct with IDC and cancer cells spreading outside it.
Invasive ductal carcinoma (IDC) of the breast begins in the lining of a breast duct (milk duct) and spreads outside the duct to other tissues in the breast. It can also spread through the blood and lymph system to other parts of the body. IDC is the most common type of invasive breast cancer.
EnlargeInvasive lobular carcinoma of the breast; drawing shows a lobe, ducts, lobules, and fatty tissue in a cross section of the breast. There are also three separate pullouts showing a normal lobe, a normal lobule, and a lobule with invasive lobular carcinoma and cancer cells spreading outside it.
Invasive lobular carcinoma begins in the lobules (milk glands) of the breast and spreads outside the lobules to other tissues in the breast. It can also spread through the blood and lymph systems to other parts of the body.

For more information about breast cancer, see:

A family history of breast cancer and other factors increase the risk of breast cancer.

Anything that increases your chance of getting a disease is called a risk factor. Having a risk factor does not mean that you will get cancer; not having risk factors doesn’t mean that you will not get cancer. Talk to your doctor if you think you may be at risk for breast cancer.

Risk factors for breast cancer include the following:

Older age is the main risk factor for most cancers. The chance of getting cancer increases as you get older.

NCI’s Breast Cancer Risk Assessment Tool uses a woman’s risk factors to estimate her risk for breast cancer during the next five years and up to age 90. This online tool is meant to be used by a health care provider. For more information on breast cancer risk, call 1-800-4-CANCER.

Breast cancer is sometimes caused by inherited gene mutations (changes).

The genes in cells carry the hereditary information that is received from a person’s parents. Hereditary breast cancer makes up about 5% to 10% of all breast cancer. Some mutated genes related to breast cancer are more common in certain ethnic groups.

Women who have certain gene mutations, such as a BRCA1 or BRCA2 mutation, have an increased risk of breast cancer. These women also have an increased risk of ovarian cancer, and may have an increased risk of other cancers. Men who have a mutated gene related to breast cancer also have an increased risk of breast cancer. For more information, see Male Breast Cancer Treatment.

There are tests that can detect (find) mutated genes. These genetic tests are sometimes done for members of families with a high risk of cancer. For more information, see Genetics of Breast and Gynecologic Cancers.

The use of certain medicines and other factors decrease the risk of breast cancer.

Anything that decreases your chance of getting a disease is called a protective factor.

Protective factors for breast cancer include the following:

Signs of breast cancer include a lump or change in the breast.

These and other signs may be caused by breast cancer or by other conditions. Check with your doctor if you have:

  • A lump or thickening in or near the breast or in the underarm area.
  • A change in the size or shape of the breast.
  • A dimple or puckering in the skin of the breast.
  • A nipple turned inward into the breast.
  • Fluid, other than breast milk, from the nipple, especially if it’s bloody.
  • Scaly, red, or swollen skin on the breast, nipple, or areola (the dark area of skin around the nipple).
  • Dimples in the breast that look like the skin of an orange, called peau d’orange.

Tests that examine the breasts are used to diagnose breast cancer.

Check with your doctor if you notice any changes in your breasts. The following tests and procedures may be used:

  • Physical exam and health history: An exam of the body to check general signs of health, including checking for signs of disease, such as lumps or anything else that seems unusual. A history of the patient’s health habits and past illnesses and treatments will also be taken.
  • Clinical breast exam (CBE): An exam of the breast by a doctor or other health professional. The doctor will carefully feel the breasts and under the arms for lumps or anything else that seems unusual.
  • Mammogram: An x-ray of the breast.
    EnlargeDrawing of a woman standing with her left breast pressed between two plates of a mammography machine. Behind her, a health professional uses an X-ray machine to take pictures of the breast. An inset shows the X-ray film image with an arrow pointed at abnormal tissue.
    Mammography is an imaging test used to screen for and diagnose breast cancer. It can detect abnormal breast tissue, including cancer, sometimes before symptoms appear.
  • Ultrasound exam: A procedure in which high-energy sound waves (ultrasound) are bounced off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. The picture can be printed to be looked at later.
  • MRI (magnetic resonance imaging): A procedure that uses a magnet, radio waves, and a computer to make a series of detailed pictures of both breasts. This procedure is also called nuclear magnetic resonance imaging (NMRI).
    EnlargeMRI of the breast; drawing shows a person lying face down on a narrow, padded table with their arms above their head. The person’s breasts hang down into an opening in the table. The table slides into the MRI machine, which takes detailed pictures of the inside of the breast. An inset shows an MRI image of the insides of both breasts.
    An MRI of the breast is a procedure that uses radio waves, a strong magnet, and a computer to create detailed pictures of the inside of the breast. A contrast dye may be injected into a vein (not shown) to make the breast tissues easier to see on the MRI pictures. An MRI may be used with other breast imaging tests to detect breast cancer or other abnormal changes in the breast. It may also be used to screen for breast cancer in some people who have a high risk of the disease. Note: The inset shows an MRI image of the insides of both breasts. Credit for inset: The Cancer Imaging Archive (TCIA).
  • Blood chemistry studies: A procedure in which a blood sample is checked to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease.
  • Biopsy: The removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. If a lump in the breast is found, a biopsy may be done.

    There are four types of biopsy used to check for breast cancer:

If cancer is found, tests are done to study the cancer cells.

Decisions about the best treatment are based on the results of these tests. The tests give information about:

  • how quickly the cancer may grow.
  • how likely it is that the cancer will spread through the body.
  • how well certain treatments might work.
  • how likely the cancer is to recur (come back).

Tests include:

  • Estrogen and progesterone receptor test: A test to measure the amount of estrogen and progesterone (hormones) receptors in cancer tissue. If there are more estrogen and progesterone receptors than normal, the cancer is called estrogen and/or progesterone receptor positive. This type of breast cancer may grow more quickly. The test results show whether treatment to block estrogen and progesterone may stop the cancer from growing.
  • Human epidermal growth factor type 2 receptor (HER2/neu) test: A laboratory test to measure how many HER2/neu genes there are and how much HER2/neu protein is made in a sample of tissue. If there are more HER2/neu genes or higher levels of HER2/neu protein than normal, the cancer is called HER2/neu positive or HER2 positive. This type of breast cancer may grow more quickly and is more likely to spread to other parts of the body. The cancer may be treated with drugs that target the HER2/neu protein, such as trastuzumab and pertuzumab.
  • Multigene tests: Tests in which samples of tissue are studied to look at the activity of many genes at the same time. These tests may help predict whether cancer will spread to other parts of the body or recur (come back).

    There are many types of multigene tests. The following multigene tests have been studied in clinical trials:

    • Oncotype DX: This test helps predict whether early-stage breast cancer that is estrogen receptor positive and node negative will spread to other parts of the body. If the risk that the cancer will spread is high, chemotherapy may be given to lower the risk.
    • MammaPrint: A laboratory test in which the activity of 70 different genes is looked at in the breast cancer tissue of women who have early-stage invasive breast cancer that has not spread to lymph nodes or has spread to 3 or fewer lymph nodes. The activity level of these genes helps predict whether breast cancer will spread to other parts of the body or come back. If the test shows that the risk that the cancer will spread or come back is high, chemotherapy may be given to lower the risk.

Based on these tests, breast cancer is described as one of the following types:

This information helps the doctor decide which treatments will work best for your cancer.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis and treatment options depend on:

  • The stage of the cancer (the size of the tumor and whether it is in the breast only or has spread to lymph nodes or other places in the body).
  • The type of breast cancer.
  • Estrogen receptor and progesterone receptor levels in the tumor tissue.
  • Human epidermal growth factor type 2 receptor (HER2/neu) levels in the tumor tissue.
  • Whether the tumor tissue is triple-negative (cells that do not have estrogen receptors, progesterone receptors, or high levels of HER2/neu).
  • How fast the tumor is growing.
  • How likely the tumor is to recur (come back).
  • A woman’s age, general health, and menopausal status (whether a woman is still having menstrual periods).
  • Whether the cancer has just been diagnosed or has recurred (come back).

Stages of Breast Cancer

Key Points

  • After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body.
  • There are three ways that cancer spreads in the body.
  • Cancer may spread from where it began to other parts of the body.
  • In breast cancer, stage is based on the size and location of the primary tumor, the spread of cancer to nearby lymph nodes or other parts of the body, tumor grade, and whether certain biomarkers are present.
  • The TNM system is used to describe the size of the primary tumor and the spread of cancer to nearby lymph nodes or other parts of the body.
    • Tumor (T). The size and location of the tumor.
    • Lymph Node (N). The size and location of lymph nodes where cancer has spread.
    • Metastasis (M). The spread of cancer to other parts of the body.
  • The grading system is used to describe how quickly a breast tumor is likely to grow and spread.
  • Biomarker testing is used to find out whether breast cancer cells have certain receptors.
  • The TNM system, the grading system, and biomarker status are combined to find out the breast cancer stage.
  • Talk to your doctor to find out what your breast cancer stage is and how it is used to plan the best treatment for you.
    • The treatment of breast cancer depends partly on the stage of the disease.

After breast cancer has been diagnosed, tests are done to find out if cancer cells have spread within the breast or to other parts of the body.

The process used to find out whether the cancer has spread within the breast or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment. The results of some of the tests used to diagnose breast cancer are also used to stage the disease. (See the General Information section.)

The following tests and procedures also may be used in the staging process:

  • Sentinel lymph node biopsy: The removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes.
  • Chest x-ray: An x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body.
  • CT scan (CAT scan): A procedure that makes a series of detailed pictures of areas inside the body, taken from different angles. The pictures are made by a computer linked to an x-ray machine. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • Bone scan: A procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner.
  • PET scan (positron emission tomography scan): A procedure to find malignant tumor cells in the body. A small amount of radioactive glucose (sugar) is injected into a vein. The PET scanner rotates around the body and makes a picture of where glucose is being used in the body. Malignant tumor cells show up brighter in the picture because they are more active and take up more glucose than normal cells do.

There are three ways that cancer spreads in the body.

Cancer can spread through tissue, the lymph system, and the blood:

  • Tissue. The cancer spreads from where it began by growing into nearby areas.
  • Lymph system. The cancer spreads from where it began by getting into the lymph system. The cancer travels through the lymph vessels to other parts of the body.
  • Blood. The cancer spreads from where it began by getting into the blood. The cancer travels through the blood vessels to other parts of the body.

Cancer may spread from where it began to other parts of the body.

When cancer spreads to another part of the body, it is called metastasis. Cancer cells break away from where they began (the primary tumor) and travel through the lymph system or blood.

  • Lymph system. The cancer gets into the lymph system, travels through the lymph vessels, and forms a tumor (metastatic tumor) in another part of the body.
  • Blood. The cancer gets into the blood, travels through the blood vessels, and forms a tumor (metastatic tumor) in another part of the body.

The metastatic tumor is the same type of cancer as the primary tumor. For example, if breast cancer spreads to the bone, the cancer cells in the bone are actually breast cancer cells. The disease is metastatic breast cancer, not bone cancer.

Many cancer deaths are caused when cancer moves from the original tumor and spreads to other tissues and organs. This is called metastatic cancer. This animation shows how cancer cells travel from the place in the body where they first formed to other parts of the body.

In breast cancer, stage is based on the size and location of the primary tumor, the spread of cancer to nearby lymph nodes or other parts of the body, tumor grade, and whether certain biomarkers are present.

To plan the best treatment and understand your prognosis, it is important to know the breast cancer stage.

There are 3 types of breast cancer stage groups:

  • Clinical Prognostic Stage is used first to assign a stage for all patients based on health history, physical exam, imaging tests (if done), and biopsies. The Clinical Prognostic Stage is described by the TNM system, tumor grade, and biomarker status (ER, PR, HER2). In clinical staging, mammography or ultrasound is used to check the lymph nodes for signs of cancer.
  • Pathological Prognostic Stage is then used for patients who have surgery as their first treatment. The Pathological Prognostic Stage is based on all clinical information, biomarker status, and laboratory test results from breast tissue and lymph nodes removed during surgery.
  • Anatomic Stage is based on the size and the spread of cancer as described by the TNM system. The Anatomic Stage is used in parts of the world where biomarker testing is not available. It is not used in the United States.

The TNM system is used to describe the size of the primary tumor and the spread of cancer to nearby lymph nodes or other parts of the body.

For breast cancer, the TNM system describes the tumor as follows:

Tumor (T). The size and location of the tumor.

EnlargeDrawing shows different sizes of common items in millimeters (mm): a sharp pencil point (1 mm), a new crayon point (2 mm), a pencil-top eraser (5 mm), a pea (10 mm), a peanut (20 mm), and a lime (50 mm). Also shown is a 2-centimeter (cm) ruler that shows 10 mm is equal to 1 cm.
Tumor sizes are often measured in millimeters (mm) or centimeters. Common items that can be used to show tumor size in mm include: a sharp pencil point (1 mm), a new crayon point (2 mm), a pencil-top eraser (5 mm), a pea (10 mm), a peanut (20 mm), and a lime (50 mm).
  • TX: Primary tumor cannot be assessed.
  • T0: No sign of a primary tumor in the breast.
  • Tis: Carcinoma in situ. There are 2 types of breast carcinoma in situ:
    • Tis (DCIS): DCIS is a condition in which abnormal cells are found in the lining of a breast duct. The abnormal cells have not spread outside the duct to other tissues in the breast. In some cases, DCIS may become invasive breast cancer that is able to spread to other tissues. At this time, there is no way to know which lesions can become invasive.
    • Tis (Paget disease): Paget disease of the nipple is a condition in which abnormal cells are found in the skin cells of the nipple and may spread to the areola. It is not staged according to the TNM system. If Paget disease AND an invasive breast cancer are present, the TNM system is used to stage the invasive breast cancer.
  • T1: The tumor is 20 millimeters or smaller. There are 4 subtypes of a T1 tumor depending on the size of the tumor:
    • T1mi: the tumor is 1 millimeter or smaller.
    • T1a: the tumor is larger than 1 millimeter but not larger than 5 millimeters.
    • T1b: the tumor is larger than 5 millimeters but not larger than 10 millimeters.
    • T1c: the tumor is larger than 10 millimeters but not larger than 20 millimeters.
  • T2: The tumor is larger than 20 millimeters but not larger than 50 millimeters.
  • T3: The tumor is larger than 50 millimeters.
  • T4: The tumor is described as one of the following:
    • T4a: the tumor has grown into the chest wall.
    • T4b: the tumor has grown into the skin—an ulcer has formed on the surface of the skin on the breast, small tumor nodules have formed in the same breast as the primary tumor, and/or there is swelling of the skin on the breast.
    • T4c: the tumor has grown into the chest wall and the skin.
    • T4d: inflammatory breast cancer—one-third or more of the skin on the breast is red and swollen (called peau d’orange).

Lymph Node (N). The size and location of lymph nodes where cancer has spread.

When the lymph nodes are removed by surgery and studied under a microscope by a pathologist, pathologic staging is used to describe the lymph nodes. The pathologic staging of lymph nodes is described below.

  • NX: The lymph nodes cannot be assessed.
  • N0: No sign of cancer in the lymph nodes, or tiny clusters of cancer cells not larger than 0.2 millimeters in the lymph nodes.
  • N1: Cancer is described as one of the following:
    • N1mi: cancer has spread to the axillary (armpit area) lymph nodes and is larger than 0.2 millimeters but not larger than 2 millimeters.
    • N1a: cancer has spread to 1 to 3 axillary lymph nodes and the cancer in at least one of the lymph nodes is larger than 2 millimeters.
    • N1b: cancer has spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy. Cancer is not found in the axillary lymph nodes.
    • N1c: cancer has spread to 1 to 3 axillary lymph nodes and the cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer is also found by sentinel lymph node biopsy in the lymph nodes near the breastbone on the same side of the body as the primary tumor.
  • N2: Cancer is described as one of the following:
    • N2a: cancer has spread to 4 to 9 axillary lymph nodes and the cancer in at least one of the lymph nodes is larger than 2 millimeters.
    • N2b: cancer has spread to lymph nodes near the breastbone and the cancer is found by imaging tests. Cancer is not found in the axillary lymph nodes by sentinel lymph node biopsy or lymph node dissection.
  • N3: Cancer is described as one of the following:
    • N3a: cancer has spread to 10 or more axillary lymph nodes and the cancer in at least one of the lymph nodes is larger than 2 millimeters, or cancer has spread to lymph nodes below the collarbone.
    • N3b: cancer has spread to 1 to 9 axillary lymph nodes and the cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone and the cancer is found by imaging tests;

      or

      cancer has spread to 4 to 9 axillary lymph nodes and cancer in at least one of the lymph nodes is larger than 2 millimeters. Cancer has also spread to lymph nodes near the breastbone on the same side of the body as the primary tumor, and the cancer is larger than 0.2 millimeters and is found by sentinel lymph node biopsy.

    • N3c: cancer has spread to lymph nodes above the collarbone on the same side of the body as the primary tumor.

When the lymph nodes are checked using mammography or ultrasound, it is called clinical staging. The clinical staging of lymph nodes is not described here.

Metastasis (M). The spread of cancer to other parts of the body.

  • M0: There is no sign that cancer has spread to other parts of the body.
  • M1: Cancer has spread to other parts of the body, most often the bones, lungs, liver, or brain. If cancer has spread to distant lymph nodes, the cancer in the lymph nodes is larger than 0.2 millimeters. The cancer is called metastatic breast cancer.

The grading system is used to describe how quickly a breast tumor is likely to grow and spread.

The grading system describes a tumor based on how abnormal the cancer cells and tissue look under a microscope and how quickly the cancer cells are likely to grow and spread. Low-grade cancer cells look more like normal cells and tend to grow and spread more slowly than high-grade cancer cells. To describe how abnormal the cancer cells and tissue are, the pathologist will assess the following three features:

  • How much of the tumor tissue has normal breast ducts.
  • The size and shape of the nuclei in the tumor cells.
  • How many dividing cells are present, which is a measure of how fast the tumor cells are growing and dividing.

For each feature, the pathologist assigns a score of 1 to 3; a score of “1” means the cells and tumor tissue look the most like normal cells and tissue, and a score of “3” means the cells and tissue look the most abnormal. The scores for each feature are added together to get a total score between 3 and 9.

Three grades are possible:

  • Total score of 3 to 5: G1 (Low grade or well differentiated).
  • Total score of 6 to 7: G2 (Intermediate grade or moderately differentiated).
  • Total score of 8 to 9: G3 (High grade or poorly differentiated).

Biomarker testing is used to find out whether breast cancer cells have certain receptors.

Healthy breast cells, and some breast cancer cells, have receptors (biomarkers) that attach to the hormones estrogen and progesterone. These hormones are needed for healthy cells, and some breast cancer cells, to grow and divide. To check for these biomarkers, samples of tissue containing breast cancer cells are removed during a biopsy or surgery. The samples are tested in a laboratory to see whether the breast cancer cells have estrogen or progesterone receptors.

Another type of receptor (biomarker) that is found on the surface of all breast cancer cells is called HER2. HER2 receptors are needed for the breast cancer cells to grow and divide.

For breast cancer, biomarker testing includes:

  • Estrogen receptor (ER). If the breast cancer cells have estrogen receptors, the cancer cells are called ER positive (ER+). If the breast cancer cells do not have estrogen receptors, the cancer cells are called ER negative (ER-).
  • Progesterone receptor (PR). If the breast cancer cells have progesterone receptors, the cancer cells are called PR positive (PR+). If the breast cancer cells do not have progesterone receptors, the cancer cells are called PR negative (PR-).
  • Human epidermal growth factor type 2 receptor (HER2/neu or HER2). If the breast cancer cells have larger than normal amounts of HER2 receptors on their surface, the cancer cells are called HER2 positive (HER2+). If the breast cancer cells have a normal amount of HER2 on their surface, the cancer cells are called HER2 negative (HER2-). HER2+ breast cancer is more likely to grow and divide faster than HER2- breast cancer.

Sometimes the breast cancer cells will be described as triple-negative or triple-positive.

  • Triple-negative. If the breast cancer cells do not have estrogen receptors, progesterone receptors, or a larger than normal amount of HER2 receptors, the cancer cells are called triple-negative.
  • Triple-positive. If the breast cancer cells do have estrogen receptors, progesterone receptors, and a larger than normal amount of HER2 receptors, the cancer cells are called triple-positive.

It is important to know the estrogen receptor, progesterone receptor, and HER2 receptor status to choose the best treatment. There are drugs that can stop the receptors from attaching to the hormones estrogen and progesterone and stop the cancer from growing. Other drugs may be used to block the HER2 receptors on the surface of the breast cancer cells and stop the cancer from growing.

The TNM system, the grading system, and biomarker status are combined to find out the breast cancer stage.

Here are 3 examples that combine the TNM system, the grading system, and the biomarker status to find out the Pathological Prognostic breast cancer stage for a woman whose first treatment was surgery:

If the tumor size is 30 millimeters (T2), has not spread to nearby lymph nodes (N0), has not spread to distant parts of the body (M0), and is:

  • Grade 1
  • HER2+
  • ER-
  • PR-

The cancer is stage IIA.

If the tumor size is 53 millimeters (T3), has spread to 4 to 9 axillary lymph nodes (N2), has not spread to other parts of the body (M0), and is:

  • Grade 2
  • HER2+
  • ER+
  • PR-

The tumor is stage IIIA.

If the tumor size is 65 millimeters (T3), has spread to 3 axillary lymph nodes (N1a), has spread to the lungs (M1), and is:

  • Grade 1
  • HER2+
  • ER-
  • PR-

The cancer is stage IV (metastatic breast cancer).

Talk to your doctor to find out what your breast cancer stage is and how it is used to plan the best treatment for you.

After surgery, your doctor will receive a pathology report that describes the size and location of the primary tumor, the spread of cancer to nearby lymph nodes, tumor grade, and whether certain biomarkers are present. The pathology report and other test results are used to determine your breast cancer stage.

You are likely to have many questions. Ask your doctor to explain how staging is used to decide the best options to treat your cancer and whether there are clinical trials that might be right for you.

The treatment of breast cancer depends partly on the stage of the disease.

For ductal carcinoma in situ (DCIS) treatment options, see Treatment of Ductal Carcinoma in Situ.

For treatment options for stage I, stage II, stage IIIA, and operable stage IIIC breast cancer, see Treatment of Early, Localized or Operable Breast Cancer.

For treatment options for stage IIIB, inoperable stage IIIC, and inflammatory breast cancer, see Treatment of Locally Advanced Inflammatory Breast Cancer.

For treatment options for cancer that has recurred near the area where it first formed (such as in the breast, in the skin of the breast, in the chest wall, or in nearby lymph nodes), see Treatment of Locoregional Recurrent Breast Cancer.

For treatment options for stage IV (metastatic) breast cancer or breast cancer that has recurred in distant parts of the body, see Treatment of Metastatic Breast Cancer.

Inflammatory Breast Cancer

In inflammatory breast cancer, cancer has spread to the skin of the breast and the breast looks red and swollen and feels warm. The redness and warmth occur because the cancer cells block the lymph vessels in the skin. The skin of the breast may also show the dimpled appearance called peau d’orange (like the skin of an orange). There may not be any lumps in the breast that can be felt. Inflammatory breast cancer may be stage IIIB, stage IIIC, or stage IV.

EnlargeInflammatory breast cancer of the left breast showing redness, swelling, peau d'orange, and an inverted nipple.
Inflammatory breast cancer is a type of breast cancer in which the cancer cells block the lymph vessels in the skin of the breast. This causes the breast to look red and swollen. The skin may also appear dimpled or pitted, like the skin of an orange (peau d’orange), and the nipple may be inverted (facing inward).

Types of Treatment for Breast Cancer

Key Points

  • There are different types of treatment for patients with breast cancer.
  • The following types of treatment are used:
    • Surgery
    • Radiation therapy
    • Chemotherapy
    • Hormone therapy
    • Targeted therapy
    • Immunotherapy
  • New types of treatment are being tested in clinical trials.
  • Treatment for breast cancer may cause side effects.
  • Follow-up care may be needed.

There are different types of treatment for patients with breast cancer.

You and your cancer care team will work together to decide your treatment plan, which may include more than one type of treatment. Many factors will be considered, such as the stage and grade of the cancer, whether certain biomarkers are present, your overall health, and your preferences. Your plan will include information about your cancer, the goals of treatment, your treatment options and the possible side effects, and the expected length of treatment.

Talking with your cancer care team before treatment begins about what to expect will be helpful. You’ll want to learn what you need to do before treatment begins, how you’ll feel while going through it, and what kind of help you will need. To learn more, see Questions to Ask Your Doctor about Your Treatment.

The following types of treatment are used:

Surgery

Most patients with breast cancer have surgery to remove the cancer.

Sentinel lymph node biopsy is the removal of the sentinel lymph node during surgery. The sentinel lymph node is the first lymph node in a group of lymph nodes to receive lymphatic drainage from the primary tumor. It is the first lymph node the cancer is likely to spread to from the primary tumor. A radioactive substance and/or blue dye is injected near the tumor. The substance or dye flows through the lymph ducts to the lymph nodes. The first lymph node to receive the substance or dye is removed. A pathologist views the tissue under a microscope to look for cancer cells. If cancer cells are not found, it may not be necessary to remove more lymph nodes. Sometimes, a sentinel lymph node is found in more than one group of nodes. After the sentinel lymph node biopsy, the surgeon removes the tumor using breast-conserving surgery or mastectomy. If cancer cells were found, more lymph nodes will be removed through a separate incision (cut). This is called a lymph node dissection.

Types of surgery include:

  • Breast-conserving surgery is an operation to remove the cancer and some normal tissue around it, but not the breast itself. Part of the chest wall lining may also be removed if the cancer is near it. This type of surgery may also be called lumpectomy, partial mastectomy, segmental mastectomy, quadrantectomy, or breast-sparing surgery.
    EnlargeLumpectomy; the drawing on the left shows removal of the tumor and some of the normal tissue around it. The drawing on the right shows removal of some of the lymph nodes under the arm and removal of the tumor and part of the chest wall lining near the tumor. Also shown is fatty tissue in the breast.
    Lumpectomy. The tumor and some normal tissue around it are removed, but not the breast itself. Some lymph nodes under the arm may also be removed. If the cancer is near the chest wall, part of the chest wall lining may be removed as well.
  • Total mastectomy is surgery to remove the whole breast that has cancer. This procedure is also called a simple mastectomy. Some of the lymph nodes under the arm may be removed and checked for cancer. This may be done at the same time as the breast surgery or after. This is done through a separate incision.
    EnlargeTotal (simple) mastectomy; drawing shows removal of the whole breast and some of the lymph nodes under the arm.
    Total (simple) mastectomy. The whole breast is removed. Some of the lymph nodes under the arm may also be removed.
  • Modified radical mastectomy is surgery to remove the whole breast that has cancer. This may include removal of the nipple, areola (the dark-colored skin around the nipple), and skin over the breast. Most of the lymph nodes under the arm are also removed.
    EnlargeModified radical mastectomy; the drawing on the left shows the removal of the whole breast, including the lymph nodes under the arm. The drawing on the right shows a cross-section of the breast, including the fatty tissue and chest wall (ribs and muscle). A tumor in the breast is also shown.
    Modified radical mastectomy. The whole breast and most of the lymph nodes under the arm are removed.

Chemotherapy may be given before surgery to remove the tumor. When given before surgery, chemotherapy will shrink the tumor and reduce the amount of tissue that needs to be removed during surgery. Treatment given before surgery is called preoperative therapy or neoadjuvant therapy.

After the doctor removes all the cancer that can be seen at the time of the surgery, some patients may be given radiation therapy, chemotherapy, targeted therapy, or hormone therapy after surgery, to kill any cancer cells that are left. Treatment given after the surgery, to lower the risk that the cancer will come back, is called postoperative therapy or adjuvant therapy.

If a patient is going to have a mastectomy, breast reconstruction (surgery to rebuild a breast’s shape after a mastectomy) may be considered. Breast reconstruction may be done at the time of the mastectomy or at some time after. The reconstructed breast may be made with the patient’s own (nonbreast) tissue or by using implants filled with saline or silicone gel. Before the decision to get an implant is made, patients can call the Food and Drug Administration’s (FDA) Center for Devices and Radiologic Health at 1-888-INFO-FDA (1-888-463-6332) or visit the FDA website for more information on breast implants.

Radiation therapy

Radiation therapy is a cancer treatment that uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. There are two types of radiation therapy:

The way the radiation therapy is given depends on the type and stage of the cancer being treated. External radiation therapy is used to treat breast cancer. Internal radiation therapy with strontium-89 (a radionuclide) is used to relieve bone pain caused by breast cancer that has spread to the bones. Strontium-89 is injected into a vein and travels to the surface of the bones. Radiation is released and kills cancer cells in the bones.

Learn more about Radiation to Treat Cancer and Radiation Therapy Side Effects.

Chemotherapy

Chemotherapy (also called chemo) uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping them from dividing. Chemotherapy for breast cancer is usually systemic, meaning it is injected into a vein or given by mouth. When given this way, the drugs enter the bloodstream to reach cancer cells throughout the body.

To learn more about how chemotherapy works, how it is given, common side effects, and more, see Chemotherapy to Treat Cancer and Chemotherapy and You: Support for People With Cancer. 

Learn more about Drugs Approved for Breast Cancer.

Hormone therapy

Hormone therapy (also called endocrine therapy) slows or stops the growth of hormone-sensitive tumors by blocking the body’s ability to produce hormones or by interfering with the effects of hormones on breast cancer cells. Hormones are substances made by glands in the body and circulated in the bloodstream. Some hormones can cause certain cancers to grow. If tests show that the cancer cells have places where hormones can attach (receptors), drugs, surgery, or radiation therapy is used to reduce the production of hormones or block them from working. This is called ovarian ablation.

Types of hormone therapy for breast cancer include:

Learn more about Hormone Therapy for Breast Cancer.

Targeted therapy

Targeted therapy uses drugs or other substances to identify and attack specific cancer cells. Your doctor may suggest biomarker tests to help predict your response to certain targeted therapy drugs. Learn more about Biomarker Testing for Cancer Treatment. Several types of targeted therapy are used to treat breast cancer.

  • Monoclonal antibodies are immune system proteins made in the laboratory to treat many diseases, including cancer. As a cancer treatment, these antibodies can attach to a specific target on cancer cells or other cells that may help cancer cells grow. The antibodies are able to then kill the cancer cells, block their growth, or keep them from spreading. Monoclonal antibodies are given by infusion. They may be used alone or to carry drugs, toxins, or radioactive material directly to cancer cells. Monoclonal antibodies may be used in combination with chemotherapy as adjuvant therapy.

    Monoclonal antibodies used to treat breast cancer include:

    How do monoclonal antibodies work to treat cancer? This video shows how monoclonal antibodies, such as trastuzumab, pembrolizumab, and rituximab, block molecules cancer cells need to grow, flag cancer cells for destruction by the body’s immune system, or deliver harmful substances to cancer cells.
  • Tyrosine kinase inhibitors block signals needed for tumors to grow. Tyrosine kinase inhibitors may be used with other anticancer drugs as adjuvant therapy. Tyrosine kinase inhibitors used to treat HER2-positive breast cancer include:
  • Cyclin-dependent kinase inhibitors block proteins called cyclin-dependent kinases, which cause the growth of cancer cells. CDK inhibitors may be given with hormone therapy, such as fulvestrant or letrozole, to treat hormone receptor–positive, HER2-negative breast cancer. CDK inhibitors used to treat breast cancer include:
  • Mammalian target of rapamycin (mTOR) inhibitors block a protein called mTOR, which may keep cancer cells from growing and prevent the growth of new blood vessels that tumors need to grow. mTOR inhibitors used to treat HER2-negative breast cancer that is hormone receptor positive include:

Learn more about Targeted Therapy to Treat Cancer.

Immunotherapy

Immunotherapy helps a person’s immune system fight cancer. Your doctor may suggest biomarker tests to help predict your response to certain immunotherapy drugs. Learn more about Biomarker Testing for Cancer Treatment.

Immune checkpoint inhibitors are a type of immunotherapy used to treat breast cancer:

  • Immune checkpoint inhibitors block proteins called checkpoints that are made by some types of immune system cells, such as T cells, and some cancer cells. These checkpoints help keep immune responses from being too strong and sometimes can keep T cells from killing cancer cells. When these checkpoints are blocked, T cells can kill cancer cells better. Immune checkpoint inhibitors used to treat breast cancer include:

    This drug works in more than one way to kill cancer cells. It is also considered targeted therapy because it targets specific changes or substances in cancer cells.

    Immunotherapy uses the body’s immune system to fight cancer. This animation explains one type of immunotherapy that uses immune checkpoint inhibitors to treat cancer.

 Learn more about Immunotherapy to Treat Cancer and Immunotherapy Side Effects.

New types of treatment are being tested in clinical trials.

For some people, joining a clinical trial may be an option. There are different types of clinical trials for people with cancer. For example, a treatment trial tests new treatments or new ways of using current treatments. Supportive care and palliative care trials look at ways to improve quality of life, especially for those who have side effects from cancer and its treatment.

You can use the clinical trial search to find NCI-supported cancer clinical trials accepting participants. The search allows you to filter trials based on the type of cancer, your age, and where the trials are being done. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

Learn more about clinical trials, including how to find and join one, at Clinical Trials Information for Patients and Caregivers.

Treatment for breast cancer may cause side effects.

To learn more about side effects that begin during treatment for cancer, visit Side Effects.

Some treatments for breast cancer may cause side effects that continue or appear months or years after treatment has ended. These are called late effects.

Late effects of radiation therapy are not common, but may include:

  • Inflammation of the lung after radiation therapy to the breast, especially when chemotherapy is given at the same time.
  • Arm lymphedema, especially when radiation therapy is given after lymph node dissection. For more information, see Lymphedema.
  • In women younger than 45 years who receive radiation therapy to the chest wall after mastectomy, there may be a higher risk of developing breast cancer in the other breast.

Late effects of chemotherapy depend on the drugs used, but may include:

Late effects of targeted therapy with trastuzumab, lapatinib, or pertuzumab may include:

  • heart problems, such as heart failure.

Follow-up care may be needed.

Some of the tests that were done to diagnose or stage the cancer may be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests. These tests are sometimes called follow-up tests or check-ups.

Treatment of Early, Localized, or Operable Breast Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of early, localized, or operable breast cancer may include:

Surgery

Postoperative radiation therapy

For women who had breast-conserving surgery, radiation therapy is given to the whole breast to lessen the chance the cancer will come back. Radiation therapy may also be given to lymph nodes in the area.

For women who had a modified radical mastectomy, radiation therapy may be given to lessen the chance the cancer will come back if any of the following are true:

  • Cancer was found in 4 or more lymph nodes.
  • Cancer had spread to tissue around the lymph nodes.
  • The tumor was large.
  • There is tumor close to or remaining in the tissue near the edges of where the tumor was removed.

Postoperative systemic therapy

Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Postoperative systemic therapy is given to lessen the chance the cancer will come back after surgery to remove the tumor.

Postoperative systemic therapy is given depending on whether:

In premenopausal women with hormone receptor positive tumors, no more treatment may be needed, or postoperative therapy may include:

  • Tamoxifen  therapy with or without chemotherapy.
  • Tamoxifen therapy and treatment to stop or lessen how much estrogen is made by the ovaries. Drug therapy, surgery to remove the ovaries, or radiation therapy to the ovaries may be used.
  • Aromatase inhibitor therapy and treatment to stop or lessen how much estrogen is made by the ovaries. Drug therapy, surgery to remove the ovaries, or radiation therapy to the ovaries may be used.

In postmenopausal women with hormone receptor positive tumors, no more treatment may be needed, or postoperative therapy may include:

  • Aromatase inhibitor therapy with or without chemotherapy.
  • Tamoxifen followed by aromatase inhibitor therapy, with or without chemotherapy.

In women with hormone receptor negative tumors, no more treatment may be needed, or postoperative therapy may include chemotherapy.

In women with HER2 negative tumors, postoperative therapy may include chemotherapy.

In women with small, HER2 positive tumors, and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes, or the tumor is large, postoperative therapy may include:

In women with small, hormone receptor negative and HER2 negative tumors (triple-negative) and no cancer in the lymph nodes, no more treatment may be needed. If there is cancer in the lymph nodes or the tumor is large, postoperative therapy may include:

Preoperative systemic therapy

Systemic therapy is the use of drugs that can enter the bloodstream and reach cancer cells throughout the body. Preoperative systemic therapy is given to shrink the tumor before surgery.

Preoperative chemotherapy may make breast-sparing surgery possible in patients who are not eligible otherwise. Preoperative chemotherapy may also lessen the need for lymph node dissection in patients with disease that has spread to the lymph nodes.

In postmenopausal women with hormone receptor positive tumors, preoperative therapy may include:

  • Chemotherapy.
  • Hormone therapy, such as tamoxifen or aromatase inhibitor therapy, for women who cannot have chemotherapy.

In premenopausal women with hormone receptor positive tumors, preoperative therapy may include a clinical trial of hormone therapy, such as tamoxifen or aromatase inhibitor therapy.

In women with HER2-positive tumors, preoperative therapy may include:

  • Chemotherapy and targeted therapy (trastuzumab).
  • Targeted therapy (pertuzumab).

In women with HER2-negative tumors or triple-negative tumors, preoperative therapy may include chemotherapy.

For patients with triple-negative or HER2-positive disease, the response to preoperative therapy may be used as a guide in choosing the best treatment after surgery.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Locally Advanced or Inflammatory Breast Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of locally advanced or inflammatory breast cancer is a combination of therapies that may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Locoregional Recurrent Breast Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of locoregional recurrent breast cancer (cancer that has come back after treatment in the breast, in the chest wall, or in nearby lymph nodes), may include:

For information about treatment options for breast cancer that has spread to parts of the body outside the breast, chest wall, or nearby lymph nodes, see the Treatment of Metastatic Breast Cancer section.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Metastatic Breast Cancer

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment options for metastatic breast cancer (cancer that has spread to distant parts of the body) may include:

Hormone therapy

In postmenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive or if the hormone receptor status is not known, treatment may include:

In premenopausal women who have just been diagnosed with metastatic breast cancer that is hormone receptor positive, treatment may include:

  • Tamoxifen, an LHRH agonist, or both.
  • Cyclin-dependent kinase inhibitor therapy (ribociclib).

In women whose tumors are hormone receptor positive or hormone receptor unknown, with spread to the bone or soft tissue only, and who have been treated with tamoxifen, treatment may include:

Targeted therapy

In women with metastatic breast cancer that is hormone receptor positive and has not responded to other treatments, options may include targeted therapy such as:

In women with metastatic breast cancer that is HER2 positive, treatment may include:

In women with metastatic breast cancer that is HER2 negative, with mutations in the BRCA1 or BRCA2 genes, and who have been treated with chemotherapy, treatment may include targeted therapy with a PARP inhibitor (olaparib or talazoparib).

Chemotherapy

In women with metastatic breast cancer that has not responded to hormone therapy, has spread to other organs, or has caused symptoms, treatment may include chemotherapy with one or more drugs.

Chemotherapy and immunotherapy

In women with locally recurrent, inoperable, or metastatic triple-negative breast tumors which express PD-L1, treatment may include chemotherapy and immunotherapy (pembrolizumab).

Surgery

  • Total mastectomy for women with open or painful breast lesions. Radiation therapy may be given after surgery.
  • Surgery to remove cancer that has spread to the brain or spine. Radiation therapy may be given after surgery.
  • Surgery to remove cancer that has spread to the lung.
  • Surgery to repair or help support weak or broken bones. Radiation therapy may be given after surgery.
  • Surgery to remove fluid that has collected around the lungs or heart.

Radiation therapy

Other treatment options

Other treatment options for metastatic breast cancer include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Ductal Carcinoma In Situ (DCIS)

For information about the treatments listed below, see the Treatment Option Overview section.

Treatment of ductal carcinoma in situ may include:

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

To Learn More About Breast Cancer

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the treatment of adult breast cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Breast Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/breast/patient/breast-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389406]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.