Hereditary Kidney Cancer Syndromes (PDQ®)–Patient Version

Hereditary Kidney Cancer Syndromes (PDQ®)–Patient Version

What is kidney cancer?

Key Points

  • Kidney cancer is a disease in which malignant (cancer) cells form in tubules of the kidney.

Kidney cancer is a disease in which malignant (cancer) cells form in tubules of the kidney.

Kidney cancer (also called renal cell cancer) is cancer that starts in the lining of very small tubes in the kidney called renal tubules. There are two kidneys, one on each side of the backbone, above the waist. Tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body.

EnlargeAnatomy of the male urinary system (left panel) and female urinary system (right panel); two-panel drawing showing the right and left kidneys, the ureters, the bladder filled with urine, and the urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel).
Anatomy of the male urinary system (left panel) and female urinary system (right panel) showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel). Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra.

Cancer that starts in the ureters or the renal pelvis (the part of the kidney that collects urine and drains it to the ureters) is called urothelial cancer. This kind of cancer is different from renal cell cancer and is not associated with the hereditary cancer syndromes described in this summary. Urothelial cancer of the renal pelvis may be associated with another hereditary condition called Lynch syndrome. To learn more, see the health professional summary on Genetics of Colorectal Cancer.

What is hereditary kidney cancer?

Key Points

  • Having certain hereditary syndromes can increase the risk of kidney cancer.
  • Hereditary and non-inherited kidney cancers are different in several ways.

Having certain hereditary syndromes can increase the risk of kidney cancer.

Most of the time, kidney cancer risk is not passed down from parent to child. Kidney cancer that affects multiple generations of a family is called hereditary kidney cancer. Hereditary kidney cancer accounts for only 5%‒8% of all kidney cancers. It is usually linked to a hereditary cancer syndrome. A hereditary cancer syndrome is a disorder in which family members have a higher-than-average risk of developing a certain type or types of cancer. Hereditary cancer syndromes are caused by inherited, harmful genetic changes (also called pathogenic variants or mutations) in certain genes. Hereditary cancer syndromes are sometimes called inherited cancer syndromes or family cancer syndromes. People with the hereditary cancer syndromes described in this summary have an increased risk of kidney cancer.

The hereditary cancer syndromes described in this summary are:

Every person inherits two copies of each gene, one from each parent. These syndromes occur when a person inherits a mutation in one copy of the gene associated with the syndrome. This form of inheritance is called autosomal dominant inheritance.

EnlargeDrawing showing an autosomal dominant inheritance pattern between a father, mother, and their four children: a chromosome pair with a normal gene and a mutated gene in an affected father; two normal genes in an unaffected mother; a normal gene and a mutated gene in an affected daughter and in an affected son; and two normal genes in an unaffected daughter and in an unaffected son.
Autosomal dominant inheritance is a way a genetic trait or condition can be passed down from parent to child. One copy of a mutated (changed) gene from one parent can cause the genetic condition. A child who has a parent with the mutated gene has a 50% chance of inheriting that mutated gene. Men and women are equally likely to have these mutations and sons and daughters are equally likely to inherit them.

Hereditary and non-inherited kidney cancers are different in several ways.

  • Hereditary kidney cancer is often diagnosed at an earlier age than sporadic kidney cancer.
  • Some types of hereditary kidney cancer can be more or less aggressive than sporadic kidney cancer.
  • The treatments for hereditary kidney cancer may be different from treatments for sporadic kidney cancer.
  • People with hereditary kidney cancer may have a higher risk of other conditions or types of cancer.

This page provides information about hereditary syndromes associated with kidney cancer. It does not cover information about sporadic kidney cancer or somatic mutations found during tumor sequencing.

What is genetic counseling and who should receive it?

Key Points

  • Genetic counseling is a communication process between a specially trained health professional and a person concerned about the genetic risk of disease.
  • Whether a person should get tested for hereditary kidney cancer depends on certain factors.

Genetic counseling is a communication process between a specially trained health professional and a person concerned about the genetic risk of disease.

It is not always easy to determine whether a condition in a family is inherited. Genetic counselors and other specially trained health professionals can help patients understand their personal and family medical history, their options for genetic testing, and the risks and benefits of learning genetic information. If a patient chooses to get genetic testing, it may be done using a sample of blood, saliva, or skin. Genetic test results can reveal information about other family members and can create tension in the family. Genetic counselors can help people cope with their genetic testing results, including how to discuss the results with family members.

Whether a person should get tested for hereditary kidney cancer depends on certain factors.

Certain clues in the medical history or family history may lead health professionals to think that a person may have a hereditary syndrome. With kidney cancer, people who have one or more of the following criteria may be referred for genetic counseling and testing:

  • family history of multiple relatives diagnosed with kidney cancer
  • cancer developed at a young age
  • multiple tumors in one kidney or cancer in both kidneys
  • diagnosis of a type of kidney cancer that is commonly inherited

What are the major hereditary kidney cancer syndromes?

Key Points

  • Four hereditary kidney cancer syndromes and the genes that cause them have been identified.

Four hereditary kidney cancer syndromes and the genes that cause them have been identified.

Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC)

HLRCC was considered rare, but it may be one of the most common hereditary cancer syndromes. Some people who have HLRCC may not have symptoms. HLRCC is caused by harmful changes (also called mutations or pathogenic variants) in the FH gene. People with HLRCC could have an increased risk of kidney cancer. The risk may be higher in males with FH mutations. Black people diagnosed with kidney cancer have more FH mutations than people from other racial and ethnic groups. HLRCC is associated with a unique type of kidney cancer that can be fast growing. People with HLRCC may also develop leiomyomas (benign smooth-muscle tumors) in the skin and uterus (fibroids) or paragangliomas (benign tumors near adrenal glands, blood vessels, or nerves).

EnlargeDrawing showing areas of the body affected by hereditary leiomyomatosis and renal cell cancer, including the skin, kidneys, and uterus.
Areas of the body affected by hereditary leiomyomatosis and renal cell cancer (HLRCC). HLRCC is an inherited disorder that causes an increased risk of kidney cancer. It can also cause lesions in the skin and uterus (in females).

The FH gene makes a protein called fumarase. Fumarase helps cells use oxygen and produce energy. When the FH gene is mutated, cells are not able to use oxygen, which may lead to cancer. HLRCC is inherited in an autosomal dominant manner. This means that if one parent has HLRCC, there is a 50% (1 in 2) chance their child will inherit the mutation in the FH gene.

Learn more about HLRCC from the NCATS Genetic and Rare Diseases Information Center.

Von Hippel-Lindau Disease (VHL)

VHL is a rare hereditary syndrome that is caused by harmful changes (also called mutations or pathogenic variants) in the VHL gene. People with VHL have an increased risk of kidney cancer and renal cysts. VHL is associated with a clear-cell type kidney cancer, which is typically slow growing. People with VHL may also develop malignant (cancer) and benign (noncancer) tumors in many parts of the body, including the central nervous system, retina, pancreas, adrenal glands, endolymphatic sac, epididymis (in males), and broad ligament (in females).

EnlargeDrawing of a male figure and female figure showing areas of the body affected by von Hippel-Lindau disease. These areas include the central nervous system (including the brainstem, cerebellum, and spinal cord), retina, endolymphatic sac in the ear, adrenal glands, pancreas, kidneys, epididymis (in males), and broad ligament (in females).
Areas of the body affected by von Hippel-Lindau (VHL) disease. VHL disease is an inherited disorder that causes tumors and cysts to grow in certain areas of the body, including the central nervous system (including the brainstem, cerebellum, and spinal cord), retina, endolymphatic sac in the ear, adrenal glands, pancreas, kidneys, epididymis (in males), and broad ligament (in females). VHL disease also causes an increased risk of certain types of cancer, especially kidney cancer and pancreatic cancer.

The VHL gene is a type of gene called tumor suppressor gene. Normally, the VHL gene prevents cells from growing and dividing too quickly. When the VHL gene is mutated in certain ways and loses its protective function, uncontrolled cell growth may lead to cancer. VHL is inherited in an autosomal dominant manner. If one parent has VHL, there is a 50% (1 in 2) chance their child will inherit the harmful genetic change in the VHL gene.

Learn more about VHL from the NCATS Genetic and Rare Diseases Information Center.

Birt-Hogg-Dubé Syndrome (BHD)

BHD is a rare hereditary syndrome caused by harmful changes (also called mutations or pathogenic variants) in the FLCN gene. People with BHD have an increased risk of multiple types of kidney cancer that are typically slow growing. People with BHD may also develop skin tumors called fibrofolliculomas, lung cysts, and spontaneous pneumothorax (collapsed lung).

EnlargeDrawing showing areas of the body affected by Birt-Hogg-Dube syndrome, including the skin, lungs, and kidneys.
Areas of the body affected by Birt-Hogg-Dube (BHD) syndrome. BHD syndrome is an inherited disorder that causes an increased risk of kidney cancer, benign (not cancer) skin lesions, collapsed lungs, and lung cysts.

The FLCN gene is a tumor suppressor gene. Normally, the FLCN gene prevents cells from growing and dividing too quickly. When the FLCN gene is mutated, uncontrolled cell growth may lead to cancer. BHD is inherited in an autosomal dominant manner. This means that if one parent has BHD, there is a 50% (1 in 2) chance their child will inherit the mutation in the FLCN gene.

Learn more about BHD from the NCATS Genetic and Rare Diseases Information Center.

Hereditary Papillary Renal Cancer (HPRC)

HPRC is a rare hereditary syndrome caused by harmful changes (also called mutations or pathogenic variants) in the MET gene. People with HPRC have an increased risk of a type of kidney cancer called papillary kidney cancer, which is typically slow growing. Papillary kidney cancer forms in the cells lining the very small tubes in the kidney called renal tubules.

EnlargePapillary renal cancer; drawing showing the left kidney, renal pelvis, and ureter. Also shown is a pullout of the renal tubules, which is where urine is made.
Papillary renal cancer forms in cells that line the renal tubules in the kidney. The renal tubules remove waste from the blood and make urine. Urine moves through the renal tubules into the renal pelvis and ureter, which carries urine from the kidney to the bladder.

The MET gene makes a protein called MET that is involved in cell signaling and growth. When the MET gene is mutated, cells may not respond to signals that normally prevent them from growing, causing cancer to develop. HPRC is inherited in an autosomal dominant manner. This means that if one parent has HPRC, there is a 50% (1 in 2) chance their child will inherit the mutation in the MET gene.

Learn more about papillary kidney cancer from the NCATS Genetic and Rare Diseases Information Center.

What happens after a hereditary kidney cancer syndrome diagnosis?

Most recommendations for screening and treating people with kidney cancer are based on evidence obtained from clinical trials. Because families with these hereditary kidney cancer syndromes are rare, many of these studies did not include these types of hereditary kidney cancer. When studies of families with hereditary syndromes are not available, guidelines on how to monitor and care for patients with inherited kidney cancer are based on the expert opinion and consensus of health care professionals who have experience in treating families with these syndromes.

Families with these hereditary syndromes are watched closely for signs of disease in the kidneys and in other organs. Most kidney tumors that occur can be removed by surgery, but they may recur (come back). Other treatment options may be available.

To learn more about screening and treatment options for each hereditary syndrome, see the health professional summaries on Hereditary Leiomyomatosis and Renal Cell Cancer (HLRCC), Von Hippel-Lindau Disease (VHL), Birt-Hogg-Dubé Syndrome (BHD), and Hereditary Papillary Renal Carcinoma (HPRC). Learn about the treatment of kidney cancer in the general population at Renal Cell Cancer Treatment.

Are clinical trials available for hereditary kidney cancer syndromes?

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Learn more about kidney (renal cell) cancer

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the genetics of kidney cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Cancer Genetics Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Cancer Genetics Editorial Board. PDQ Hereditary Kidney Cancer Syndromes. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/patient/kidney-genetics-pdq. Accessed <MM/DD/YYYY>.

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Genetics of Renal Cell Carcinoma (PDQ®)–Health Professional Version

Genetics of Renal Cell Carcinoma (PDQ®)–Health Professional Version

Inheritance and Risk of Renal Cell Carcinoma

Renal cell carcinoma (RCC) is commonly diagnosed in both men and women. In the United States in 2025, about 80,980 new cases of kidney cancer and renal pelvis cancer will occur, along with an estimated 14,510 deaths.[1] These cancers account for about 3.97% of all adult malignancies.[1] The male-to-female ratio is 1.9:1.[2] RCC is distinct from kidney cancer that involves the renal pelvis or renal medulla, and it only applies to cancer that forms in the lining of the kidney bed (i.e., in the renal tubules). This summary does not address non-RCCs of the kidney, including cancer of the renal pelvis or renal medulla. Genetic pathogenic variants have been identified as the cause of inherited cancer risk in some RCC-prone families; these pathogenic variants are estimated to account for only 5% to 8% of RCC cases overall.[3,4] It is likely that other undiscovered genes and background genetic factors contribute to the development of familial RCC along with nongenetic risk factors.

Studies of several sequencing cohorts have evaluated patients with RCC using genetic testing panels that included many genes not previously associated with hereditary RCC. Many of these cohorts reinforce that the rate of germline alterations in classic RCC genes aligns with prior estimates. These cohorts also show a high incidence of other pathogenic variants, some of which occurred in DNA repair genes. The rate of other pathogenic alterations ranged from 12.8% to 17.0%.[59] The incidence of other pathogenic alterations is higher than would be expected in the population. However, these cohorts are not population-based, and they are significantly enriched for cancer patients who have been recommended for germline testing.

A retrospective single-center study of patients with early-onset RCC (diagnosed before age 46 y), found that participants with clinical phenotypes suggestive of RCC-associated pathogenic variants—like bilateral or multifocal tumors, non–clear cell renal histology, and extra-renal primary cancers—had the highest yields on germline RCC panel testing.[10] There were 129 patients with clear cell RCC. A subset analysis of patients with unifocal, clear cell RCC did not reveal pathogenic variants on RCC genetic testing panels. Other studies have confirmed that individuals with bilateral or multifocal tumors were more likely to have a pathogenic variant in an RCC- or cancer-related gene.[11] However, 5% to 10% of individuals in these series had pathogenic variants in non-RCC–associated genes—primarily in DNA repair genes.[10,11] At this time, it is unclear if there is a causal relationship between RCC and these pathogenic alterations; the relationship requires additional study. It is plausible that these pathogenic variants increase RCC risk. However, RCC risk could also be elevated by other factors like an enriched population of high-risk individuals or overdetection of RCC from frequent scans in high-risk patients.

In contrast, several studies reported that the incidence of germline pathogenic variants is much lower (4.1% to 6.4%) in unselected individuals with RCC who underwent sequencing during a research study.[12,13] Most variants identified in these series were in genes classically associated with RCC. This finding suggests that the population studied may greatly influence the detection rate of pathogenic variants in cancer predisposition genes that are not typically associated with RCC.

RCC occurs in both sporadic and heritable forms. Four major RCC syndromes with autosomal dominant inheritance have been identified. PDQ summaries are available for each of these syndromes:

For more information about sporadic kidney cancer, see Renal Cell Cancer Treatment and Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment.

Natural History of Renal Cell Carcinoma

The natural history of each RCC syndrome is distinct and influenced by several factors, including histological features and underlying genetic alterations. Although it is useful to follow the predominant reported natural history of each syndrome, each affected individual must be evaluated and monitored for occasional individual variations. The individual prognosis depends on the characteristics of the renal tumor at the time of detection and intervention, which differs for each syndrome (VHL, HLRCC, HPRC, and BHD). Prognostic determinants at diagnosis include the stage of the RCC, whether the tumor is confined to the kidney, primary tumor size, Fuhrman nuclear grade, and multifocality.[1416]

Family History as a Risk Factor for Renal Cell Carcinoma

Kidney cancer and renal pelvis cancer account for about 3.97% of all adult malignancies in the United States.[1] Epidemiological studies of RCC suggest that a family history of RCC is a risk factor for the disease.[4,17,18] An analysis of individuals with RCCs diagnosed before the year 2000 in the Sweden Family-Cancer Database included all Swedes born since 1931 and their biological parents. The study observed that the risk of RCC was particularly high in the siblings of those with RCC. Siblings of individuals with RCC had a higher relative risk (RR) than parent-child pairs.[17] Further work from this database confirms that 3% of individuals with RCC had a first-degree relative (FDR) with RCC.[19] Risk may be higher in individuals who have multiple FDRs with RCC and in women. Another study examined all patients in Iceland who developed RCC between 1955 and 1999 (1,078 cases). Investigators used an extensive computerized database to perform a unique genealogical study that included more than 600,000 Icelandic individuals. Results revealed that nearly 60% of Icelandic patients with RCC had a FDR or a second-degree relative (SDR) with RCC. Siblings of patients with RCC had an estimated RR of 2.5.[4] In a Korean study, individuals who had FDRs with RCC had a 2.29-fold increased risk of RCC. Risk did not appear to differ whether the FDR was a mother, father, or a sibling.[20] Modifying factors like obesity and hyperglycemia may further increase RCC risk in this high-risk population. Another study evaluated 80,309 monozygotic twins and 123,382 same-sex dizygotic twins in Denmark, Finland, Norway, and Sweden.[18] This study found excess cancer risk in twins whose co-twin was diagnosed with cancer. The estimated cumulative risks were an absolute 5% higher (95% confidence interval [CI], 4%–6%) in dizygotic twins (37%; 95% CI, 36%–38%) and an absolute 14% higher (95% CI, 12%–16%) in monozygotic twins (46%; 95% CI, 44%–48%)—for those whose co-twin also developed cancer—than in the overall cohort (32%). Overall heritability of cancer, calculated by assessing the relative contribution of heredity versus shared environment, was estimated to be 33%. Kidney cancer heritability was estimated to be 38% (95% CI, 21%–55%). Shared environmental factors did not significantly contribute to overall risk.

Young age at RCC onset is also a clue that hereditary etiology is possible. Unlike sporadic RCC, which is generally diagnosed during the fifth to seventh decades of life, hereditary forms of RCC are generally diagnosed at an earlier age. In a review of more than 600 cases of hereditary RCC from the National Cancer Institute, the median age of RCC diagnosis was 37 years, with 70% of cases being diagnosed at age 46 years or younger.[3] This age is lower than the median age of RCC diagnosis in the general population, which is 64 years.[21] Heritable RCCs are often multifocal and bilateral. A retrospective analysis of 1,235 patients with RCC who underwent genetic testing revealed that 6.1% of this population had positive genetic test results, 75.5% had negative test results, and 18.4% had a variant of unknown significance. Young age at RCC diagnosis was the only variable associated with a positive test result.[8] Other series showed that patients with non-clear cell advanced RCC may have an enrichment for pathogenic variants when compared with patients who had clear cell RCC; however, current research data are limited.[5,22]

While there is much debate about the referral criteria for hereditary RCC genetic testing, the following organizations have offered some guidance:

  • VHL Alliance.
  • Kidney Cancer Research Network of Canada.[23]
  • National Comprehensive Cancer Network.[24]

These guidelines acknowledge that the following criteria can prompt a referral to genetic counseling: early age of RCC onset, family history of RCC (≥1 FDR/SDR with RCC), bilateral or multifocal RCCs, and suspicious RCC histology. A consensus statement published by a group of kidney cancer experts provides additional guidance that may help providers identify patients who can be referred to genetic counseling.[25]

When evaluating patients at risk of hereditary kidney cancer, specific clinical features help determine which test is the most appropriate to order. Single gene tests are available during family variant testing or when there is only suspicion for one specific kidney cancer syndrome. The following panel tests are also available: 1) broad cancer genetic panels of up to 100 genes associated with cancer predisposition, and 2) renal cancer genetic panels with 15 to 20 genes that have strong associations with hereditary kidney cancer syndromes. Most of these panels conduct targeted sequencing of the exon with little coverage of the intron, except for splice-site variants. In the future, RNA testing may be useful to evaluate variants of unknown significance identified by DNA testing, to add additional support for pathogenicity. Whole genome sequencing (WGS) can be considered for rare cases with clinical suspicion that had negative panel testing. WGS may detect structural variants in introns that can contribute to cancer predisposition. In a series of over 1,300 unselected patients with RCC who underwent WGS, 6.9% of patients had germline pathogenic variants identified in cancer predisposition genes.[12]

Other Risk Factors for Renal Cell Carcinoma

Studies of environmental and lifestyle factors contributing to the risk of RCC focus almost exclusively on sporadic (i.e., nonhereditary) RCC. Smoking, hypertension, and obesity are the major environmental and lifestyle risk factors associated with RCC.[26] In addition, workers who were reportedly exposed to the environmental carcinogen trichloroethylene developed sporadic clear cell RCC, presumably resulting from somatic variants in the VHL gene.[27] Dietary intake of vegetables and fruits has been inversely associated with RCC. Greater intake of red meat and milk products have been associated with increased RCC risk, although not consistently.[28]

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. DeVita VT Jr, Lawrence TS, Rosenberg SA, et al., eds.: DeVita, Hellman, and Rosenberg’s Cancer: Principles & Practice of Oncology. 11th ed. Wolters Kluwer, 2019.
  3. Shuch B, Vourganti S, Ricketts CJ, et al.: Defining early-onset kidney cancer: implications for germline and somatic mutation testing and clinical management. J Clin Oncol 32 (5): 431-7, 2014. [PUBMED Abstract]
  4. Gudbjartsson T, Jónasdóttir TJ, Thoroddsen A, et al.: A population-based familial aggregation analysis indicates genetic contribution in a majority of renal cell carcinomas. Int J Cancer 100 (4): 476-9, 2002. [PUBMED Abstract]
  5. Carlo MI, Mukherjee S, Mandelker D, et al.: Prevalence of Germline Mutations in Cancer Susceptibility Genes in Patients With Advanced Renal Cell Carcinoma. JAMA Oncol 4 (9): 1228-1235, 2018. [PUBMED Abstract]
  6. Hartman TR, Demidova EV, Lesh RW, et al.: Prevalence of pathogenic variants in DNA damage response and repair genes in patients undergoing cancer risk assessment and reporting a personal history of early-onset renal cancer. Sci Rep 10 (1): 13518, 2020. [PUBMED Abstract]
  7. Abou Alaiwi S, Nassar AH, Adib E, et al.: Trans-ethnic variation in germline variants of patients with renal cell carcinoma. Cell Rep 34 (13): 108926, 2021. [PUBMED Abstract]
  8. Nguyen KA, Syed JS, Espenschied CR, et al.: Advances in the diagnosis of hereditary kidney cancer: Initial results of a multigene panel test. Cancer 123 (22): 4363-4371, 2017. [PUBMED Abstract]
  9. Smith PS, West H, Whitworth J, et al.: Pathogenic germline variants in patients with features of hereditary renal cell carcinoma: Evidence for further locus heterogeneity. Genes Chromosomes Cancer 60 (1): 5-16, 2021. [PUBMED Abstract]
  10. Truong H, Sheikh R, Kotecha R, et al.: Germline Variants Identified in Patients with Early-onset Renal Cell Carcinoma Referred for Germline Genetic Testing. Eur Urol Oncol 4 (6): 993-1000, 2021. [PUBMED Abstract]
  11. Nguyen CB, Knaus C, Li J, et al.: Pathogenic Germline Mutational Landscape in Patients With Renal Cell Carcinoma and Associated Clinicopathologic Features. JCO Precis Oncol 7: e2300168, 2023. [PUBMED Abstract]
  12. Yngvadottir B, Andreou A, Bassaganyas L, et al.: Frequency of pathogenic germline variants in cancer susceptibility genes in 1336 renal cell carcinoma cases. Hum Mol Genet 31 (17): 3001-3011, 2022. [PUBMED Abstract]
  13. Sekine Y, Iwasaki Y, Aoi T, et al.: Different risk genes contribute to clear cell and non-clear cell renal cell carcinoma in 1532 Japanese patients and 5996 controls. Hum Mol Genet 31 (12): 1962-1969, 2022. [PUBMED Abstract]
  14. Vira MA, Novakovic KR, Pinto PA, et al.: Genetic basis of kidney cancer: a model for developing molecular-targeted therapies. BJU Int 99 (5 Pt B): 1223-9, 2007. [PUBMED Abstract]
  15. Choyke PL, Glenn GM, Walther MM, et al.: Hereditary renal cancers. Radiology 226 (1): 33-46, 2003. [PUBMED Abstract]
  16. Zbar B, Glenn G, Merino M, et al.: Familial renal carcinoma: clinical evaluation, clinical subtypes and risk of renal carcinoma development. J Urol 177 (2): 461-5; discussion 465, 2007. [PUBMED Abstract]
  17. Hemminki K, Li X: Familial risks of cancer as a guide to gene identification and mode of inheritance. Int J Cancer 110 (2): 291-4, 2004. [PUBMED Abstract]
  18. Mucci LA, Hjelmborg JB, Harris JR, et al.: Familial Risk and Heritability of Cancer Among Twins in Nordic Countries. JAMA 315 (1): 68-76, 2016. [PUBMED Abstract]
  19. Jakobsson RG, Nasic S, Bratt O, et al.: Family History and Risk of Renal Cell Carcinoma: A National Multiregister Case-Control Study. J Urol 211 (1): 71-79, 2024. [PUBMED Abstract]
  20. Lee SW, Kim HJ, Kazmi SZ, et al.: Familial Risk of Renal Cell Cancer and Interaction with Obesity and Hyperglycemia: A Population-Based Study. J Urol 208 (2): 251-258, 2022. [PUBMED Abstract]
  21. National Cancer Institute: SEER Stat Fact Sheets: Kidney and Renal Pelvis Cancer. Bethesda, Md: National Cancer Institute. Available online. Last accessed February 17, 2025.
  22. Santos M, Lanillos J, Roldan-Romero JM, et al.: Prevalence of pathogenic germline variants in patients with metastatic renal cell carcinoma. Genet Med 23 (4): 698-704, 2021. [PUBMED Abstract]
  23. Reaume MN, Graham GE, Tomiak E, et al.: Canadian guideline on genetic screening for hereditary renal cell cancers. Can Urol Assoc J 7 (9-10): 319-23, 2013 Sep-Oct. [PUBMED Abstract]
  24. National Comprehensive Cancer Network: NCCN Clinical Practice Guidelines in Oncology: Kidney Cancer. Version 3.2023. Plymouth Meeting, Pa: National Comprehensive Cancer Network, 2022. Available online with free registration. Last accessed September 30, 2024.
  25. Bratslavsky G, Mendhiratta N, Daneshvar M, et al.: Genetic risk assessment for hereditary renal cell carcinoma: Clinical consensus statement. Cancer 127 (21): 3957-3966, 2021. [PUBMED Abstract]
  26. McLaughlin JK, Lipworth L: Epidemiologic aspects of renal cell cancer. Semin Oncol 27 (2): 115-23, 2000. [PUBMED Abstract]
  27. Brauch H, Weirich G, Hornauer MA, et al.: Trichloroethylene exposure and specific somatic mutations in patients with renal cell carcinoma. J Natl Cancer Inst 91 (10): 854-61, 1999. [PUBMED Abstract]
  28. Chow WH, Devesa SS: Contemporary epidemiology of renal cell cancer. Cancer J 14 (5): 288-301, 2008 Sep-Oct. [PUBMED Abstract]

Major Heritable Renal Cell Carcinoma Syndromes

There are four major hereditary renal cell carcinoma (RCC) syndromes. These syndromes are summarized in detail in the following PDQ summaries and in Table 1 below:

Table 1. Hereditary Renal Cell Cancer (RCC) Syndromes and Susceptibility Genes
Syndrome (Inheritance Pattern) Gene Locus, Gene Type (Protein) Renal Tumor Pathology Cumulative Cancer Risk Nonrenal Tumors and Associated Abnormalities
AD = autosomal dominant; ccRCC = clear cell renal cell carcinoma; CNS = central nervous system; PHEO = pheochromocytoma.
Von Hippel-Lindau disease (VHL) (AD) [1,2] VHL 3p26, tumor suppressor (pVHL) ccRCC (multifocal) 24%–45% CNS hemangioblastoma, retinal hemangioblastomas, PHEO, pancreatic neuroendocrine tumor, endolymphatic sac tumor, cystadenoma of the pancreas, the epididymis, and the broad ligament
Hereditary leiomyomatosis and renal cell cancer (HLRCC) (AD) [36] FH 1q42.1, tumor suppressor (fumarate hydratase) HLRCC-associated RCC Up to 32% Cutaneous leiomyomas, uterine leiomyomas (fibroids)
Hereditary papillary renal carcinoma (HPRC) (AD) [7,8] MET 7q34, proto-oncogene (hepatocyte growth factor receptor) Papillary RCC (formerly known as type 1 papillary RCC) Approaching 100% None known
Birt-Hogg-Dubé syndrome (BHD) (AD) [912] FLCN 17p11.2, tumor suppressor (folliculin) Hybrid oncocytic, chromophobe, oncocytoma, papillary, clear cell 15%–30% Cutaneous: fibrofolliculomas/ trichodiscomas
Pulmonary: lung cysts, spontaneous pneumothoraces
         

These major RCC syndromes are transmitted via an autosomal dominant mode of inheritance. This means that the altered gene is present in one of the parents and that the chances of transmitting this gene and the disease to the offspring is 50% for each pregnancy. Genetic tests performed in Clinical Laboratory Improvement Amendments (CLIA)-certified laboratories are available for the genes associated with VHL, HLRCC, HPRC, and BHD. Genetic counseling is a prerequisite for genetic testing. For more information, see Cancer Genetics Risk Assessment and Counseling.

References
  1. Choyke PL, Glenn GM, Walther MM, et al.: von Hippel-Lindau disease: genetic, clinical, and imaging features. Radiology 194 (3): 629-42, 1995. [PUBMED Abstract]
  2. Lonser RR, Glenn GM, Walther M, et al.: von Hippel-Lindau disease. Lancet 361 (9374): 2059-67, 2003. [PUBMED Abstract]
  3. Launonen V, Vierimaa O, Kiuru M, et al.: Inherited susceptibility to uterine leiomyomas and renal cell cancer. Proc Natl Acad Sci U S A 98 (6): 3387-92, 2001. [PUBMED Abstract]
  4. Alam NA, Olpin S, Leigh IM: Fumarate hydratase mutations and predisposition to cutaneous leiomyomas, uterine leiomyomas and renal cancer. Br J Dermatol 153 (1): 11-7, 2005. [PUBMED Abstract]
  5. Toro JR, Nickerson ML, Wei MH, et al.: Mutations in the fumarate hydratase gene cause hereditary leiomyomatosis and renal cell cancer in families in North America. Am J Hum Genet 73 (1): 95-106, 2003. [PUBMED Abstract]
  6. Wei MH, Toure O, Glenn GM, et al.: Novel mutations in FH and expansion of the spectrum of phenotypes expressed in families with hereditary leiomyomatosis and renal cell cancer. J Med Genet 43 (1): 18-27, 2006. [PUBMED Abstract]
  7. Schmidt L, Duh FM, Chen F, et al.: Germline and somatic mutations in the tyrosine kinase domain of the MET proto-oncogene in papillary renal carcinomas. Nat Genet 16 (1): 68-73, 1997. [PUBMED Abstract]
  8. Schmidt LS, Nickerson ML, Angeloni D, et al.: Early onset hereditary papillary renal carcinoma: germline missense mutations in the tyrosine kinase domain of the met proto-oncogene. J Urol 172 (4 Pt 1): 1256-61, 2004. [PUBMED Abstract]
  9. Toro JR, Wei MH, Glenn GM, et al.: BHD mutations, clinical and molecular genetic investigations of Birt-Hogg-Dubé syndrome: a new series of 50 families and a review of published reports. J Med Genet 45 (6): 321-31, 2008. [PUBMED Abstract]
  10. Toro JR, Glenn G, Duray P, et al.: Birt-Hogg-Dubé syndrome: a novel marker of kidney neoplasia. Arch Dermatol 135 (10): 1195-202, 1999. [PUBMED Abstract]
  11. Zbar B, Alvord WG, Glenn G, et al.: Risk of renal and colonic neoplasms and spontaneous pneumothorax in the Birt-Hogg-Dubé syndrome. Cancer Epidemiol Biomarkers Prev 11 (4): 393-400, 2002. [PUBMED Abstract]
  12. Pavlovich CP, Walther MM, Eyler RA, et al.: Renal tumors in the Birt-Hogg-Dubé syndrome. Am J Surg Pathol 26 (12): 1542-52, 2002. [PUBMED Abstract]

Latest Updates to This Summary (05/09/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Inheritance and Risk of Renal Cell Carcinoma

Updated statistics with estimated new cancer cases and deaths for 2025 (cited American Cancer Society as reference 1).

Family History as a Risk Factor for Renal Cell Carcinoma

Added American Cancer Society as reference 1.

This summary is written and maintained by the PDQ Cancer Genetics Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the genetics of renal cell carcinoma. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Cancer Genetics Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Genetics of Renal Cell Carcinoma are:

  • Alexandra Perez Lebensohn, MS, CGC (National Cancer Institute)
  • Brian Matthew Shuch, MD (UCLA Health)
  • Ramaprasad Srinivasan, MD, PhD (National Cancer Institute)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Cancer Genetics Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Cancer Genetics Editorial Board. PDQ Genetics of Renal Cell Carcinoma. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/hp/renal-cell-carcinoma-genetics. Accessed <MM/DD/YYYY>. [PMID: 26389510]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Angiogenesis Inhibitors

Angiogenesis Inhibitors

What is angiogenesis?

Angiogenesis is the formation of new blood vessels. This process involves the migration, growth, and differentiation of endothelial cells, which line the inside wall of blood vessels.

The process of angiogenesis is controlled by chemical signals in the body. Some of these signals, such as vascular endothelial growth factor (VEGF), bind to receptors on the surface of normal endothelial cells. When VEGF and other endothelial growth factors bind to their receptors on endothelial cells, signals within these cells are initiated that promote the growth and survival of new blood vessels. Other chemical signals, called angiogenesis inhibitors, interfere with blood vessel formation.

Normally, the angiogenesis stimulating and inhibiting effects of these chemical signals are balanced so that blood vessels form only when and where they are needed, such as during growth and healing. But, for reasons that are not entirely clear, sometimes these signals can become unbalanced, causing increased blood vessel growth that can lead to abnormal conditions or disease. For example, angiogenesis is the cause of age-related wet macular degeneration.

Why is angiogenesis important in cancer?

Angiogenesis plays a critical role in the growth of cancer because solid tumors need a blood supply if they are to grow beyond a few millimeters in size. Tumors can actually cause this blood supply to form by giving off chemical signals that stimulate angiogenesis. Tumors can also stimulate nearby normal cells to produce angiogenesis signaling molecules.

The resulting new blood vessels “feed” growing tumors with oxygen and nutrients, allowing the tumor to enlarge and the cancer cells to invade nearby tissue, to move throughout the body, and to form new colonies of cancer cells, called metastases.

Because tumors cannot grow beyond a certain size or spread without a blood supply, scientists have developed drugs called angiogenesis inhibitors, which block tumor angiogenesis. The goal of these drugs, also called antiangiogenic agents, is to prevent or slow the growth of cancer by starving it of its needed blood supply.

How do angiogenesis inhibitors work?

Angiogenesis inhibitors are unique cancer-fighting agents because they block the growth of blood vessels that support tumor growth rather than blocking the growth of tumor cells themselves.

Angiogenesis inhibitors interfere in several ways with various steps in blood vessel growth. Some are monoclonal antibodies that specifically recognize and bind to VEGF. When VEGF is attached to these drugs, it is unable to activate the VEGF receptor. Other angiogenesis inhibitors bind to VEGF and/or its receptor as well as to other receptors on the surface of endothelial cells or to other proteins in the downstream signaling pathways, blocking their activities. Some angiogenesis inhibitors are immunomodulatory drugs—agents that stimulate or suppress the immune system—that also have antiangiogenic properties.

In some cancers, angiogenesis inhibitors appear to be most effective when combined with additional therapies. Because angiogenesis inhibitors work by slowing or stopping tumor growth without killing cancer cells, they are given over a long period.

What angiogenesis inhibitors are being used to treat cancer in humans?

The U.S. Food and Drug Administration (FDA) has approved a number of angiogenesis inhibitors to treat cancer. Most of these are targeted therapies that were developed specifically to target VEGF, its receptor, or other specific molecules involved in angiogenesis. Approved angiogenesis inhibitors include:

Do angiogenesis inhibitors have side effects?

Side effects of treatment with VEGF-targeting angiogenesis inhibitors can include hemorrhage, clots in the arteries (with resultant stroke or heart attack), hypertension, impaired wound healing, reversible posterior leukoencephalopathy syndrome (a brain disorder), and protein in the urine. Gastrointestinal perforation and fistulas also appear to be rare side effects of some angiogenesis inhibitors.

Antiangiogenesis agents that target the VEGF receptor have additional side effects, including fatigue, diarrhea, biochemical hypothyroidism, hand-foot syndrome, cardiac failure, and hair changes.

 

Get Help Finding Clinical Trials of Angiogenesis Inhibitors
Call NCI’s Cancer Information Service at 1-800-4-CANCER (1-800-422-6237) for information about clinical trials of angiogenesis inhibitors.

Hyperthermia to Treat Cancer

Hyperthermia to Treat Cancer

Doctor explains hyperthermia to patient

Hyperthermia to treat cancer is not widely available. But at some centers, it is used for advanced cancers along with other treatments such as radiation therapy and chemotherapy.

Credit: National Cancer Institute

What is hyperthermia treatment?

Hyperthermia is a type of treatment in which body tissue is heated to as high as 113 °F to help damage and kill cancer cells with little or no harm to normal tissue. Hyperthermia to treat cancer is also called thermal therapy, thermal ablation, or thermotherapy.

Different types of techniques may be used to create heat for hyperthermia treatment. These techniques include:

  • probes that make energy from microwaves
  • radio waves (also called radiofrequency)
  • lasers
  • ultrasound
  • heating fluids such as blood or chemotherapy drugs and putting them into the body (called perfusion)
  • placing the entire body in a heated chamber or hot water bath or wrapping with heated blankets

Cancers treated with hyperthermia

Hyperthermia to treat cancer is not widely available. But at some centers it is used, along with other treatments such as radiation therapy and chemotherapy, for advanced cancers. It has been used to treat these types of advanced cancers:

  • appendix cancer
  • bladder
  • brain cancer
  • breast
  • cervical cancer
  • esophageal cancer
  • head and neck cancer
  • liver
  • lung cancer
  • melanoma
  • mesothelioma
  • sarcoma
  • rectal cancer

How hyperthermia treats cancer

In hyperthermia, heat is used to help damage and kill cancer cells. 

Credit: © Terese Winslow

Hyperthermia is almost always used with other forms of cancer treatment. Many clinical trials have shown that hyperthermia, when used with treatments such as radiation therapy and chemotherapy, helps shrink tumors and may make it easier for them to kill cancer cells.

How hyperthermia is given

During treatment, the doctor numbs the treatment area and inserts small probes with tiny thermometers into the tumor. Thermometers help the doctor closely watch the temperature of the tumor and nearby tissue during treatment. Imaging techniques, such as CT scans, may be used to make sure the probes are in the proper place.

Types of hyperthermia treatment

Hyperthermia can be used to treat small areas of the body, large areas, or the entire body.

In local hyperthermia, doctors apply heat to a small area. The type of local hyperthermia used depends on where the tumor is located.

  • External hyperthermia is used to treat tumors that are on or just below the skin. For this type of hyperthermia, doctors place devices that create heat around or near the treatment area.
  • Intraluminal or endocavitary hyperthermia is used to treat tumors within or near body cavities, such as the esophagus or rectum. In this type of hyperthermia, doctors place probes that create heat inside the cavity and insert them into the tumor.
  • Interstitial hyperthermia is used to treat tumors deep within the body, such as in the brain. This type of hyperthermia allows the tumor to be heated to higher temperatures than external techniques. The doctor will insert probes or needles into your tumor while you are under anesthesia. Imaging techniques, such as ultrasound, may be used to help make sure the probe is in the right place. The heat source is then inserted into the probe.

    Radiofrequency ablation is a type of interstitial hyperthermia that uses radio waves to heat and kill cancer cells.

In regional hyperthermia, doctors apply heat to large areas of the body, such as a cavity, organ, or limb. Techniques used in regional hyperthermia include deep tissue techniques, regional perfusion, and continuous hyperthermic peritoneal perfusion.

  • Deep tissue techniques treat cancers within the body, such as cervical or bladder cancer. During this procedure, devices that deliver heat are placed around the cavity or organ to be treated and energy is focused on the area to raise its temperature.
  • Regional perfusion techniques treat cancers in the arms and legs, such as melanoma, or in some organs, such as the liver or lung. During this procedure, some of your blood is removed, heated, and then pumped back into the limb or organ. Chemotherapy is often given during this treatment.
  • Continuous hyperthermic peritoneal perfusion treats cancer within the peritoneal cavity, which is the space within the abdomen that contains the intestines, stomach, and liver.

    This treatment is given during surgery. While you are under anesthesia, heated chemotherapy drugs flow from a warming device through your peritoneal cavity, causing the temperature in the area to reach 106 to 108°F.

Whole-body hyperthermia treats cancer that has spread throughout the body. In this type of hyperthermia, you are placed in a thermal chamber or wrapped in hot water blankets that raise your body temperature to 107 or 108 °F for short periods of time.

Benefits of hyperthermia

Hyperthermia can help other cancer treatments, such as chemotherapy and radiation therapy, work better.

Drawbacks of hyperthermia to treat cancer

Treatment with hyperthermia requires special equipment and expertise and is not widely available. It is also not clear if it helps people live longer.

Hyperthermia side effects

Most healthy tissue is not damaged during hyperthermia if the temperature stays under 111°F. But different features of different tissues may cause higher temperatures to occur in certain spots. This can cause burns, blisters, discomfort, or pain.

Perfusion techniques can cause swelling, blood clots, bleeding, and other damage to the normal tissues in the treated area. But most of these side effects improve after treatment.

Diarrhea, nausea, and vomiting are common after whole-body hyperthermia. It can also cause more serious side effects that are not common, including heart and blood vessel problems. 

Where to go for hyperthermia treatment

A small number of hospitals and cancer centers throughout the country have skilled doctors and the machines needed to perform hyperthermia. Talk with your doctor or contact hospitals and cancer centers in your area to find out if they are using hyperthermia.

Hyperthermia treatment research

In clinical trials, doctors are studying how effective hyperthermia is for treating different cancers and when used with other cancer treatments. Other trials focus on improving techniques for delivering hyperthermia. If you are interested in joining a research study that is testing hyperthermia. Search for research studies by using the advanced clinical trials search form or contact NCI’s Cancer Information Service.

Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version

Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Patient Version

General Information About Transitional Cell Cancer of the Renal Pelvis and Ureter

Key Points

  • Transitional cell cancer of the renal pelvis and ureter is a type of cancer that forms in the transitional cells of the renal pelvis and ureter.
  • A personal history of bladder cancer and smoking can increase the risk of transitional cell cancer of the renal pelvis and ureter.
  • Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain.
  • Tests that examine the abdomen and kidneys are used to diagnose transitional cell cancer of the renal pelvis and ureter.
  • After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body.
  • Some people decide to get a second opinion.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Transitional cell cancer of the renal pelvis and ureter is a type of cancer that forms in the transitional cells of the renal pelvis and ureter.

Transitional cells are a type of cell that lines the inside of the renal pelvis, ureters, and other organs. These cells are able to stretch when the renal pelvis or bladder is full of urine and shrink when it is emptied. Transitional cell cancer can form in the renal pelvis, the ureters, or both.

The renal pelvis is the area at the center of the kidney. It collects urine before it flows into the ureters, which are long tubes that connect the kidney to the bladder. There are two kidneys, one on each side of the backbone, above the waist. The kidneys of an adult are about 5 inches long and 3 inches wide and are shaped like a kidney bean.

The kidneys play an important role in the urinary system:

  • The kidneys filter and clean the blood by taking out waste products and extra water as urine.
  • The urine collects in the middle of each kidney in the renal pelvis.
  • Urine passes from the renal pelvis through the ureter into the bladder.
  • The bladder holds the urine until it passes through the urethra and leaves the body.
EnlargeAnatomy of the male urinary system (left panel) and female urinary system (right panel); two-panel drawing showing the right and left kidneys, the ureters, the bladder filled with urine, and the urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel).
Anatomy of the male urinary system (left panel) and female urinary system (right panel) showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel). Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra.

Renal cell cancer is a more common type of kidney cancer. For more information, see Renal Cell Cancer Treatment.

A personal history of bladder cancer and smoking can increase the risk of transitional cell cancer of the renal pelvis and ureter.

Transitional cell cancer of the renal pelvis and ureter is caused by certain changes to the way transitional cells in the renal pelvis and ureters function, especially how they grow and divide into new cells. There are many risk factors for transitional cell cancer of the renal pelvis and ureter, but many do not directly cause cancer. Instead, they increase the chance of DNA damage in cells that may lead to cancer. To learn more about how cancer develops, see What Is Cancer?

A risk factor is anything that increases the chance of getting a disease. Some risk factors for transitional cell cancer of the renal pelvis and ureter, like smoking, can be changed. However, risk factors may also include things you cannot change, like your personal medical history. Learning about risk factors for transitional cell cancer of the renal pelvis and ureter can help you make changes that might lower your risk of getting it.

Risk factors for transitional cell cancer of the renal pelvis and ureter include:

  • having a personal history of bladder cancer
  • smoking cigarettes
  • taking a lot of certain pain medicines, such as phenacetin
  • being exposed to certain dyes and chemicals used in making leather goods, textiles, plastics, and rubber

Having one or more of these risk factors does not mean that you will get transitional cell cancer of the renal pelvis and ureter. Many people with risk factors never develop this type of cancer, while others with no known risk factors do. Talk with your doctor if you think you might be at risk.

Signs and symptoms of transitional cell cancer of the renal pelvis and ureter include blood in the urine and back pain.

In the early stages, there may be no signs and symptoms of transitional cell cancer of the renal pelvis and ureter. Symptoms may appear as the tumor grows and may include:

  • blood in the urine
  • a pain in the back that doesn’t go away
  • extreme tiredness
  • weight loss with no known reason
  • painful or frequent urination

These symptoms may be caused by transitional cell cancer of the renal pelvis and ureter or by other conditions. It’s important to check with your doctor if you have any of these symptoms to find out the cause and begin treatment if needed.

Tests that examine the abdomen and kidneys are used to diagnose transitional cell cancer of the renal pelvis and ureter.

In addition to asking about your personal and family health history and doing a physical exam, your doctor may perform the following tests and procedures:

  • Urinalysis is a test to check the color of urine and its contents, such as sugar, protein, blood, and bacteria.
  • Ureteroscopy is a procedure to look inside the ureter and renal pelvis to check for abnormal areas. A ureteroscope is a thin, tube-like instrument with a light and a lens for viewing. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis. A tool may be inserted through the ureteroscope to take tissue samples to be checked under a microscope for signs of disease.
    EnlargeDrawing of a female and male ureteroscopy showing the lower pelvis of a female, including the right and left kidneys, renal pelvis, ureter, uterus, bladder, and urethra, and the lower pelvis of a male, including the ureter, bladder, prostate, urethra, and penis. In both the female and male figures, a ureteroscope (a thin, tube-like instrument with a light and a lens for viewing) is shown passing through the urethra into the bladder and ureter. In the female figure, the ureteroscope is also shown passing into the renal pelvis. There is also an inset that shows a person lying on an examination table with their knees bent and legs apart, covered by a drape, and a doctor looking at an image of the inside of the ureter and/or renal pelvis on a computer monitor.
    A ureteroscopy is a procedure that uses a ureteroscope (a thin, tube-like instrument with a light and a lens for viewing) to look inside the ureter and renal pelvis to check for abnormal areas. The ureteroscope is inserted through the urethra into the bladder, ureter, and renal pelvis.
  • Urine cytology is a laboratory test in which a sample of urine is checked under a microscope for abnormal cells. Cancer in the kidney, bladder, or ureter may shed cancer cells into the urine.
  • CT scan (CAT scan) uses a computer linked to an x-ray machine to make a series of detailed pictures of areas inside the body from different angles. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • Ultrasound uses high-energy sound waves (ultrasound) that bounce off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram. An ultrasound of the abdomen may be done to help diagnose cancer of the renal pelvis and ureter.
  • MRI (magnetic resonance imaging) uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body, such as the pelvis. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • Biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. This may be done during a ureteroscopy or surgery.

After transitional cell cancer of the renal pelvis and ureter has been diagnosed, tests are done to find out if cancer cells have spread within the renal pelvis and ureter or to other parts of the body.

The process used to find out if the cancer has spread within the renal pelvis and ureter or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. The results of the diagnostic and staging tests will also help you and your doctor plan treatment.

The following tests and procedures may also be used in the staging process:

  • Chest x-ray is an x-ray of the organs and bones inside the chest. An x-ray is a type of energy beam that can go through the body and onto film, making a picture of areas inside the body.
  • PET scan (positron emission tomography scan) uses a small amount of radioactive sugar (also called glucose) that is injected into a vein. Then a scanner is used to make detailed, computerized pictures of areas inside the body where the glucose is taken up. Because cancer cells often take up more glucose than normal cells, the pictures can be used to find cancer cells in the body.
  • Bone scan is used to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner.

Some people decide to get a second opinion.

You may want to get a second opinion to confirm your cancer diagnosis and treatment plan. If you seek a second opinion, you will need to get medical test results and reports from the first doctor to share with the second doctor. The second doctor will review the pathology report, slides, and scans. They may agree with the first doctor, suggest changes or another treatment approach, or provide more information about your cancer.

To learn more about choosing a doctor and getting a second opinion, see Finding Cancer Care. You can contact NCI’s Cancer Information Service via chat, email, or phone (both in English and Spanish) for help finding a doctor, hospital, or getting a second opinion. For questions you might want to ask at your appointments, see Questions to Ask Your Doctor about Cancer.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis depends on the stage and grade of the tumor.

The treatment options depend on:

  • the stage and grade of the tumor
  • where the tumor is
  • whether the patient’s other kidney is healthy
  • whether the cancer has recurred (come back)

Most transitional cell cancer of the renal pelvis and ureter can be cured if found early.

Stages of Transitional Cell Cancer of the Renal Pelvis and Ureter

Key Points

  • The following stages are used for transitional cell cancer of the renal pelvis and/or ureter:
    • Stage 0 (Noninvasive Papillary Carcinoma and Carcinoma in Situ)
    • Stage I (also called stage 1)
    • Stage II (also called stage 2)
    • Stage III (also called stage 3)
    • Stage IV (also called stage 4)
  • Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, metastatic, or recurrent:
    • Localized
    • Regional
    • Metastatic
    • Recurrent

Cancer stage describes the extent of cancer in the body, such as the size of the tumor, whether it has spread, and how far it has spread from where it first formed. It is important to know the stage of transitional cell cancer of the renal pelvis and ureter to plan the best treatment.  

There are several staging systems for cancer that describe the extent of the cancer. Transitional cell cancer of the renal pelvis and ureter staging usually uses the TNM staging system. You may see your cancer described by this staging system in your pathology report. Based on the TNM results, a stage (I, II, III, or IV, also written as 1, 2, 3, or 4) is assigned to your cancer. When talking to you about your cancer, your doctor may describe it as one of these stages. 

Learn more about Cancer Staging.

The following stages are used for transitional cell cancer of the renal pelvis and/or ureter:

Stage 0 (Noninvasive Papillary Carcinoma and Carcinoma in Situ)

In stage 0, abnormal cells are found in tissue lining the inside of the renal pelvis or ureter. These abnormal cells may become cancer and spread into nearby normal tissue. Stage 0 is divided into stages 0a and 0is, depending on the type of tumor:

  • Stage 0a is also called noninvasive papillary carcinoma, which may look like long, thin growths that grow out from the tissue lining the inside of the renal pelvis or ureter.
  • Stage 0is is also called carcinoma in situ, which is a flat tumor on the tissue lining the inside of the renal pelvis or ureter.

Stage I (also called stage 1)

In stage I, cancer has formed and has spread from the tissue lining the inside of the renal pelvis or ureter to the connective tissue layer.

Stage II (also called stage 2)

In stage III, cancer has spread to the muscle layer of the renal pelvis or ureter.

Stage III (also called stage 3)

In stage III, cancer has spread:

  • from the muscle layer of the renal pelvis to fat around the renal pelvis or to tissue in the kidney; or
  • from the muscle layer of the ureter to fat around the ureter.

Stage IV (also called stage 4)

In stage IV, cancer has spread to at least one of the following:

Stage IV transitional cell cancer of the renal pelvis and ureter is also called metastatic cancer. Metastatic cancer happens when cancer cells travel through the lymphatic system or blood and form tumors in other parts of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if transitional cell cancer renal pelvis and ureter spreads to the liver, the cancer cells in the liver are actually transitional cell cancer of the renal pelvis and ureter. The disease is called metastatic transitional cell cancer of the renal pelvis and ureter, not liver cancer. Learn more in Metastatic Cancer: When Cancer Spreads.

Transitional cell cancer of the renal pelvis and ureter is also described as localized, regional, metastatic, or recurrent:

Localized

The cancer is found only in the kidney.

Regional

The cancer has spread to tissues around the kidney and to nearby lymph nodes and blood vessels in the pelvis.

Metastatic

The cancer has spread to other parts of the body.

Recurrent

Recurrent cancer is cancer that has recurred (come back) after it has been treated. If transitional cell cancer of the renal pelvis and ureter comes back, it may come back in the renal pelvis, ureter, or in other parts of the body, such as the lung, liver, or bone. Tests will be done to help determine where the cancer has returned. The type of treatment for recurrent transitional cell cancer of the renal pelvis and ureter will depend on where it has come back.

Learn more in Recurrent Cancer: When Cancer Comes Back.

Treatment Option Overview for Transitional Cell Cancer of the Renal Pelvis and Ureter

Key Points

  • There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter.
  • The following type of treatment is used:
    • Surgery
  • New types of treatment are being tested in clinical trials.
    • Fulguration
    • Segmental resection of the renal pelvis
  • Treatment for transitional cell cancer of the renal pelvis and ureter may cause side effects.
  • Follow-up care may be needed.

There are different types of treatment for patients with transitional cell cancer of the renal pelvis and ureter.

Different types of treatments are available for people with transitional cell cancer of the renal pelvis and ureter. You and your cancer care team will work together to decide your treatment plan, which may include more than one type of treatment. Many factors will be considered, such as the stage of the cancer, your overall health, and your preferences. Your plan will include information about your cancer, the goals of treatment, your treatment options and the possible side effects, and the expected length of treatment. 

Talking with your cancer care team before treatment begins about what to expect will be helpful. You’ll want to learn what you need to do before treatment begins, how you’ll feel while going through it, and what kind of help you will need. To learn more, see Questions to Ask Your Doctor about Treatment. 

The following type of treatment is used:

Surgery

One of the following surgical procedures may be used to treat transitional cell cancer of the renal pelvis and ureter:

  • Nephroureterectomy is surgery to remove the entire kidney, the ureter, and the bladder cuff (tissue that connects the ureter to the bladder). Most people with transitional cell cancer of the renal pelvis and ureter undergo nephroureterectomy.
  • Segmental resection of the ureter is a surgical procedure to remove the part of the ureter that contains cancer and some of the healthy tissue around it. The ends of the ureter are then reattached. This treatment is used when the cancer is superficial and in the lower third of the ureter only, near the bladder.

New types of treatment are being tested in clinical trials.

For some people, joining a clinical trial may be an option. There are different types of clinical trials for people with cancer. For example, a treatment trial tests new treatments or new ways of using current treatments. Supportive care and palliative care trials look at ways to improve quality of life, especially for those who have side effects from cancer and its treatment.

You can use the clinical trial search to find NCI-supported cancer clinical trials accepting participants. The search allows you to filter trials based on the type of cancer, your age, and where the trials are being done. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

Learn more about clinical trials, including how to find and join one, at Clinical Trials Information for Patients and Caregivers.

This summary section describes treatments that are being studied in clinical trials. It may not mention every new treatment being studied.

Fulguration

Fulguration is a surgical procedure that destroys tissue using an electric current. A tool with a small wire loop on the end is used to remove the cancer or to burn away the tumor with electricity.

Segmental resection of the renal pelvis

This is a surgical procedure to remove localized cancer from the renal pelvis without removing the entire kidney. Segmental resection may be done to save kidney function when the other kidney is damaged or has already been removed.

Laser surgery

A laser beam (narrow beam of intense light) is used as a knife to remove the cancer. A laser beam can also be used to kill the cancer cells. This procedure may also be called laser fulguration.

Regional chemotherapy and regional immunotherapy

Chemotherapy (also called chemo) uses drugs to stop the growth of cancer cells, either by killing the cells or by stopping the cells from dividing. To learn more about chemotherapy, see Chemotherapy to Treat Cancer and Chemotherapy and You: Support for People With Cancer.

Immunotherapy helps a person’s immune system fight cancer. Learn more about Immunotherapy to Treat Cancer.

Regional treatment for transitional cell cancer of renal pelvis and ureter is a method of placing the chemotherapy or immunotherapy drug directly into the renal pelvis or the ureter to mainly affect cancer cells in those areas.

Treatment for transitional cell cancer of the renal pelvis and ureter may cause side effects.

For information about side effects caused by treatment for cancer, visit our Side Effects page.

Follow-up care may be needed.

As you go through treatment, you will have follow-up tests or check-ups. Some tests that were done to diagnose or stage the cancer may be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back).

Treatment of Localized Transitional Cell Cancer of the Renal Pelvis and Ureter

Treatment of localized transitional cell cancer of the renal pelvis and ureter may include:

To learn more about these treatments, see the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Regional Transitional Cell Cancer of the Renal Pelvis and Ureter

Treatment of regional transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial.

To learn more about clinical trials, see the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Metastatic or Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter

Treatment of metastatic or recurrent transitional cell cancer of the renal pelvis and ureter is usually done in a clinical trial, which may include chemotherapy.

To learn more about clinical trials, see the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

To Learn More About Transitional Cell Cancer of the Renal Pelvis and Ureter

For more information from the National Cancer Institute about transitional cell cancer of the renal pelvis and ureter, see:

For general cancer information and other resources from the National Cancer Institute, visit:

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/patient/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389285]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Cryosurgery to Treat Cancer

Cryosurgery to Treat Cancer

apparatus that delivers cryosurgery, which is a metal canister with a nozzle, pointed at the skin

Cryosurgery uses extreme cold produced by liquid nitrogen or argon gas to destroy cancer cells. 

Credit: © Terese Winslow

What is cryosurgery?

Cryosurgery is a treatment that uses extreme cold produced by liquid nitrogen or argon gas to destroy cancer cells and abnormal tissue. It is a local treatment, which means that it is directed toward a specific part of your body. Cryosurgery is used to treat tumors on the skin, as well as certain tumors inside the body.

Cryosurgery may also be called cryotherapy or cryoablation.

Cancers treated with cryosurgery

Cryosurgery can be used to treat the following types of cancer:

Cryosurgery is also used to treat the following conditions that are not cancer:

How cryosurgery treats cancer

Cryosurgery freezes tissue, causing cells in the treated area to die.

For tumors on the skin, the doctor applies liquid nitrogen directly to the abnormal area with a cotton swab or spraying device. For tumors inside the body, the doctor may use a device called a cryoprobe to freeze the tumor tissue. Cryoprobes may be put into the body during surgery or through a small cut in the skin. As liquid nitrogen or argon gas flows through the cryoprobe, the doctor places it directly on the tumor. During this procedure, the doctor uses ultrasound or MRI to guide the cryoprobe to the correct spot, which helps limit damage to nearby healthy tissue. Sometimes, more than one cryoprobe is used to freeze different parts of the tumor.

When the frozen tissue thaws, the cells die. Tumors that were frozen inside the body will be absorbed. Tumors that were frozen on the skin will form a scab that will fall off as the damaged skin heals.

Cryosurgery may be used with other cancer treatments such as hormone therapy, chemotherapy, immunotherapy, radiation therapy, or surgery. For example, the tissue remaining after a primary bone tumor has been removed by surgery may be treated with cryotherapy to help reduce the risk that the tumor will come back.

Benefits of cryosurgery

Cryosurgery has many benefits.

  • For tumors inside the body, only a small cut or puncture is usually needed to insert the cryoprobe through the skin. As a result, pain, bleeding, and other problems that come with surgery are reduced.
  • Cryosurgery can often be done with local anesthesia and may not require a hospital stay.
  • Since cryosurgery is a local treatment and doctors can focus treatment on a precise area, damage to nearby healthy tissue can be reduced.
  • Cryosurgery can be repeated safely and may be used with other cancer treatments.
  • Cryosurgery may be used when tumors can’t be removed with surgery or when people can’t have surgery because of their age or other medical problems.
  • Cryosurgery may be an option when the cancer does not respond to standard treatments.

Drawbacks of cryosurgery

For some uses of cryosurgery, doctors do not know how well it controls cancer or improves how long people live over the long term. Also, cryosurgery can only be used to treat tumors that can be seen by using imaging tests.

Because the long-term value of cryosurgery for some cancers and precancers is still being tested, its use may not be covered by insurance.

Side effects from cryosurgery

Cryosurgery can cause side effects, although they are likely to be less severe than those from other local treatments, such as surgery or radiation therapy. The side effects that you might have depend mostly on the part of your body that is treated. For instance:

  • Cryosurgery to treat abnormal cervical cells can cause cramping, pain, or bleeding.
  • Cryosurgery for skin tumors may cause scarring and swelling. If nerves are damaged, you may have a loss of feeling. Rarely, it may cause a loss of skin pigment or hair in the treated area.
  • Cryosurgery to treat tumors in bone may lead to the damage of nearby bone tissue that in time will cause broken bones.
  • Cryosurgery to treat tumors in the liver may cause damage to the bile ducts and major blood vessels, which can lead to heavy bleeding or infection.
  • Cryosurgery to treat prostate cancer can cause urine flow to be blocked, incontinence, impotence, and damage to the rectum. You are more likely to have side effects from cryosurgery if you have also had radiation therapy to the prostate.

Where to go for cryosurgery

For simple procedures, you will have cryosurgery in a doctor’s office as an outpatient. For more complex ones, you may need to stay in the hospital.

A small number of hospitals and cancer centers throughout the country have skilled doctors and machines needed to perform more complex procedures. Talk with your doctor or contact hospitals and cancer centers in your area to find out if they are using cryosurgery.

Cryosurgery research

Researchers are studying cryosurgery as a possible treatment for:

  • oral cancer and conditions of the mouth that can turn into cancer
  • breast cancer
  • colon cancer
  • pancreatic cancer
  • kidney cancer

They are also studying the use of cryotherapy with other cancer treatments, such as hormone therapy, chemotherapy, immunotherapy, radiation therapy, and surgery.

If you are interested in finding a clinical trial that uses cryosurgery, use the advanced search form or contact NCI’s Cancer Information Service.

Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Health Professional Version

Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment (PDQ®)–Health Professional Version

General Information About Transitional Cell Cancer of the Renal Pelvis and Ureter

Incidence and Mortality

Transitional cell cancer of the renal pelvis accounts for only 7% of all kidney tumors, and transitional cell cancer of the ureter accounts for only 4% of upper urinary tract tumors. These cancers are curable in more than 90% of patients if they are superficial and confined to the renal pelvis or ureter. Patients with deeply invasive tumors that are confined to the renal pelvis or ureter have a 10% to 15% likelihood of cure. Patients with tumors with penetration through the urothelial wall or with distant metastases usually cannot be cured with available forms of treatment.

Prognosis

The major prognostic factor at the time of diagnosis of upper tract transitional cell cancer is the depth of infiltration into or through the uroepithelial wall.

Most superficial tumors are likely to be well differentiated, while infiltrative tumors are likely to be poorly differentiated. The incidence of synchronous or metachronous contralateral upper tract cancers ranges from 2% to 4%; the incidence of subsequent bladder cancer after previous upper tract transitional cell cancer ranges from 30% to 50%.[1] When involvement of the upper tract is diffuse (involving both the renal pelvis and ureter), the likelihood of subsequent bladder cancer increases to 75%. DNA ploidy has not added significant prognostic information beyond that provided by stage and grade.[2]

Diagnostics

Even if ureteroscopy and pyeloscopy are successfully implemented, accurate assessment of depth of invasion is difficult.

Treatment Management and Survivorship

Total excision of the ureter with a bladder cuff, renal pelvis, and kidney is recommended to provide the greatest likelihood of cure.

References
  1. Krogh J, Kvist E, Rye B: Transitional cell carcinoma of the upper urinary tract: prognostic variables and post-operative recurrences. Br J Urol 67 (1): 32-6, 1991. [PUBMED Abstract]
  2. Corrado F, Ferri C, Mannini D, et al.: Transitional cell carcinoma of the upper urinary tract: evaluation of prognostic factors by histopathology and flow cytometric analysis. J Urol 145 (6): 1159-63, 1991. [PUBMED Abstract]

Cellular Classification of Transitional Cell Cancer of the Renal Pelvis and Ureter

Most upper tract uroepithelial tumors are of transitional cell histology. Squamous cell cancer (SCC) of the urinary tract makes up less than 15% of the tumors of the renal pelvis and a smaller percentage of ureteral tumors. SCC is often associated with chronic calculus disease and infection.

Grade of transitional cell cancer of the upper tract has generally been found to correlate with stage. Superficial tumors are generally grade I or II, whereas most infiltrative tumors are grades III and IV. Prognosis is worse for patients with high-grade (grades III and IV) tumors than for those with low-grade (grades I and II) tumors.

Stage Information for Transitional Cell Cancer of the Renal Pelvis and Ureter

Though comparable in many respects to staging systems described for bladder cancer, unique structural aspects of the renal pelvis and ureter have led to several differences in the classification schema of tumors that involve the upper tracts. Clinical staging is based on a combination of radiographic procedures (e.g., intravenous pyelogram and computed tomographic scans) and, more recently, ureteroscopy and biopsy.

The advent of rigid and flexible ureteroscopic techniques has permitted endoscopic access to the ureter and renal pelvis. This may permit greater accuracy in preoperative definition of the stage and grade of an upper tract neoplasm. In addition, fulguration and endourological access permit resection or laser coagulation of highly selected low-stage, low-grade lesions of the ureters.[1] However, this approach is still under clinical evaluation because there is the possibility of inaccurate assessment of the stage and extent of disease, and the adequacy and risks of such treatment have not yet been defined.[25]

Because of the inaccessibility of ureteral and pelvic anatomy, accurate staging requires pathological analysis of the surgically excised specimen.

AJCC Stage Groupings and TNM Definitions

The American Joint Committee on Cancer (AJCC) has designated staging by TNM (tumor, node, metastasis) classification to define carcinoma of the renal pelvis and ureter.[6]

Table 1. Definition of TNM Stage 0a
Stage TNM Definition
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Renal pelvis and ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 749–55.
0a Ta, N0, M0 Ta = Papillary noninvasive carcinoma.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
0is Tis, N0, M0 Tis = Carcinoma in situ.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 2. Definition of TNM Stage Ia
Stage TNM Definition
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Renal pelvis and ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 749–55.
I T1, N0, M0 T1 = Tumor invades subepithelial connective tissue.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 3. Definition of TNM Stage IIa
Stage TNM Definition
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Renal pelvis and ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 749–55.
II T2, N0, M0 T2 = Tumor invades the muscularis.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 4. Definition of TNM Stage IIIa
Stage TNM Definition
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Renal pelvis and ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 749–55.
III T3, N0, M0 T3 = For renal pelvis only: Tumor invades beyond muscularis into peripelvic fat or into the renal parenchyma. For ureter only: Tumor invades beyond muscularis into periureteric fat.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 5. Definition of TNM Stage IVa
Stage TNM Definition
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Renal pelvis and ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 749–55.
IV T4, N0, M0 T4 = Tumor invades adjacent organs, or through the kidney into the perinephric fat.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Any T, N1, M0 TX = Primary tumor cannot be assessed.
T0 = No evidence of primary tumor.
Ta = Papillary noninvasive carcinoma.
Tis = Carcinoma in situ.
T1 = Tumor invades subepithelial connective tissue.
T2 = Tumor invades the muscularis.
T3 = For renal pelvis only: Tumor invades beyond muscularis into peripelvic fat or into the renal parenchyma. For ureter only: Tumor invades beyond muscularis into periureteric fat.
T4 = Tumor invades adjacent organs, or through the kidney into the perinephric fat.
N1 = Metastasis in a single lymph node, ≤2 cm in greatest dimension.
M0 = No distant metastasis.
Any T, N2, M0 Any T = See descriptions above in this table, stage IV, Any T, N1, M0.
N2 = Metastasis in a single lymph node, >2 cm; or multiple lymph nodes.
M0 = No distant metastasis.
Any T, Any N, M1 Any T = See descriptions above in this table, stage IV, Any T, N1, M0.
NX = Regional lymph nodes cannot be assessed.
N0 = No regional lymph node metastasis.
N1 = Metastasis in a single lymph node, ≤2 cm in greatest dimension.
N2 = Metastasis in a single lymph node, >2 cm; or multiple lymph nodes.
M1 = Distant metastasis.

Patients may also be designated as having localized, regional, or metastatic disease, as follows:

Localized

Patients with localized disease may be classified into three groups:

  • Group 1: Low-grade tumor confined to the urothelium without lamina propria invasion (papilloma grade I transitional cell cancer).
  • Group 2: Grade I–III carcinomas without demonstrable subepithelial invasion or focal microscopic invasion or papillary carcinomas with carcinoma in situ and/or carcinoma in situ elsewhere in the urothelium.
  • Group 3: High-grade tumors that have infiltrated the renal pelvic wall, renal parenchyma, or both but remain confined to the kidney. Infiltration of muscle in the upper tract may not be associated with as much potential for distant dissemination as appears to be the case for bladder cancer.

Regional

  • Group 4: Extension of tumors beyond the renal pelvis or parenchyma and invasion of peripelvic and perirenal fat, lymph nodes, hilar vessels, and adjacent tissues.

Metastatic

  • Spread of the tumor to distant tissues.

Each of these classifications has been subclassified into categories of unicentricity or multicentricity. The latter category indicates a more pervasive tumor diathesis and generally a less favorable prognosis.

Although the classifications listed above have prognostic significance, they can be determined only at the time of nephroureterectomy, which is the treatment of choice for patients with this disease. Because of the high incidence of tumor recurrence within the intramural ureter among patients who have had incomplete excision of this area, nephroureterectomy includes the entire ureter and a margin of periureteral orifice mucosa (i.e., bladder cuff).

A TNM staging system has demonstrated accurate predictions of survival. The TNM staging system may be a better predictor of prognosis than tumor grade, although both are strongly predictive of survival. Median survival for patients with tumors confined to the subepithelial connective tissue was 91.1 months, compared with 12.9 months for patients with tumors invading the muscularis and beyond, in one report. Flow cytometry analysis identifies low-stage, low-grade tumors at high risk of recurrence by virtue of their aneuploid histograms.[7,8]

References
  1. Grossman HB, Schwartz SL, Konnak JW: Ureteroscopic treatment of urothelial carcinoma of the ureter and renal pelvis. J Urol 148 (2 Pt 1): 275-7, 1992. [PUBMED Abstract]
  2. Batata M, Grabstald H: Upper urinary tract urothelial tumors. Urol Clin North Am 3 (1): 79-86, 1976. [PUBMED Abstract]
  3. Cummings KB, Correa RJ, Gibbons RP, et al.: Renal pelvic tumors. J Urol 113 (2): 158-62, 1975. [PUBMED Abstract]
  4. Nocks BN, Heney NM, Daly JJ, et al.: Transitional cell carcinoma of renal pelvis. Urology 19 (5): 472-7, 1982. [PUBMED Abstract]
  5. Heney NM, Nocks BN, Daly JJ, et al.: Prognostic factors in carcinoma of the ureter. J Urol 125 (5): 632-6, 1981. [PUBMED Abstract]
  6. Renal Pelvis and Ureter. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, 749–55.
  7. Huben RP, Mounzer AM, Murphy GP: Tumor grade and stage as prognostic variables in upper tract urothelial tumors. Cancer 62 (9): 2016-20, 1988. [PUBMED Abstract]
  8. Blute ML, Tsushima K, Farrow GM, et al.: Transitional cell carcinoma of the renal pelvis: nuclear deoxyribonucleic acid ploidy studied by flow cytometry. J Urol 140 (5): 944-9, 1988. [PUBMED Abstract]

Treatment Option Overview for Transitional Cell Cancer of the Renal Pelvis and Ureter

Most patients with renal pelvic transitional cell cancers and ureteral cancers undergo total nephroureterectomy with bladder cuff excision. This treatment is because of the rarity of synchronous bilateral renal pelvic neoplasia, the low incidence of asynchronous development of contralateral upper tract tumors, and the increased risk of tumor recurrence in the ipsilateral ureter distal to the original pelvic tumor.

Contemplation of anything less than total excision must take into account the potential risk for tumor recurrence anywhere in the upper tract unit. In other than unifocal, low-grade, low-stage renal pelvic tumors, the probable extensive involvement of both contiguous and noncontiguous sites would appear to make segmental excision an unnecessary option with a potentially serious risk. However, an operative possibility includes segmental excision of a particular lesion. If the extent of a tumor can be determined by intraoperative assessment and frozen section histological diagnosis confirms a low-grade, unifocal tumor of limited size, then segmental excision is possible. However, this approach should be reserved for highly selected patients such as patients with one kidney or those with decreased renal function who require maximal preservation of renal tissue. The likelihood of tumor recurrence in this setting, and of extension of disease outside the renal pelvis once the pelvis has been violated, is a serious risk that must be heavily weighed in offering a patient this therapeutic option.

Ureteral transitional cell cancer may more readily offer the possibility of segmental excision if the absence of proximal disease can be documented. In this setting, attention is focused on the ease of reconstruction of the ureter and restoration of ureterovesical continuity. This treatment is most feasible if the cancer is in the distal ureter. If partial ureterectomy is possible and proximal disease has been excluded, then segmental excision and ureteral reimplantation can be performed.

Systematic regional lymph node dissection in conjunction with nephroureterectomy or segmental excision has not been found to enhance the effectiveness of surgery if tumors are of high grade or high stage because, in these instances, the overall results are so poor. Correspondingly, lymph node involvement is uncommon in low-stage disease, and lymphadenectomy is unlikely to remove additional tumor. Lymph node dissection at the time of nephrectomy may offer prognostic information, but little, if any, therapeutic benefit.

Treatment of Localized Transitional Cell Cancer of the Renal Pelvis and Ureter

Treatment Options for Localized Transitional Cell Cancer of the Renal Pelvis and Ureter

Treatment options for localized transitional cell cancer of the renal pelvis and ureter include the following:

  1. Nephroureterectomy with bladder cuff excision.
  2. Segmental resection of ureter, only if the tumor is superficial and located in the distal third of the ureter.
  3. Electroresection and fulguration or laser fulguration, if the tumor is superficial (under clinical evaluation).
  4. Any parenchymal sparing procedure (segmental resection; ureteroscopic or percutaneous resection/fulguration/laser destruction), if the renal unit is solitary or renal function is depressed (under clinical evaluation).
  5. Intrapelvic or intraureteral cytotoxic/immunotherapy (under clinical evaluation). The dramatic success reported with intravesical cytotoxic (thiotepa, mitomycin, doxorubicin) or immunologic/inflammatory (Bacillus Calmette Guerin [BCG], interferon) therapy for superficial transitional cell cancers in the bladder has led to the occasional use of these agents in the treatment of upper tract cancers. Long-term follow-up of the results of such treatments has generally not been reported. The efficacy of this approach cannot be assessed, largely because experience has been limited to patients whose compromised clinical status (solitary kidney, renal failure, medical risks for surgery) may have influenced clinical outcome. The use of this approach is limited by the following:
    • The extent of disease in the renal pelvis.
    • The access that these agents may have to the area of disease.
    • The sensitivity of the cancer being treated.
    • The adequacy and accuracy of initial tumor staging and continued monitoring.
  6. Laser vaporization/coagulation (under clinical evaluation). Transurethral and percutaneous access to the upper tract have permitted the use of laser therapy in the control of superficial upper tract transitional cell cancers. This approach is dependent on accurate staging and adequate visualization of the lesions that need to be coagulated. Results of this approach are too preliminary to assess. Therapeutic efficacy, however, will depend on staging accuracy at initial treatment and the ease of monitoring such patients for disease recurrence and possible progression.

The development of new instrumentation for endourological treatment of upper tract transitional cell cancer has provided new options for regional management of these cancers. Introduction of electrofulguration and resection instruments or laser probes either transureterally or percutaneously, may permit destruction of a primary cancer. Introduction of cytotoxic agents has also been used. Although a biopsy can be taken for staging purposes, its accuracy remains to be determined. The efficacy of treatment by these maneuvers has not been established.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

Treatment of Regional Transitional Cell Cancer of the Renal Pelvis and Ureter

There is no well-documented success for treatment of extensive regional disease with either radiation therapy or systemic chemotherapy. Patients with extensive regional disease should consider clinical trials.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

Treatment of Metastatic or Recurrent Transitional Cell Cancer of the Renal Pelvis and Ureter

The prognosis for any patient with metastatic or recurrent transitional cell cancer is poor. The proper management of recurrence depends on the sites of recurrence, extent of prior therapy, and individual patient considerations. Chemotherapy regimens that have been effective for metastatic bladder cancer have generally been applied to transitional cell cancers arising from other sites. Patients with distant metastases have a poor prognosis and can be offered treatment in a clinical trial.

In patients with metastatic or recurrent transitional cell carcinoma of the bladder, combination chemotherapy has produced high response rates and occasional complete responses.[1,2] Results from a randomized trial that compared methotrexate, vinblastine, doxorubicin, and cisplatin (M-VAC) with single-agent cisplatin in advanced bladder cancer showed a significant advantage with M-VAC in both response rate and median survival. The overall response rate with M-VAC in this cooperative group trial was 39%.[3]

Other chemotherapy agents that have shown activity in metastatic transitional cell cancer include the following:[48][Level of evidence C3]

  • Paclitaxel.
  • Ifosfamide.
  • Gallium nitrate.
  • Gemcitabine.
  • Pemetrexed.

Ifosfamide, gallium nitrate, and pemetrexed have shown limited activity in patients previously treated with cisplatin.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Sternberg CN, Yagoda A, Scher HI, et al.: Methotrexate, vinblastine, doxorubicin, and cisplatin for advanced transitional cell carcinoma of the urothelium. Efficacy and patterns of response and relapse. Cancer 64 (12): 2448-58, 1989. [PUBMED Abstract]
  2. Harker WG, Meyers FJ, Freiha FS, et al.: Cisplatin, methotrexate, and vinblastine (CMV): an effective chemotherapy regimen for metastatic transitional cell carcinoma of the urinary tract. A Northern California Oncology Group study. J Clin Oncol 3 (11): 1463-70, 1985. [PUBMED Abstract]
  3. Loehrer PJ, Einhorn LH, Elson PJ, et al.: A randomized comparison of cisplatin alone or in combination with methotrexate, vinblastine, and doxorubicin in patients with metastatic urothelial carcinoma: a cooperative group study. J Clin Oncol 10 (7): 1066-73, 1992. [PUBMED Abstract]
  4. Roth BJ: Preliminary experience with paclitaxel in advanced bladder cancer. Semin Oncol 22 (3 Suppl 6): 1-5, 1995. [PUBMED Abstract]
  5. Witte RS, Elson P, Bono B, et al.: Eastern Cooperative Oncology Group phase II trial of ifosfamide in the treatment of previously treated advanced urothelial carcinoma. J Clin Oncol 15 (2): 589-93, 1997. [PUBMED Abstract]
  6. Einhorn LH, Roth BJ, Ansari R, et al.: Phase II trial of vinblastine, ifosfamide, and gallium combination chemotherapy in metastatic urothelial carcinoma. J Clin Oncol 12 (11): 2271-6, 1994. [PUBMED Abstract]
  7. Pollera CF, Ceribelli A, Crecco M, et al.: Weekly gemcitabine in advanced bladder cancer: a preliminary report from a phase I study. Ann Oncol 5 (2): 182-4, 1994. [PUBMED Abstract]
  8. Sweeney CJ, Roth BJ, Kabbinavar FF, et al.: Phase II study of pemetrexed for second-line treatment of transitional cell cancer of the urothelium. J Clin Oncol 24 (21): 3451-7, 2006. [PUBMED Abstract]

Latest Updates to This Summary (01/05/2024)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Editorial changes were made to this summary.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of transitional cell cancer of the renal pelvis and ureter. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewer for Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment is:

  • Timothy Gilligan, MD (Cleveland Clinic Taussig Cancer Institute)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/hp/transitional-cell-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389446]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Renal Cell Cancer Treatment (PDQ®)–Patient Version

Renal Cell Cancer Treatment (PDQ®)–Patient Version

General Information About Renal Cell Cancer

Key Points

  • Renal cell cancer is a type of cancer that forms in tubules of the kidney.
  • Smoking and misuse of certain pain medicines can affect the risk of renal cell cancer.
  • Signs of renal cell cancer include blood in the urine and a lump in the abdomen.
  • Tests that examine the abdomen and kidneys are used to diagnose renal cell cancer.
  • After renal cell cancer has been diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other parts of the body.
  • Certain factors affect prognosis (chance of recovery) and treatment options.

Renal cell cancer is a type of cancer that forms in tubules of the kidney.

Renal cell cancer (also called renal cell adenocarcinoma) is a disease in which cancer cells are found in the lining of tubules (very small tubes) in the kidney. It is the most common type of kidney cancer in adults. There are two kidneys, one on each side of the backbone, above the waist. Tiny tubules in the kidneys filter and clean the blood. They take out waste products and make urine. The urine passes from each kidney through a long tube called a ureter into the bladder. The bladder holds the urine until it passes through the urethra and leaves the body.

EnlargeAnatomy of the male urinary system (left panel) and female urinary system (right panel); two-panel drawing showing the right and left kidneys, the ureters, the bladder filled with urine, and the urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel).
Anatomy of the male urinary system (left panel) and female urinary system (right panel) showing the kidneys, ureters, bladder, and urethra. The inside of the left kidney shows the renal pelvis. An inset shows the renal tubules and urine. Also shown are the prostate and penis (left panel) and the uterus (right panel). Urine is made in the renal tubules and collects in the renal pelvis of each kidney. The urine flows from the kidneys through the ureters to the bladder. The urine is stored in the bladder until it leaves the body through the urethra.

Cancer that starts in the ureters or the renal pelvis (the part of the kidney that collects urine and drains it to the ureters) is different from renal cell cancer. For more information, visit Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment.

Smoking and misuse of certain pain medicines can affect the risk of renal cell cancer.

Renal cell cancer is caused by certain changes to the way renal cells function, especially how they grow and divide into new cells. There are many risk factors for renal cell cancer, but many do not directly cause cancer. Instead, they increase the chance of DNA damage in cells that may lead to renal cell cancer. Learn more about how cancer develops at What Is Cancer?

A risk factor is anything that increases the chance of getting a disease. Some risk factors for renal cell cancer, like smoking, can be changed. However, risk factors also include things you cannot change, like your genetics, getting older, and your family history. Learning about risk factors for renal cell cancer can help you make changes that might lower your risk of getting it.

Risk factors for renal cell cancer include:

Tobacco use is a leading cause of cancer and death from cancer. Learn more about Tobacco (includes help with quitting).

Having one or more of these risk factors does not mean you will get renal cell cancer. Many people with risk factors never develop renal cell cancer, while others with no known risk factors do. Talk with your doctor if you think you may be at risk.

Signs of renal cell cancer include blood in the urine and a lump in the abdomen.

These and other signs and symptoms may be caused by renal cell cancer or by other conditions. There may be no signs or symptoms in the early stages. Signs and symptoms may appear as the tumor grows. Check with your doctor if you have:

  • blood in the urine
  • a lump in the abdomen
  • a pain in the side that doesn’t go away
  • loss of appetite
  • weight loss for no known reason
  • anemia

Tests that examine the abdomen and kidneys are used to diagnose renal cell cancer.

In addition to asking about your personal and family health history and doing a physical exam, your doctor may perform the following tests and procedures:

  • Ultrasound exam uses high-energy sound waves (ultrasound) that bounce off internal tissues or organs and make echoes. The echoes form a picture of body tissues called a sonogram.
  • Blood chemistry study uses a blood sample to measure the amounts of certain substances released into the blood by organs and tissues in the body. An unusual (higher or lower than normal) amount of a substance can be a sign of disease.
  • Urinalysis checks the color of urine and its contents, such as sugar, protein, red blood cells, and white blood cells.
  • CT scan (CAT scan) uses a computer linked to an x-ray machine to make a series of detailed pictures of areas inside the body, such as the abdomen and pelvis. The pictures are taken from different angles and are used to create 3-D views of tissues and organs. A dye may be injected into a vein or swallowed to help the organs or tissues show up more clearly. This procedure is also called computed tomography, computerized tomography, or computerized axial tomography.
  • MRI (magnetic resonance imaging) uses a magnet, radio waves, and a computer to make a series of detailed pictures of areas inside the body. This procedure is also called nuclear magnetic resonance imaging (NMRI).
  • Biopsy is the removal of cells or tissues so they can be viewed under a microscope by a pathologist to check for signs of cancer. To do a biopsy for renal cell cancer, a thin needle is inserted into the tumor and a sample of tissue is withdrawn. A biopsy may not be needed if the imaging test results provide enough information to make a diagnosis.

After renal cell cancer has been diagnosed, tests are done to find out if cancer cells have spread within the kidney or to other parts of the body.

The process used to find out if cancer has spread within the kidney or to other parts of the body is called staging. The information gathered from the staging process determines the stage of the disease. It is important to know the stage in order to plan treatment.

Some of the tests and procedures used to diagnose liver cancer, such as CT scan and MRI, may be used in the staging process. Other tests include:

  • Chest x-ray is a type of radiation that can go through the body and make pictures of organs and bones inside the chest.
  • Bone scan is a procedure to check if there are rapidly dividing cells, such as cancer cells, in the bone. A very small amount of radioactive material is injected into a vein and travels through the bloodstream. The radioactive material collects in the bones with cancer and is detected by a scanner.

Some people decide to get a second opinion.

You may want to get a second opinion to confirm your renal cell cancer diagnosis and treatment plan. If you seek a second opinion, you will need to get medical test results and reports from the first doctor to share with the second doctor. The second doctor will review the pathology report, slides, and scans. They may agree with the first doctor, suggest changes or another treatment approach, or provide more information about your cancer.

To learn more about choosing a doctor and getting a second opinion, see Finding Cancer Care. You can contact NCI’s Cancer Information Service via chat, email, or phone (both in English and Spanish) for help finding a doctor, hospital, or getting a second opinion. For questions you might want to ask at your appointments, see Questions to Ask Your Doctor About Cancer.

Certain factors affect prognosis (chance of recovery) and treatment options.

The prognosis and treatment options depend on:

  • the stage of the disease
  • your age and general health

Stages of Renal Cell Cancer

Key Points

  • The following stages are used for renal cell cancer:
    • Stage I (also called stage 1) renal cell cancer
    • Stage II (also called stage 2) renal cell cancer
    • Stage III (also called stage 3) renal cell cancer
    • Stage IV (also called stage 4) renal cell cancer
  • Renal cell cancer can recur (come back) many years after initial treatment.

Cancer stage describes the extent of cancer in the body, such as the size of the tumor, whether it has spread, and how far it has spread from where it first formed.

There are several staging systems for cancer that describe the extent of the cancer. Renal cell cancer staging usually uses the TNM staging system. The cancer may be described by this staging system in your pathology report. Based on the TNM results, a stage (I, II, III, or IV, also written as 1, 2, 3, or 4) is assigned to your cancer. When talking to you about your diagnosis, your doctor may describe the cancer as one of these stages.

Learn about tests to stage renal cell cancer. Learn more about Cancer Staging.

The following stages are used for renal cell cancer:

Stage I (also called stage 1) renal cell cancer

EnlargeStage I kidney cancer; drawing shows cancer in the left kidney and the tumor is 7 centimeters or smaller. An inset shows 7 centimeters is about the size of a peach. Also shown are fatty tissue and the right kidney.
Stage I kidney cancer. The tumor is 7 centimeters or smaller and is found in the kidney only.

In stage I, the tumor is 7 centimeters or smaller and is found in the kidney only.

Stage II (also called stage 2) renal cell cancer

EnlargeStage II kidney cancer; drawing shows cancer in the left kidney and the tumor is larger than 7 centimeters. An inset shows 7 centimeters is about the size of a peach. Also shown are the fatty tissue and right kidney.
Stage II kidney cancer. The tumor is larger than 7 centimeters and is found in the kidney only.

In stage II, the tumor is larger than 7 centimeters and is found in the kidney only.

Stage III (also called stage 3) renal cell cancer

EnlargeStage III kidney cancer; drawing shows cancer in the left kidney and in a) nearby lymph nodes, b) the renal vein, c) the structures in the kidney that collect urine, and d) the layer of fatty tissue around the kidney. Also shown are the right kidney, the right and left adrenal glands, and the vena cava.
Stage III kidney cancer. The cancer in the kidney is any size and cancer has spread to a) nearby lymph nodes, b) the blood vessels in or near the kidney (renal vein or vena cava), c) the structures in the kidney that collect urine, or d) the layer of fatty tissue around the kidney.

In stage III, one of the following is found:

  • the cancer in the kidney is any size, and cancer has spread to nearby lymph nodes; or
  • cancer has spread to blood vessels in or near the kidney (renal vein or vena cava), to the fat around the structures in the kidney that collect urine, or to the layer of fatty tissue around the kidney and may have spread to nearby lymph nodes.

Stage IV (also called stage 4) renal cell cancer

EnlargeStage IV kidney cancer; drawing shows cancer that has spread beyond the layer of fatty tissue around the left kidney to a) the adrenal gland above the left kidney. Also shown are the lymph nodes, right adrenal gland, and right kidney. An inset shows b) other parts of the body where kidney cancer may spread, including the brain, lung, liver, adrenal gland, bone, and distant lymph nodes.
Stage IV kidney cancer. Cancer has spread a) beyond the layer of fatty tissue around the kidney and may have spread into the adrenal gland above the kidney with cancer or to nearby lymph nodes, or b) to other parts of the body, such as the brain, lung, liver, adrenal gland, bone, or distant lymph nodes.

In stage IV, one of the following is found:

  • cancer has spread beyond the layer of fatty tissue around the kidney and may have spread into the adrenal gland above the kidney with cancer or to nearby lymph nodes; or
  • cancer has spread to other parts of the body, such as the bones, liver, lungs, brain, adrenal glands, or distant lymph nodes.

Stage IV renal cell cancer is also called metastatic renal cell cancer. Metastatic cancer happens when cancer cells travel through the lymphatic system or blood and form tumors in other parts of the body. The metastatic tumor is the same type of cancer as the primary tumor. For example, if renal cell cancer spreads to the liver, the cancer cells in the liver are actually renal cell cancer. The disease is called metastatic renal cell cancer, not liver cancer. Learn more in Metastatic Cancer: When Cancer Spreads.

Renal cell cancer can recur (come back) many years after initial treatment.

Recurrent renal cell cancer is cancer that has come back after it has been treated. If renal cell cancer comes back, it may come back in the kidney or in other parts of the body. Tests will be done to help determine where the cancer has returned. The type of treatment for recurrent renal cell cancer will depend on where it has come back.

Learn more in Recurrent Cancer: When Cancer Comes Back.

Treatment Option Overview for Renal Cell Cancer

Key Points

  • There are different types of treatment for people with renal cell cancer.
  • The following types of treatment are used:
    • Surgery
    • Radiation therapy
    • Immunotherapy
    • Targeted therapy
  • New types of treatment are being tested in clinical trials.
  • Treatment for renal cell cancer may cause side effects.
  • Follow-up care may be needed.

There are different types of treatment for people with renal cell cancer.

Different types of treatments are available for people with renal cell cancer. You and your cancer care team will work together to decide your treatment plan, which may include more than one type of treatment. Many factors will be considered, such as the stage of the cancer, your overall health, and your preferences. Your plan will include information about your cancer, the goals of treatment, your treatment options and the possible side effects, and the expected length of treatment.

Talking with your cancer care team before treatment begins about what to expect will be helpful. You’ll want to learn what you need to do before treatment begins, how you’ll feel while going through it, and what kind of help you will need. To learn more, see Questions to Ask Your Doctor About Treatment.

The following types of treatment are used:

Surgery

Surgery to remove part or all of the kidney is often used to treat renal cell cancer. The following types of surgery may be used:

  • Partial nephrectomy is surgery to remove the cancer within the kidney and some of the tissue around it. A partial nephrectomy may be done to prevent loss of kidney function when the other kidney is damaged or has already been removed.
  • Simple nephrectomy is surgery to remove the kidney only.
  • Radical nephrectomy is surgery to remove the kidney, the adrenal gland, surrounding tissue, and usually nearby lymph nodes.

A person can live with part of one working kidney, but if both kidneys are removed or not working, the person will need dialysis (a procedure to clean the blood using a machine outside of the body) or a kidney transplant (replacement with a healthy donated kidney). A kidney transplant may be done when the disease is in the kidney only and a donated kidney can be found. If the person has to wait for a donated kidney, other treatment is given as needed.

After the doctor removes all the cancer that can be seen at the time of the surgery, some people may receive radiation therapy to kill any cancer cells that are left. Treatment given after surgery to lower the risk that the cancer will come back is called adjuvant therapy.

When surgery to remove the cancer is not possible, other procedures might be done:

  • Arterial embolization may be used to shrink the tumor. A small incision (cut) is made, and a catheter (thin tube) is inserted into the main blood vessel that flows to the kidney. Small pieces of a special gelatin sponge are injected through the catheter into the blood vessel. The sponges block the blood flow to the kidney and prevent the cancer cells from getting oxygen and other substances they need to grow.
  • Cryosurgery uses an instrument to freeze and destroy abnormal tissue. This type of treatment is also called cryotherapy. Learn more about Cryosurgery to Treat Cancer.
  • Thermal ablation (also called hyperthermia) uses heat to destroy abnormal tissue. Learn more about Hyperthermia to Treat Cancer.

Radiation therapy

Radiation therapy uses high-energy x-rays or other types of radiation to kill cancer cells or keep them from growing. External beam radiation therapy uses a machine outside the body to send radiation toward the area of the body with cancer. External beam radiation therapy is used to treat renal cell cancer, and may also be used as palliative therapy to relieve symptoms and improve quality of life. A specific way to give radiation therapy called stereotactic ablative body radiation therapy, or stereotactic radiosurgery, may be used in some cases.

Learn more about External Beam Radiation Therapy for Cancer and Radiation Therapy Side Effects.

Immunotherapy

Immunotherapy helps a person’s immune system fight cancer. Your doctor may suggest biomarker tests to help predict your response to certain immunotherapy drugs. Learn more about Biomarker Testing for Cancer Treatment.

Immunotherapy drugs used to treat renal cell cancer include:

Learn more about Immunotherapy to Treat Cancer.

Targeted therapy

Targeted therapy uses drugs or other substances to identify and attack specific cancer cells. Your doctor may suggest biomarker tests to help predict your response to certain targeted therapy drugs. Learn more about Biomarker Testing for Cancer Treatment.

Targeted therapies used to treat renal cell cancer include:

Learn more about Targeted Therapy to Treat Cancer.

New types of treatment are being tested in clinical trials.

For some people, joining a clinical trial may be an option. There are different types of clinical trials for people with cancer. For example, a treatment trial tests new treatments or new ways of using current treatments. Supportive care and palliative care trials look at ways to improve quality of life, especially for those who have side effects from cancer and its treatment.

You can use the clinical trial search to find NCI-supported cancer clinical trials accepting participants. The search allows you to filter trials based on the type of cancer, your age, and where the trials are being done. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

Learn more about clinical trials, including how to find and join one, at Clinical Trials Information for Patients and Caregivers.

Treatment for renal cell cancer may cause side effects.

For information about side effects caused by treatment for cancer, visit our Side Effects page.

Follow-up care may be needed.

As you go through treatment, you will have follow-up tests or check-ups. Some tests that were done to diagnose or stage the cancer may be repeated to see how well the treatment is working. Decisions about whether to continue, change, or stop treatment may be based on the results of these tests.

Some of the tests will continue to be done from time to time after treatment has ended. The results of these tests can show if your condition has changed or if the cancer has recurred (come back).

After treatment for renal cell cancer, a blood test to measure amounts of carcinoembryonic antigen (a substance in the blood that may be increased when cancer is present) may be done to see if the cancer has come back.

Treatment of Stage I Renal Cell Cancer

The main treatment for stage I renal cell cancer is surgery:

If surgery isn’t an option, treatment options may include:

If none of these treatments is an option, palliative therapy aimed at relieving symptoms may include:

Learn more about these treatments in the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage II Renal Cell Cancer

Treatment of stage II renal cell cancer may include:

Learn more about these treatments in the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage III Renal Cell Cancer

Treatment of stage III renal cell cancer may include:

Learn more about these treatments in the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

Treatment of Stage IV and Recurrent Renal Cell Cancer

First-line treatment of stage IV renal cell cancer may include:

Second-line treatment may include:

  • nivolumab (for people previously treated with sunitinib, pazopanib, sorafenib, and/or axitinib)
  • lenvatinib plus everolimus (for people previously treated with sunitinib, pazopanib, cabozantinib, axitinib, or sorafenib)
  • cabozantinib (for people previously treated with sunitinib, pazopanib, sorafenib, or axitinib)
  • axitinib
  • everolimus (for people previously treated with sunitinib and/or sorafenib)
  • sorafenib
  • palliative radiation therapy

Third-line and fourth-line treatment may include:

  • tivozanib for people who have had at least two other types of systemic treatments
  • any of the treatments listed for first-line or second-line therapy

Learn more about these treatments in the Treatment Option Overview.

Use our clinical trial search to find NCI-supported cancer clinical trials that are accepting patients. You can search for trials based on the type of cancer, the age of the patient, and where the trials are being done. General information about clinical trials is also available.

To Learn More About Renal Cell Cancer

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about the treatment of renal cancer. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Adult Treatment Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Renal Cell Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/patient/kidney-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389448]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Renal Cell Cancer Treatment (PDQ®)–Health Professional Version

Renal Cell Cancer Treatment (PDQ®)–Health Professional Version

General Information About Renal Cell Cancer

Incidence and Mortality

Estimated new cases and deaths from renal cell (kidney and renal pelvis) cancer in the United States in 2025:[1]

  • New cases: 80,980.
  • Deaths: 14,510.

Follow-Up and Survivorship

Renal cell cancer, also called renal adenocarcinoma or hypernephroma, can often be cured if it is diagnosed and treated when still localized to the kidney and the immediately surrounding tissue. The probability of cure is directly related to the stage or degree of tumor dissemination. Even when regional lymphatics or blood vessels are involved with the tumor, a significant number of patients can achieve prolonged survival and probable cure.[2] When distant metastases are present, disease-free survival is poor; however, some patients survive after surgical resection of all known tumor. Because most patients are diagnosed when the tumor is still relatively localized and amenable to surgical removal, approximately 75% of all patients with renal cell cancer survive for 5 years.[3] Occasionally, patients with locally advanced or metastatic disease may exhibit indolent courses lasting several years. Late tumor recurrence many years after initial treatment also occasionally occurs.

Renal cell cancer is one of the few tumors in which well-documented cases of spontaneous tumor regression in the absence of therapy exist, but this regression occurs rarely and may not lead to long-term survival.

Treatment Modalities

Surgical resection is the mainstay of treatment of this disease. Even in patients with disseminated tumor, locoregional forms of therapy may play an important role in palliating symptoms of the primary tumor or of ectopic hormone production. Systemic therapy has demonstrated only limited effectiveness.

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Sene AP, Hunt L, McMahon RF, et al.: Renal carcinoma in patients undergoing nephrectomy: analysis of survival and prognostic factors. Br J Urol 70 (2): 125-34, 1992. [PUBMED Abstract]
  3. National Cancer Institute: SEER Stat Fact Sheets: Kidney and Renal Pelvis Cancer. Bethesda, Md: National Cancer Institute. Available online. Last accessed February 17, 2025.

Cellular Classification of Renal Cell Cancer

Approximately 85% of renal cell cancers are adenocarcinomas, mostly of proximal tubular origin. Most of the remainder are transitional cell carcinomas of the renal pelvis. For more information, see Transitional Cell Cancer of the Renal Pelvis and Ureter Treatment. Adenocarcinomas may be separated into clear cell and granular cell carcinomas; however, the two cell types may occur together in some tumors. Some investigators have found that granular cell tumors have a worse prognosis, but this finding is not universal. Distinguishing between well-differentiated renal adenocarcinomas and renal adenomas can be difficult. The diagnosis is usually made arbitrarily based on the size of the mass, but size alone should not influence the treatment approach because metastases can occur with lesions as small as 0.5 cm.

Stage Information for Renal Cell Cancer

The staging system for renal cell cancer is based on the degree of tumor spread beyond the kidney.[13] Involvement of blood vessels may not be a poor prognostic sign if the tumor is otherwise confined to the substance of the kidney. Abnormal liver function test results may be caused by a paraneoplastic syndrome that is reversible with tumor removal, and these types of results do not necessarily represent metastatic disease. Except when computed tomography (CT) examination is equivocal or when iodinated contrast material is contraindicated, CT scanning is as good as or better than magnetic resonance imaging for detecting renal masses.[4]

AJCC Stage Groupings and TNM Definitions

The American Joint Committee on Cancer (AJCC) has designated staging by TNM (tumor, node, metastasis) classification to define renal cell cancer.[5]

Table 1. Definitions of TNM Stage Ia
Stage TNM Definition Illustration
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Kidney. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 739–48.
I T1, N0, M0 T1 = Tumor ≤7 cm in greatest dimension, limited to the kidney.
EnlargeStage I kidney cancer; drawing shows cancer in the left kidney and the tumor is 7 centimeters or smaller. An inset shows 7 centimeters is about the size of a peach. Also shown are fatty tissue and the right kidney.
–T1a = Tumor ≤4 cm in greatest dimension, limited to the kidney.
–T1b = Tumor >4 cm but ≤7 cm in greatest dimension, limited to the kidney.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 2. Definitions of TNM Stage IIa
Stage TNM Definition Illustration
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Kidney. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 739–48.
II T2, N0, M0 T2 = Tumor >7 cm in greatest dimension, limited to the kidney.
EnlargeStage II kidney cancer; drawing shows cancer in the left kidney and the tumor is larger than 7 centimeters. An inset shows 7 centimeters is about the size of a peach. Also shown are the fatty tissue and right kidney.
–T2a = Tumor >7 cm but ≤10 cm in greatest dimension, limited to the kidney.
–T2b = Tumor >10 cm, limited to the kidney.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
Table 3. Definitions of TNM Stage IIIa
Stage TNM Definition Illustration
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Kidney. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 739–48.
III T1, N1, M0 T1 = Tumor ≤7 cm in greatest dimension, limited to the kidney.
EnlargeStage III kidney cancer; drawing shows cancer in the left kidney and in a) nearby lymph nodes, b) the renal vein, c) the structures in the kidney that collect urine, and d) the layer of fatty tissue around the kidney. Also shown are the right kidney, the right and left adrenal glands, and the vena cava.
–T1a = Tumor ≤4 cm in greatest dimension, limited to the kidney.
–T1b = Tumor >4 cm but ≤7 cm in greatest dimension, limited to the kidney.
N1 = Metastasis in regional lymph node(s).
M0 = No distant metastasis.
T2, N1, M0 T2 = Tumor >7 cm in greatest dimension, limited to the kidney.
–T2a = Tumor >7 cm but ≤10 cm in greatest dimension, limited to the kidney.
–T2b = Tumor >10 cm, limited to the kidney.
N1 = Metastasis in regional lymph node(s).
M0 = No distant metastasis.
T3, N0, M0 T3 = Tumor extends into major veins or perinephric tissues but not into the ipsilateral adrenal gland and not beyond Gerota’s fascia.
–T3a = Tumor extends into the renal vein or its segmental branches, or invades the pelvicalyceal system, or invades perirenal and/or renal sinus fat but not beyond Gerota’s fascia.
–T3b = Tumor extends into the vena cava below the diaphragm.
–T3c = Tumor extends into the vena cava above the diaphragm or invades the wall of the vena cava.
N0 = No regional lymph node metastasis.
M0 = No distant metastasis.
T3, N1, M0 T3 = Tumor extends into major veins or perinephric tissues but not into the ipsilateral adrenal gland and not beyond Gerota’s fascia.
–T3a = Tumor extends into the renal vein or its segmental branches, or invades the pelvicalyceal system, or invades perirenal and/or renal sinus fat but not beyond Gerota’s fascia.
–T3b = Tumor extends into the vena cava below the diaphragm.
–T3c = Tumor extends into the vena cava above the diaphragm or invades the wall of the vena cava.
N1 = Metastasis in regional lymph node(s).
M0 = No distant metastasis.
Table 4. Definitions of TNM Stage IVa
Stage TNM Definition Illustration
T = primary tumor; N = regional lymph node; M = distant metastasis.
aReprinted with permission from AJCC: Kidney. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. New York, NY: Springer, 2017, pp. 739–48.
IV T4, Any N, M0 T4 = Tumor invades beyond Gerota’s fascia (including contiguous extension into the ipsilateral adrenal gland).
EnlargeStage IV kidney cancer; drawing shows cancer that has spread beyond the layer of fatty tissue around the left kidney to a) the adrenal gland above the left kidney. Also shown are the lymph nodes, right adrenal gland, and right kidney. An inset shows b) other parts of the body where kidney cancer may spread, including the brain, lung, liver, adrenal gland, bone, and distant lymph nodes.
NX = Regional lymph nodes cannot be assessed.
N0 = No regional lymph node metastasis.
N1 = Metastasis in regional lymph node(s).
M0 = No distant metastasis.
Any T, Any N, M1 TX = Primary tumor cannot be assessed.
T0 = No evidence of primary tumor.
T1 = Tumor ≤7 cm in greatest dimension, limited to the kidney.
–T1a = Tumor ≤4 cm in greatest dimension, limited to the kidney.
–T1b = Tumor >4 cm but ≤7 cm in greatest dimension, limited to the kidney.
T2 = Tumor >7 cm in greatest dimension, limited to the kidney.
–T2a = Tumor >7 cm but ≤10 cm in greatest dimension, limited to the kidney.
–T2b = Tumor >10 cm, limited to the kidney.
T3 = Tumor extends into major veins or perinephric tissues but not into the ipsilateral adrenal gland and not beyond Gerota’s fascia.
–T3a = Tumor extends into the renal vein or its segmental branches, or invades the pelvicalyceal system, or invades perirenal and/or renal sinus fat but not beyond Gerota’s fascia.
–T3b = Tumor extends into the vena cava below the diaphragm.
–T3c = Tumor extends into the vena cava above the diaphragm or invades the wall of the vena cava.
T4 = Tumor invades beyond Gerota’s fascia (including contiguous extension into the ipsilateral adrenal gland).
NX = Regional lymph nodes cannot be assessed.
N0 = No regional lymph node metastasis.
N1 = Metastasis in regional lymph node(s).
M1 = Distant metastasis.
References
  1. Bassil B, Dosoretz DE, Prout GR: Validation of the tumor, nodes and metastasis classification of renal cell carcinoma. J Urol 134 (3): 450-4, 1985. [PUBMED Abstract]
  2. Golimbu M, Joshi P, Sperber A, et al.: Renal cell carcinoma: survival and prognostic factors. Urology 27 (4): 291-301, 1986. [PUBMED Abstract]
  3. Robson CJ, Churchill BM, Anderson W: The results of radical nephrectomy for renal cell carcinoma. J Urol 101 (3): 297-301, 1969. [PUBMED Abstract]
  4. Consensus conference. Magnetic resonance imaging. JAMA 259 (14): 2132-8, 1988. [PUBMED Abstract]
  5. Kidney. In: Amin MB, Edge SB, Greene FL, et al., eds.: AJCC Cancer Staging Manual. 8th ed. Springer; 2017, pp 739–48.

Treatment Option Overview for Renal Cell Cancer

Current treatment cures more than 50% of patients with stage I renal cell cancer, but patients with stage IV disease have poor outcomes. All patients with newly diagnosed renal cell cancer are candidates for clinical trials.

Treatment of Stage I Renal Cell Cancer

Treatment Options for Stage I Renal Cell Cancer

Treatment options for stage I renal cell cancer include:

  1. Partial nephrectomy (selected patients).[1,2]
  2. Radical nephrectomy.[2]
  3. Simple nephrectomy.[2]
  4. Cryotherapy.
  5. Thermal ablation.
  6. Stereotactic ablative body radiation therapy (SABR or SBRT) (also referred to as stereotactic radiosurgery).
  7. External-beam radiation therapy (EBRT) (palliative).[2]
  8. Arterial embolization (palliative).[2,3]
  9. Clinical trials.

Surgical resection is the accepted, often curative therapy for patients with stage I renal cell cancer. In appropriately selected patients, partial nephrectomy has oncologic outcomes that are comparable with those of radical nephrectomy. Partial nephrectomy also has the benefits of preserving greater renal function and, according to some studies, reduced mortality.[47] When the entire kidney is removed, resection may be simple or radical. Radical resection includes removal of the kidney, adrenal gland, perirenal fat, and Gerota’s fascia, with or without a regional lymph node dissection. Radical nephrectomy is preferred if the tumor extends into the inferior vena cava.

In patients with bilateral stage I neoplasms (concurrent or subsequent), bilateral partial nephrectomy or unilateral partial nephrectomy with contralateral radical nephrectomy, when technically feasible, may be a preferred alternative to bilateral nephrectomy with dialysis or transplant.[1] Increasing evidence suggests that a partial nephrectomy is curative in selected cases. A pathologist should examine the gross specimen as well as the frozen section from the parenchymal margin of excision.[8]

In patients who are not candidates for resection, there are several curative alternatives, including cryoablation, thermal ablation, and SABR (or SBRT).[913]

In patients who are not candidates for the treatments above, EBRT or arterial embolization can provide palliation.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Novick AC, Streem S, Montie JE, et al.: Conservative surgery for renal cell carcinoma: a single-center experience with 100 patients. J Urol 141 (4): 835-9, 1989. [PUBMED Abstract]
  2. deKernion JB, Berry D: The diagnosis and treatment of renal cell carcinoma. Cancer 45 (7 Suppl): 1947-56, 1980. [PUBMED Abstract]
  3. Swanson DA, Wallace S, Johnson DE: The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma. Urol Clin North Am 7 (3): 719-30, 1980. [PUBMED Abstract]
  4. Kim SP, Thompson RH, Boorjian SA, et al.: Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: a systematic review and meta-analysis. J Urol 188 (1): 51-7, 2012. [PUBMED Abstract]
  5. Larcher A, Capitanio U, Terrone C, et al.: Elective Nephron Sparing Surgery Decreases Other Cause Mortality Relative to Radical Nephrectomy Only in Specific Subgroups of Patients with Renal Cell Carcinoma. J Urol 196 (4): 1008-13, 2016. [PUBMED Abstract]
  6. Wang Z, Wang G, Xia Q, et al.: Partial nephrectomy vs. radical nephrectomy for renal tumors: A meta-analysis of renal function and cardiovascular outcomes. Urol Oncol 34 (12): 533.e11-533.e19, 2016. [PUBMED Abstract]
  7. Patel HD, Pierorazio PM, Johnson MH, et al.: Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 12 (7): 1057-1069, 2017. [PUBMED Abstract]
  8. Thrasher JB, Robertson JE, Paulson DF: Expanding indications for conservative renal surgery in renal cell carcinoma. Urology 43 (2): 160-8, 1994. [PUBMED Abstract]
  9. El Dib R, Touma NJ, Kapoor A: Cryoablation vs radiofrequency ablation for the treatment of renal cell carcinoma: a meta-analysis of case series studies. BJU Int 110 (4): 510-6, 2012. [PUBMED Abstract]
  10. Gkentzis A, Oades G: Thermal ablative therapies for treatment of localised renal cell carcinoma: a systematic review of the literature. Scott Med J 61 (4): 185-191, 2016. [PUBMED Abstract]
  11. Zargar H, Atwell TD, Cadeddu JA, et al.: Cryoablation for Small Renal Masses: Selection Criteria, Complications, and Functional and Oncologic Results. Eur Urol 69 (1): 116-28, 2016. [PUBMED Abstract]
  12. Salagierski M, Wojciechowska A, Zając K, et al.: The Role of Ablation and Minimally Invasive Techniques in the Management of Small Renal Masses. Eur Urol Oncol 1 (5): 395-402, 2018. [PUBMED Abstract]
  13. Siva S, Ali M, Correa RJM, et al.: 5-year outcomes after stereotactic ablative body radiotherapy for primary renal cell carcinoma: an individual patient data meta-analysis from IROCK (the International Radiosurgery Consortium of the Kidney). Lancet Oncol 23 (12): 1508-1516, 2022. [PUBMED Abstract]

Treatment of Stage II Renal Cell Cancer

Treatment Options for Stage II Renal Cell Cancer

Treatment options for stage II renal cell cancer include:

  1. Partial nephrectomy (selected patients).[1]
  2. Radical nephrectomy.[1]
  3. Radical nephrectomy followed by adjuvant pembrolizumab (high-risk patients).[2]
  4. Nephrectomy before or after external-beam radiation therapy (EBRT) (selected patients).[1]
  5. EBRT (palliative).[1]
  6. Arterial embolization (palliative).
  7. Clinical trials.

Surgical resection is the accepted, often curative, therapy for patients with stage II renal cell cancer. In appropriately selected patients, partial nephrectomy has oncologic outcomes that are comparable with those of radical nephrectomy. Partial nephrectomy also has the benefits of preserving greater renal function and, according to some studies, reduced mortality.[36] When the entire kidney is removed, resection may be simple or radical. Radical resection includes removal of the kidney, adrenal gland, perirenal fat, and Gerota’s fascia, with or without a regional lymph node dissection. Radical nephrectomy is preferred if the tumor extends into the inferior vena cava. Lymphadenectomy is commonly used, but its effectiveness has not been definitively proven.

Postoperative systemic therapy with the anti-programmed death-1 (PD-1) antibody pembrolizumab has been shown to prolong disease-free survival (DFS), but not overall survival (OS), in patients with high-risk pT2 tumors.

In patients who are not candidates for surgery, arterial embolization can provide palliation.

Adjuvant pembrolizumab

Pembrolizumab is an immune checkpoint inhibitor and a monoclonal antibody targeting the PD-1 protein.

Evidence (adjuvant pembrolizumab):

  1. A double-blind, randomized, placebo-controlled trial (KEYNOTE-564 [NCT03142334]) studied the impact of 1 year of pembrolizumab after nephrectomy. The study enrolled 994 patients with clear cell renal cell carcinoma at high risk of recurrence after nephrectomy. Eligibility included patients with stage II disease with nuclear grade 4 or sarcomatoid differentiation, stage III disease or higher, regional lymph node metastases, or stage M1 status with no evidence of disease after resection. Patients were randomly assigned to receive up to 12 months of pembrolizumab (200 mg) or placebo administered intravenously every 21 days. The primary end point was DFS.[2]
    • At a median follow-up of 24 months, pembrolizumab was associated with a higher 2-year DFS rate than placebo (77.3% for pembrolizumab vs. 68.1% for placebo; hazard ratio [HR], 0.68; 95% confidence interval [CI], 0.53–0.87).[2][Level of evidence B1] A subsequent report with a median follow-up of 30 months showed a 75.2% DFS rate for patients who received pembrolizumab, compared with 65.5% for patients who received placebo (HR, 0.63; 95% CI, 0.50–0.80).[7]
    • Grade 3 or higher adverse events were reported for 32% of patients who received pembrolizumab, and 20% of the patients had serious adverse events. The most common high-grade adverse events were diarrhea and transaminitis, each occurring in 2% of patients who received pembrolizumab. The most common serious adverse events were adrenal insufficiency, colitis, and diabetic ketoacidosis, each occurring in 1% of patients who received pembrolizumab.
    • OS (the secondary end point) will be assessed when the study has longer follow-up.

    Questions have been raised about confounding issues that may have resulted in the significant improvement in DFS in the KEYNOTE-564 trial.[8] An uneven number of patients dropped out in the early follow-up period, which led to a lack of information about recurrence in the control group for the censored patients. Only 36% of the 166 patients in the control group received immunotherapy at relapse, despite conclusive evidence for an OS advantage when immunotherapy is given to patients with metastatic disease. Two other trials using atezolizumab or nivolumab plus ipilimumab failed to show a significant difference in DFS or OS.[9,10] These issues suggest that the U.S. Food and Drug Administration approval of pembrolizumab in the adjuvant setting, and the guidelines released by the National Comprehensive Cancer Network and the European Society for Medical Oncology may have been premature. Further follow-up for more mature DFS and especially OS results is needed.[8,11]

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. deKernion JB, Berry D: The diagnosis and treatment of renal cell carcinoma. Cancer 45 (7 Suppl): 1947-56, 1980. [PUBMED Abstract]
  2. Choueiri TK, Tomczak P, Park SH, et al.: Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N Engl J Med 385 (8): 683-694, 2021. [PUBMED Abstract]
  3. Kim SP, Thompson RH, Boorjian SA, et al.: Comparative effectiveness for survival and renal function of partial and radical nephrectomy for localized renal tumors: a systematic review and meta-analysis. J Urol 188 (1): 51-7, 2012. [PUBMED Abstract]
  4. Larcher A, Capitanio U, Terrone C, et al.: Elective Nephron Sparing Surgery Decreases Other Cause Mortality Relative to Radical Nephrectomy Only in Specific Subgroups of Patients with Renal Cell Carcinoma. J Urol 196 (4): 1008-13, 2016. [PUBMED Abstract]
  5. Wang Z, Wang G, Xia Q, et al.: Partial nephrectomy vs. radical nephrectomy for renal tumors: A meta-analysis of renal function and cardiovascular outcomes. Urol Oncol 34 (12): 533.e11-533.e19, 2016. [PUBMED Abstract]
  6. Patel HD, Pierorazio PM, Johnson MH, et al.: Renal Functional Outcomes after Surgery, Ablation, and Active Surveillance of Localized Renal Tumors: A Systematic Review and Meta-Analysis. Clin J Am Soc Nephrol 12 (7): 1057-1069, 2017. [PUBMED Abstract]
  7. Powles T, Tomczak P, Park SH, et al.: Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 23 (9): 1133-1144, 2022. [PUBMED Abstract]
  8. Tannock IF, Goldstein DA, Ofer J, et al.: Evaluating Trials of Adjuvant Therapy: Is There Benefit for People With Resected Renal Cancer? J Clin Oncol 41 (15): 2713-2717, 2023. [PUBMED Abstract]
  9. Pal SK, Uzzo R, Karam JA, et al.: Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): a multicentre, randomised, double-blind, phase 3 trial. Lancet 400 (10358): 1103-1116, 2022. [PUBMED Abstract]
  10. Motzer RJ, Russo P, Grünwald V, et al.: Adjuvant nivolumab plus ipilimumab versus placebo for localised renal cell carcinoma after nephrectomy (CheckMate 914): a double-blind, randomised, phase 3 trial. Lancet 401 (10379): 821-832, 2023. [PUBMED Abstract]
  11. Merino M, Kasamon Y, Theoret M, et al.: Irreconcilable Differences: The Divorce Between Response Rates, Progression-Free Survival, and Overall Survival. J Clin Oncol 41 (15): 2706-2712, 2023. [PUBMED Abstract]

Treatment of Stage III Renal Cell Cancer

Treatment Options for Stage III Renal Cell Cancer

Treatment options for stage III renal cell cancer include:

  1. Radical nephrectomy.[1]
  2. Preoperative embolization and radical nephrectomy.[2,3]
  3. Radical nephrectomy followed by adjuvant systemic therapy with pembrolizumab or sunitinib.[4,5]
  4. External-beam radiation therapy (EBRT) (palliative).[2]
  5. Tumor embolization (palliative).[3]
  6. Palliative nephrectomy.
  7. Preoperative or postoperative EBRT and radical nephrectomy.[2]
  8. Clinical trials involving adjuvant interferon alfa.

Adjuvant systemic therapy

Surgical resection is the standard treatment for patients with clinical stage III renal cell cancer. Several different studies have investigated whether adjuvant (postoperative) systemic therapy improves outcomes. None of these trials have demonstrated any impact on overall survival (OS). However, two agents are associated with longer relapse-free survival.

Adjuvant pembrolizumab

Pembrolizumab is an immune checkpoint inhibitor and a monoclonal antibody targeting the programmed death-1 (PD-1) protein.

Evidence (adjuvant pembrolizumab):

  1. A double-blind, randomized, placebo-controlled trial (KEYNOTE-564 [NCT03142334]) studied the impact of 1 year of pembrolizumab after nephrectomy. The study enrolled 994 patients with clear cell renal cell cancer at high risk of recurrence after nephrectomy. Eligibility included patients with stage II disease with nuclear grade 4 or sarcomatoid differentiation, stage III disease or higher, regional lymph node metastases, or stage M1 status with no evidence of disease after resection. Patients were randomly assigned to receive up to 12 months of pembrolizumab (200 mg) or placebo administered intravenously every 21 days. The primary end point was disease-free survival (DFS).[4]
    • At a median follow-up of 24 months, pembrolizumab was associated with a higher 2-year DFS rate than placebo (77.3% for pembrolizumab vs. 68.1% for placebo; hazard ratio [HR], 0.68; 95% confidence interval [CI], 0.53–0.87).[4][Level of evidence B1] A subsequent report with a median follow-up of 30 months showed a 75.2% DFS rate for patients who received pembrolizumab, compared with 65.5% for patients who received placebo (HR, 0.63; 95% CI, 0.50–0.80).[6]
    • Grade 3 or higher adverse events were reported for 32% of patients who received pembrolizumab, and 20% of the patients had serious adverse events. The most common high-grade adverse events were diarrhea and transaminitis, each occurring in 2% of patients who received pembrolizumab. The most common serious adverse events were adrenal insufficiency, colitis, and diabetic ketoacidosis, each occurring in 1% of patients who received pembrolizumab.
    • OS (the secondary end point) will be assessed when the study has longer follow-up.

    Questions have been raised about confounding issues that may have resulted in the significant improvement in DFS in the KEYNOTE-564 trial.[7] An uneven number of patients dropped out in the early follow-up period, which led to a lack of information about recurrence in the control group for the censored patients. Only 36% of the 166 patients in the control group received immunotherapy at relapse, despite conclusive evidence for an OS advantage when immunotherapy is given to patients with metastatic disease. Two other trials using atezolizumab or nivolumab plus ipilimumab failed to show a significant difference in DFS or OS.[8,9] These issues suggest that the U.S. Food and Drug Administration approval of pembrolizumab in the adjuvant setting, and the guidelines released by the National Comprehensive Cancer Network and the European Society for Medical Oncology may have been premature. Further follow-up for more mature DFS and especially OS results is needed.[7,10]

Adjuvant sunitinib

Sunitinib is an oral tyrosine kinase inhibitor targeting the vascular endothelial growth factor pathway.

Evidence (sunitinib):

  1. A double-blind, placebo-controlled, randomized trial (NCT00375674) studied the impact of sunitinib after nephrectomy in patients with locoregional, high-risk, clear cell renal cell cancer (stage T3 or higher and/or regional lymph node metastases). The study randomly assigned 615 patients to receive either 1 year of sunitinib (50 mg) or placebo once daily for the first 4 weeks of a repeating 6-week cycle (i.e., a 4-week-on, 2-week-off schedule).[5]
    • The median DFS was 6.8 years for patients who received sunitinib and 5.6 years for patients who received placebo (HR, 0.76; 95% CI, 0.59–0.98; P = .03). No difference in OS was reported (HR, 1.01; 95% CI, 0.72–1.44; P = .94).
    • Dose reductions were reported in 34% of patients who received sunitinib. Dose interruptions were seen in 46% of patients, and 28% of patients assigned to sunitinib discontinued the medication.
    • Of patients who received sunitinib, 48% experienced grade 3 adverse events and 12% experienced grade 4 adverse events. The most common high-grade adverse events were palmar-plantar erythrodysesthesia, hypertension, fatigue, neutropenia, thrombocytopenia, and mucosal inflammation.

Treatment options for patients with T3a, N0, M0 disease

Radical resection is the accepted, often curative therapy for patients with this stage of renal cell cancer. The operation includes removal of the kidney, adrenal gland, perirenal fat, and Gerota’s fascia, with or without a regional lymph node dissection.[11] Lymphadenectomy is commonly used, but its effectiveness has not been definitively proven. EBRT has been given before or after nephrectomy, without conclusive evidence that it improves survival compared with the results of surgery alone. However, it may benefit selected patients with more extensive tumors.

In patients with bilateral stage T3a neoplasms (concurrent or subsequent), bilateral partial nephrectomy or unilateral partial nephrectomy with contralateral radical nephrectomy, when technically feasible, may be a preferred alternative to bilateral nephrectomy with dialysis or transplant.[12]

In patients who are not candidates for surgery, arterial embolization can provide palliation.

Treatment options for patients with T3b, N0, M0 disease

Radical resection is the accepted, often curative therapy for patients with this stage of renal cell cancer. The operation includes removal of the kidney, adrenal gland, perirenal fat, and Gerota’s fascia, with or without a regional lymph node dissection.[11] Lymphadenectomy is commonly used, but its effectiveness has not been definitively proven. Surgery is extended to remove the entire renal vein and caval thrombus and a portion of the vena cava as necessary.[1] EBRT has been given before or after nephrectomy, without conclusive evidence that it improves survival compared with the results of surgery alone. However, it may benefit selected patients with more extensive tumors.

In patients with stage T3b neoplasms who manifest concurrent or subsequent renal cell cancer in the contralateral kidney, a partial nephrectomy, when technically feasible, may be a preferred alternative to bilateral nephrectomy with dialysis or transplant.[1214]

In patients who are not candidates for surgery, arterial embolization can provide palliation.

Treatment options for patients with T1, N1, M0; T2, N1, M0; or T3, N1, M0 disease

This stage of renal cell cancer is curable with surgery in a small minority of patients. A radical nephrectomy and lymph node dissection is necessary. The value of preoperative and postoperative EBRT has not been demonstrated, but EBRT may be used for palliation in patients who are not candidates for surgery. Arterial embolization of the tumor with Gelfoam or other materials may be used preoperatively to reduce blood loss at nephrectomy or for palliation in patients with inoperable disease.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Hatcher PA, Anderson EE, Paulson DF, et al.: Surgical management and prognosis of renal cell carcinoma invading the vena cava. J Urol 145 (1): 20-3; discussion 23-4, 1991. [PUBMED Abstract]
  2. deKernion JB, Berry D: The diagnosis and treatment of renal cell carcinoma. Cancer 45 (7 Suppl): 1947-56, 1980. [PUBMED Abstract]
  3. Swanson DA, Wallace S, Johnson DE: The role of embolization and nephrectomy in the treatment of metastatic renal carcinoma. Urol Clin North Am 7 (3): 719-30, 1980. [PUBMED Abstract]
  4. Choueiri TK, Tomczak P, Park SH, et al.: Adjuvant Pembrolizumab after Nephrectomy in Renal-Cell Carcinoma. N Engl J Med 385 (8): 683-694, 2021. [PUBMED Abstract]
  5. Ravaud A, Motzer RJ, Pandha HS, et al.: Adjuvant Sunitinib in High-Risk Renal-Cell Carcinoma after Nephrectomy. N Engl J Med 375 (23): 2246-2254, 2016. [PUBMED Abstract]
  6. Powles T, Tomczak P, Park SH, et al.: Pembrolizumab versus placebo as post-nephrectomy adjuvant therapy for clear cell renal cell carcinoma (KEYNOTE-564): 30-month follow-up analysis of a multicentre, randomised, double-blind, placebo-controlled, phase 3 trial. Lancet Oncol 23 (9): 1133-1144, 2022. [PUBMED Abstract]
  7. Tannock IF, Goldstein DA, Ofer J, et al.: Evaluating Trials of Adjuvant Therapy: Is There Benefit for People With Resected Renal Cancer? J Clin Oncol 41 (15): 2713-2717, 2023. [PUBMED Abstract]
  8. Pal SK, Uzzo R, Karam JA, et al.: Adjuvant atezolizumab versus placebo for patients with renal cell carcinoma at increased risk of recurrence following resection (IMmotion010): a multicentre, randomised, double-blind, phase 3 trial. Lancet 400 (10358): 1103-1116, 2022. [PUBMED Abstract]
  9. Motzer RJ, Russo P, Grünwald V, et al.: Adjuvant nivolumab plus ipilimumab versus placebo for localised renal cell carcinoma after nephrectomy (CheckMate 914): a double-blind, randomised, phase 3 trial. Lancet 401 (10379): 821-832, 2023. [PUBMED Abstract]
  10. Merino M, Kasamon Y, Theoret M, et al.: Irreconcilable Differences: The Divorce Between Response Rates, Progression-Free Survival, and Overall Survival. J Clin Oncol 41 (15): 2706-2712, 2023. [PUBMED Abstract]
  11. Phillips E, Messing EM: Role of lymphadenectomy in the treatment of renal cell carcinoma. Urology 41 (1): 9-15, 1993. [PUBMED Abstract]
  12. Novick AC, Streem S, Montie JE, et al.: Conservative surgery for renal cell carcinoma: a single-center experience with 100 patients. J Urol 141 (4): 835-9, 1989. [PUBMED Abstract]
  13. deKernion JB: Management of renal adenocarcinoma. In: deKernion JB, Paulson DF, eds.: Genitourinary Cancer Management. Lea and Febiger, 1987, pp 187-217.
  14. Angermeier KW, Novick AC, Streem SB, et al.: Nephron-sparing surgery for renal cell carcinoma with venous involvement. J Urol 144 (6): 1352-5, 1990. [PUBMED Abstract]

Treatment of Stage IV and Recurrent Renal Cell Cancer

Treatment Options for First-Line Therapy for Stage IV Renal Cell Cancer

Treatment options for first-line therapy for stage IV renal cell cancer include:

  1. Ipilimumab plus nivolumab (for patients with intermediate or poor-risk disease).[1]
  2. Pembrolizumab plus axitinib.[2]
  3. Pembrolizumab plus lenvatinib.[3]
  4. Nivolumab plus cabozantinib.[4]
  5. Radical nephrectomy (for T4, M0 lesions).
  6. Cytoreductive nephrectomy (for any T, M1 lesions in patients with good-risk disease).[58]
  7. Cabozantinib (for patients with intermediate- or poor-risk disease).[9,10]
  8. Avelumab plus axitinib.[11]
  9. Sunitinib.[1215]
  10. Interferon alfa.[1619]
  11. Interleukin-2 (IL-2).[16,20,21]
  12. Palliative external-beam radiation therapy (EBRT).

Treatment Options for Second-Line Therapy for Stage IV Renal Cell Cancer

Treatment options for second-line therapy for stage IV renal cell cancer include:

  1. Nivolumab (for patients previously treated with sunitinib, pazopanib, sorafenib, and/or axitinib).[22]
  2. Lenvatinib plus everolimus (for patients previously treated with sunitinib, pazopanib, cabozantinib, axitinib, or sorafenib).[23]
  3. Cabozantinib (for patients previously treated with sunitinib, pazopanib, sorafenib, or axitinib).[24]
  4. Belzutifan.[25]
  5. Palliative EBRT.

Treatment Options for Third- and Fourth-Line Therapy for Stage IV Renal Cell Cancer

Treatment options for third- and fourth-line therapy for stage IV renal cell cancer include:

  1. Tivozanib.[26,27]
  2. Pazopanib.[14,15,28]
  3. Sorafenib.[29,30]
  4. Temsirolimus.[31]
  5. Bevacizumab with or without interferon alfa.[3235]
  6. Axitinib.[36]
  7. Everolimus (for patients previously treated with sunitinib and/or sorafenib).[37]
  8. Any of the agents listed for first- or second-line therapy.

The prognosis is poor for any patient with renal cell cancer that is progressing, recurring, or relapsing after treatment, regardless of cancer cell type or stage of disease. Almost all patients with stage IV renal cell cancer have incurable disease. The use and selection of further treatment depends on many factors, including previous treatment and site of recurrence, as well as individual patient considerations. Carefully selected patients may benefit from surgical resection of localized metastatic disease, particularly if they have had a prolonged disease-free interval since their primary therapy.

Immunotherapy

Immune checkpoint inhibitors

Immune checkpoint inhibitors are drugs that block certain proteins that inhibit the immune system’s response to cancer. These proteins down-regulate T-lymphocyte activity and can prevent these cells from killing cancer cells. By reducing the activity of these inhibitory proteins, immune checkpoint inhibitors increase the immune response to cancer. Immune checkpoint proteins that are targeted by this class of drugs include programmed death-1 (PD-1), programmed cell death-ligand-1 (PD-L1), and cytotoxic T-lymphocyte-associated antigen 4 (CTLA-4).

Ipilimumab plus nivolumab

In a randomized controlled trial, the combination of ipilimumab and nivolumab prolonged overall survival (OS) when compared with sunitinib as first-line systemic therapy for patients with advanced-stage renal cell carcinoma.[1] Both drugs are immune checkpoint inhibitors. Ipilimumab is an antibody that targets CTLA-4. Nivolumab is an antibody that targets PD-1.

Evidence (ipilimumab plus nivolumab):

  1. A randomized controlled trial compared the combination of ipilimumab and nivolumab with sunitinib. Nivolumab (3 mg/kg) and ipilimumab (1 mg/kg) were given every 3 weeks for four doses, followed by maintenance nivolumab (3 mg/kg) every 2 weeks. Sunitinib was given at a dose of 50 mg once daily for the first 4 weeks of a repeating 6-week cycle (i.e., each cycle consisted of 4 weeks taking the drug, followed by a 2-week break). Treatment continued until disease progression unless adverse events or withdrawal of consent led to discontinuation. The coprimary end points were OS, progression-free survival (PFS), and objective response rate in patients with intermediate- or poor-risk disease. Of note, because there were three primary end points, the overall alpha level of 0.05 was divided among the three end points. This meant that the P-value cutoffs for significance were 0.001 for response rate, 0.009 for PFS, and 0.04 for OS. The trial enrolled 1,096 patients, 847 of whom had intermediate- or poor-risk disease.
    • With a median follow-up of 25.2 months for intermediate- and poor-risk patients, the 18-month OS rate was 75% in the ipilimumab-plus-nivolumab arm, compared with 60% in the sunitinib arm. Among patients with intermediate- and poor-risk disease, the hazard ratio (HR)death was 0.63 (99.8% confidence interval [CI], 0.44–0.89; P < .001).
    • There was no statistically significant difference in PFS. Median PFS among patients with intermediate- and poor-risk disease was 11.6 months with ipilimumab plus nivolumab, compared with 8.4 months with sunitinib (HR, 0.82; 99.1% CI, 0.64–1.05).
    • The objective response rate was higher with ipilimumab plus nivolumab than with sunitinib (42% vs. 27%, P < .001). In the ipilimumab-plus-nivolumab arm, 40 patients (9%) had complete responses, compared with 5 patients (1%) in the sunitinib arm.
Nivolumab

Nivolumab is the only treatment that has shown prolonged OS in patients who have previously received antiangiogenic therapy. Nivolumab is a fully human antibody that blocks ligand activation of the PD-1 protein. By blocking the interaction between PD-1 and PD-1 ligands 1 and 2, nivolumab blocks a pathway that inhibits the cellular immune response and restores cellular immunity.

Evidence (nivolumab):

  1. A phase II trial showed promising results and no dose response with nivolumab, which was given every 3 weeks at a dose of 0.3 mg/kg, 2 mg/kg, or 10 mg/kg.[22]
    • The median survival was 25.5 months with a dose of 2 mg/kg given every 3 weeks and 24.7 months with a dose of 10 mg/kg given every 3 weeks.
  2. A randomized controlled trial compared nivolumab at a dose of 3 mg/kg every 2 weeks with everolimus at a dose of 10 mg daily.[38] The trial randomly assigned 821 patients with metastatic renal cell cancer and a clear cell component who had previously received one or two antiangiogenic regimens.
    • The objective response rate was 25% with nivolumab, compared with 5% with everolimus (P < .001).
    • The median duration of treatment was 5.5 months with nivolumab, compared with 3.7 months with everolimus, and there was no significant difference in PFS (median PFS, 4.6 months with nivolumab vs. 4.4 months with everolimus).
    • However, OS was significantly longer with nivolumab (median OS, 25.0 months vs. 19.6 months; HR, 0.73; 98.5% CI, 0.57–0.93).[38]

    It is not clear whether the dose of 3 mg/kg every 2 weeks used in the phase III trial offers any advantage over the dose of 2 mg/kg every 3 weeks used in the phase II trial. However, the latter dose offers substantial cost savings.

Cytokine therapy

Interferon alfa and IL-2

Cytokine therapy with interferon alfa or IL-2 has been shown to induce objective responses. Interferon alfa appears to have a modest impact on survival in selected patients. Interferon alfa has approximately a 15% objective response rate in appropriately selected individuals.[16] In general, these patients have nonbulky pulmonary or soft tissue metastases with excellent performance status ratings of 0 or 1, according to the Eastern Cooperative Oncology Group (ECOG) rating scale, and the patients show no weight loss. The interferon alfa doses used in studies reporting good response rates have been in an intermediate range (6–20 million units administered 3 times weekly). A Cochrane analysis of six randomized trials, with a total of 963 patients, indicated an HR for survival of 0.78 (0.67–0.90) or a weighted average improvement in survival of 2.6 months.[16][Level of evidence A1]

High-dose IL-2 produces an overall response rate similar to that of interferon alfa, but approximately 5% of the patients have shown durable complete remissions.[20,3943] No randomized controlled trial of IL-2 has shown a longer survival result. High-dose IL-2 is used because it is the only systemic therapy that has been associated with inducing durable complete remissions, albeit in a small fraction (about 5%) of patients who are eligible for this treatment. The optimum dose of IL-2 is unknown. High-dose therapy appears to be associated with higher response rates but with more toxic effects. Low-dose inpatient regimens show activity against renal cell carcinoma with fewer toxic effects, especially hypotension, but have not been shown to be superior to placebo or any alternative regimen in terms of survival or quality of life (QOL).[21] Outpatient subcutaneous administration has also demonstrated responses with acceptable toxic effects but, again, with unclear survival or QOL benefit.[44] Combinations of IL-2 and interferon alfa have been studied, but outcomes have not been better than with high-dose or low-dose IL-2 alone.[17,45]

Combined Immune Checkpoint Inhibitors and Antiangiogenic Targeted Therapies

After immune checkpoint inhibitors and antiangiogenic targeted therapies were found to improve outcomes, clinical trials of the combination of these two approaches showed longer OS when compared with monotherapy.

Pembrolizumab plus axitinib

Evidence (pembrolizumab plus axitinib):

  1. An open-label, phase III, randomized controlled trial (NCT02853331) compared sunitinib with the combination of pembrolizumab and axitinib. The study enrolled 861 patients who had received no previous systemic therapy for metastatic disease.[2]
    • With median follow-up of 12.8 months, the 1-year OS rate was 90% in the pembrolizumab-plus-axitinib arm, compared with 78% in the sunitinib arm (HR, 0.53; 95% CI, 0.38–0.74; P < .0001).[2][Level of evidence A1]
    • Median PFS was also prolonged for patients who received the combination therapy (15.1 months vs. 11.1 months; HR, 0.69; 95% CI, 0.57–0.84).
    • The objective response rate was 59.3% for patients who received combination therapy, compared with 35.7% for patients who received sunitinib (P < .001).
    • Grade 3 or higher adverse event rates were similar: 75.8% of the patients in the pembrolizumab-plus-axitinib arm, compared with 70.6% of the patients in the sunitinib arm.

Pembrolizumab plus lenvatinib

Evidence (pembrolizumab plus lenvatinib):

  1. An open-label, phase III, randomized controlled trial (NCT02811861) compared sunitinib with either lenvatinib plus pembrolizumab or lenvatinib plus everolimus. The study enrolled 1,609 patients who had received no previous systemic therapy for metastatic disease.[3]
    • With a median follow-up of 26.6 months, the 2-year OS rate was 79.2% in the pembrolizumab-plus-lenvatinib arm, compared with 70.4% in the sunitinib arm (HR, 0.66; 95% CI, 0.49–0.88; P = .005).[3][Level of evidence A1] There was no difference in OS between the sunitinib and lenvatinib-plus-everolimus arms.
    • The median PFS was also longer with pembrolizumab plus lenvatinib than with sunitinib (23.9 months vs. 9.2 months; HR, 0.39; 95% CI, 0.32–0.49; P < .001). The PFS was also longer in the lenvatinib-plus-everolimus arm (14.7 months), compared with the sunitinib arm (HR, 0.65; 95% CI, 0.53–0.80; P < .001).
    • The objective response rate was 71.0% with pembrolizumab-plus-lenvatinib therapy, compared with 36.1% with sunitinib (P < .001). Complete responses were reported in 16.1% of patients in the pembrolizumab-plus-lenvatinib arm, 4.2% of patients in the sunitinib arm, and 9.8% of patients in the lenvatinib-plus-everolimus arm.
    • Grade 3 or higher adverse event rates were more common in the lenvatinib arms: 82.4% of the patients in the pembrolizumab-plus-lenvatinib arm and 83.1% of patients in the lenvatinib-plus-everolimus arm, compared with 71.8% of patients in the sunitinib arm. Treatment was discontinued in 37.2% of patients in the pembrolizumab-plus-lenvatinib arm, compared with 14.4% of patients in the sunitinib arm. Hypertension (27.6%), diarrhea (9.7%), and weight loss (8.0%) were the most common high-grade toxicities in the pembrolizumab-plus-lenvatinib arm.
    • Health-related quality of life (HRQOL) was assessed using multiple measures. The results showed that patients who received pembrolizumab and lenvatinib had similar or less deterioration of their HRQOL and disease-related symptom scores over time when compared with patients who received sunitinib.[46][Level of evidence B2]

Nivolumab plus cabozantinib

Evidence (nivolumab plus cabozantinib):

  1. An open-label, phase III, randomized controlled trial (NCT03141177) compared sunitinib with nivolumab plus cabozantinib. The study enrolled 651 patients who had received no previous systemic therapy for metastatic disease.[47]
    • With a median follow-up of 32.9 months, the OS was 37.7 months in the nivolumab-plus-cabozantinib arm, compared with 34.3 months in the sunitinib arm (HR, 0.70; 95% CI, 0.55–0.90).[47][Level of evidence A1]
    • The median PFS was also longer in the nivolumab-plus-cabozantinib arm than in the sunitinib arm (16.6 months vs. 8.3 months; HR, 0.51; 95% CI, 0.41–0.64; P < .001).
    • The objective response rate was 55.7% for patients who received combination therapy, compared with 27.1% for patients who received sunitinib (P < .001).
    • Grade 3 or higher adverse event rates were reported in 65% of patients who received nivolumab plus cabozantinib, compared with 54% of those who received sunitinib. High-grade treatment-related serious adverse events were reported in 22% of patients in the combination therapy arm and 10% of patients in the sunitinib arm. At least one of the trial drugs was discontinued in 19.7% of those assigned to combination therapy, compared with 16.9% of those assigned to sunitinib. The most common high-grade toxicities with combination therapy were hypertension (12.5%), hyponatremia (9.4%), diarrhea (6.9%), elevated lipase (6.2%), and hypophosphatemia (5.9%).

Avelumab plus axitinib

Evidence (avelumab plus axitinib):

  1. An open-label, phase III, randomized trial (NCT02684006) compared the combination of avelumab and axitinib with sunitinib monotherapy. The study included 560 patients with previously untreated stage IV PD-L1–positive renal cell carcinoma (the entire study population was 886 patients, including those who were PD-L1 negative).[11] This trial specified two primary end points: PFS and OS among patients with PD-L1-positive tumors. PFS among the entire study population was a secondary end point.
    • With a median follow-up of less than 1 year, there was no significant difference in OS between the two arms.
    • Among patients with PD-L1–positive tumors, the PFS was 13.8 months in the combination therapy arm, compared with 7.2 months in the sunitinib arm (HR, 0.61; 95% CI, 0.47–0.79).[11][Level of evidence B1]
    • For the entire study population, the median PFS was 13.8 months in the combination arm, compared with 8.4 months in the sunitinib arm (HR, 0.69; 95% CI, 0.56–0.84).

Local Therapy

In patients without metastatic disease, resection of the primary tumor, when feasible, is standard practice. In patients with unresectable and/or metastatic cancers, tumor embolization, EBRT, and nephrectomy can aid in the palliation of symptoms caused by the primary tumor or related ectopic hormone or cytokine production.

Cytoreductive nephrectomy

In the era before targeted antiangiogenic therapies and immune checkpoint inhibitors, two randomized studies demonstrated an OS benefit in selected patients who underwent initial cytoreductive nephrectomy before the administration of interferon alfa.[5,6] However, there is evidence that undergoing cytoreductive nephrectomy before antiangiogenic therapy does not provide a survival benefit to patients with intermediate- and poor-risk disease. Cytoreductive nephrectomy for good-risk patients has not been studied in a randomized controlled trial in the era of targeted therapies and immunotherapy. The limited data available from retrospective nonrandomized studies suggest a benefit in good-risk patients in the current era of targeted therapies.

The CARMENA trial (NCT00930033) evaluated the effectiveness of cytoreductive nephrectomy before targeted therapy. The study reported no benefit for patients who underwent cytoreductive nephrectomy before receiving treatment with sunitinib, an oral antiangiogenic tyrosine kinase inhibitor.[7] This study enrolled only patients with intermediate- (57%) and poor-risk (43%) disease, whereas a previous retrospective study found that cytoreductive nephrectomy only benefited good- and intermediate-risk patients in the sunitinib era. Similarly, the positive trials in the interferon era were restricted to patients who were asymptomatic or minimally symptomatic, with a performance status rating of 0 or 1, according to the ECOG rating scale; these patients were also considered candidates for postoperative immunotherapy.

A multicenter analysis of 351 patients with metastatic renal cell carcinoma was conducted to assess the impact of cytoreductive nephrectomy. The study evaluated patients who received systemic therapy and compared outcomes of those who underwent cytoreductive nephrectomy with those who did not. The median OS was 38.1 months for patients who underwent nephrectomy compared with 16.4 months for those treated with systemic therapy alone (P = .03). However, the survival benefit was limited to patients with an ECOG performance status rating of 0 to 1 and good- or intermediate-risk disease.[8] Interpretation of the study is limited by selection bias because patients were not randomly assigned to the nephrectomy group. Whether there is a benefit from cytoreductive nephrectomy for patients who are not subsequently treated with systemic therapy has not been tested.

Randomized controlled trials of cytoreductive nephrectomy:

A randomized, controlled, noninferiority trial of 450 patients compared the outcomes of patients who received sunitinib alone with those who received cytoreductive nephrectomy followed by sunitinib. The trial was designed to enroll 576 individuals; therefore it was underpowered.[7] In this study, 43% of the patients had poor-risk disease and 57% had intermediate-risk disease.

  • With a median follow-up of 50.9 months, and after 326 deaths, the HRdeath was 0.89 (95% CI, 0.71–1.10) in favor of sunitinib alone. The median OS was 18.4 months in the sunitinib-alone arm and 13.9 months in the nephrectomy-followed-by-sunitinib arm, but the difference was not statistically significant.[7][Level of evidence A1]

Randomized controlled trials of interferon with or without preceding cytoreductive nephrectomy:

Two randomized studies demonstrated an OS benefit in selected patients who underwent initial cytoreductive nephrectomy before the administration of interferon alfa.[5,6]

  • In the larger study, 246 patients were randomly assigned to either undergo a nephrectomy followed by interferon alfa or receive interferon alfa alone.[5]
    • The median OS was 11.1 months when the primary tumor was removed first (95% CI, 9.2–16.5), compared with 8.1 months in the control arm (95% CI, 5.4–9.5; P = .05).
  • In the smaller study, 85 patients with identical eligibility criteria were randomly assigned to treatment as in the larger study.[6]
    • Patients who underwent nephrectomy before receiving interferon alfa had a median OS of 17 months compared with an OS of 7 months in patients who received interferon alfa alone (HR, 0.54; 95% CI, 0.31–0.94; P = .03).[6][Level of evidence A1]
Resection of oligometastatic disease

Selected patients with solitary or a limited number of distant metastases can achieve prolonged survival with nephrectomy and surgical resection of the metastases.[4853] Even patients with brain metastases had similar results.[54] The likelihood of achieving therapeutic benefit with this approach appears enhanced in patients with a long disease-free interval between the initial nephrectomy and the development of metastatic disease.

Antiangiogenic and Other Targeted Therapy

A growing understanding of the biology of cancer in general, and renal cell cancer in particular, has led to the development and U.S. Food and Drug Administration (FDA) approval of six new agents that target specific growth pathways. Two of the approved targeted therapies block the mammalian target of rapamycin (mTOR), a serine/threonine protein kinase that regulates cell growth, division, and survival.

Anti-vascular endothelial growth factor (VEGF) and multitargeted tyrosine kinase inhibitors (TKIs)

Based on research showing that most clear cell renal cell carcinomas carried a variant resulting in constitutive production of cytokines stimulating angiogenesis, several agents that targeted VEGF-mediated pathways were developed. Several of these agents have been shown in randomized, controlled trials to significantly delay progression of clear cell renal cell carcinoma, but none has resulted in a statistically significant increase in OS as conventionally assessed. Many of these trials allowed crossover upon progression and, in some instances, other agents with similar biological activity were available to patients after they withdrew from the clinical trial. These circumstances may have made it more difficult to detect an OS benefit. For the clinician, this makes it challenging to determine the real benefit of these drugs to the patient. The four FDA-approved anti-VEGF agents include three oral TKIs: pazopanib, sorafenib, and sunitinib; and an anti-VEGF monoclonal antibody, bevacizumab. Axitinib is a newer, highly selective, and more potent inhibitor of VEGF receptors 1, 2, and 3. The FDA approved axitinib for the treatment of advanced renal cell carcinoma after the failure of one previously received systemic therapy.[55]

Cabozantinib

Cabozantinib is an oral TKI of the MET, AXL, and VEGF receptors. After a phase I trial showed activity against renal cell carcinoma, a phase III trial assessed the activity of cabozantinib in the second-line setting in a randomized controlled trial.

Evidence (cabozantinib):

  1. The METEOR trial (NCT01865747) randomly assigned 658 patients who had previously been treated with a VEGF TKI to receive either cabozantinib (60 mg qd) or everolimus (10 mg qd).[24,56] Doses were reduced in 60% of the patients receiving cabozantinib, compared with 25% of the patients assigned to everolimus.
    • The incidence of grade 3 or 4 adverse events was 68% with cabozantinib compared with 58% with everolimus.
    • The most common high-grade adverse events were hypertension (15%), diarrhea (11%), and fatigue (9%) with cabozantinib, compared with anemia (16%), fatigue (7%), and hyperglycemia (5%) with everolimus.
    • Dose reductions of cabozantinib were mainly the result of diarrhea, palmar-plantar erythrodysesthesia syndrome, and fatigue.
    • With a median follow-up of about 19 months, median OS was 21.4 months for patients who received cabozantinib and 16.5 months for patients who received everolimus (HR, 0.66; 95% CI, 0.53–0.83; P = .0003).
    • These results were confirmed when the prespecified final analysis was performed after 430 deaths had been confirmed. Median survival was 21.4 months with cabozantinib and 17.1 months with everolimus (HR, 0.70; 95% CI, 0.58–0.85).[57]
  2. A subsequent trial compared cabozantinib with sunitinib in the first-line setting. The study randomly assigned 157 patients with intermediate- or poor-risk metastatic renal cell carcinoma to receive either cabozantinib or sunitinib.[9,10]
    1. Adverse events were seen in more than 95% of the patients.
      • Grade 3 to 4 adverse events were seen in 68% of the patients on the cabozantinib arm and 65% of the patients on the sunitinib arm.
      • Adverse events included hypertension, diarrhea, fatigue, and thrombocytopenia.
      • Grade 5 adverse events occurred in 4% of the patients on the cabozantinib arm and 10% of the patients on the sunitinib arm.
    2. With a median follow-up of 34.5 months, there was no significant difference in OS between the two arms, and the OS curves crossed multiple times.
    3. PFS, however, was longer with cabozantinib (8.6 months vs. 5.3 months [HR, 0.48; 95% CI, 0.31–0.74]), demonstrating that PFS is an inadequate surrogate for OS.[9,10][Level of evidence B1]
Sunitinib

Sunitinib and the combination of bevacizumab plus interferon alfa have each been associated with longer PFS than interferon alfa alone in randomized, controlled trials. Sunitinib is an orally available multikinase inhibitor (VEGFR-1, VEGFR-2, PDGFR, c-Kit).

Evidence (sunitinib):

  1. In 750 previously untreated patients, all of whom had clear cell kidney cancer, a phase III trial compared sunitinib with interferon alfa.[12]
    • Sunitinib as first-line systemic therapy was associated with a median PFS of 11 months, compared with 5 months for interferon alfa.
    • The HR for progression was 0.42 (95% CI, 0.32–0.54; P < .001).[12][Level of evidence B1]
    • However, the analysis for OS showed a strong but statistically nonsignificant trend to improved survival (26.4 months vs. 21.8 months; HR, 0.82; 95% CI, 0.669–1.001; P = .051).[13][Level of evidence B1]

    Bevacizumab, a monoclonal antibody that binds to and neutralizes circulating VEGF protein, delayed progression of clear-cell renal cell carcinoma when compared with placebo in patients with disease refractory to biological therapy.[32] Similarly, bevacizumab plus interferon alfa as first-line therapy resulted in longer PFS but not OS compared with interferon alfa alone in two similarly designed, randomized, controlled trials.[33,34]

Pazopanib

Pazopanib is an orally available multikinase inhibitor (VEGFR-1, VEGFR-2, VEGFR-3, PDGFR, and c-KIT) and has also been approved for the treatment of patients with advanced renal cell carcinoma.

Evidence (pazopanib):

  1. Pazopanib was evaluated in a randomized, placebo-controlled, international trial (VEG015192 [NCT00334282]) that enrolled 435 patients with clear cell or predominantly clear cell renal cell carcinoma.[28] Nearly 50% of the patients had previously received cytokine therapy, although the remainder of them were treatment naïve.
    • PFS was significantly prolonged in the pazopanib arm at 9.2 months compared with 4.2 months in the placebo arm.
    • The HR for progression was 0.46 (95% CI, 0.34–0.62; P < .0001), and the median duration of response was longer than 1 year.
  2. Pazopanib was also compared with sunitinib in a randomized controlled trial (NCT00720941) that enrolled 1,110 patients who had metastatic renal cell carcinoma with a clear cell component in a 1:1 ratio.[14] The primary end point was PFS. The study was powered to assess the noninferiority of pazopanib. Results were reported when there was disease progression in 336 of 557 patients (60%) who received pazopanib and in 323 of 553 patients (58%) who received sunitinib.
    • The median PFS was 8.4 months for those in the pazopanib arm and 9.5 months for those in the sunitinib arm (HR, 1.05; CI, 0.9–1.22).
    • There was no difference in OS (HR, 0.91; 95% CI, 0.76–1.08).
    • Although QOL was compared in the study, differences in the scheduled administration of the medications made this comparison difficult to interpret.
  3. A subsequent double-blind, randomized, controlled, crossover trial compared sunitinib followed by pazopanib with pazopanib followed by sunitinib. The primary end point was patient preference for one drug over the other.[15] Patients were treated for 10 weeks with either sunitinib or pazopanib, followed by a 2-week washout period, followed by 10 more weeks of treatment with the other drug. Preference was assessed at the end of the second 10-week treatment period. This study design created possible bias in favor of pazopanib.

    Although the typical regimen for administering sunitinib is a 6-week cycle of 4 weeks on the drug and 2 weeks off the drug, the Patient Preference Study of Pazopanib Versus Sunitinib in Advanced or Metastatic Kidney Cancer (PISCES [NCT01064310]) chose a treatment period of 10 weeks rather than 12 weeks. Because of this treatment-period change, the 10 weeks of sunitinib treatment included 4 weeks on the drug, followed by 2 weeks off the drug, followed by 4 more weeks on the drug. Patients assigned to pazopanib followed by sunitinib had their preference for treatment assessed at the end of the second 4-weeks-on-the-drug period during which they took sunitinib daily for 28 days. At that point, the sunitinib side effects became the most severe. The expected result from an assessment conducted at the end of a 6-week treatment cycle versus the 4-week treatment cycle would be greatly abated side effects.

    In addition, the 2-week washout period that occurred between the two 10-week treatment periods was a true break from treatment for patients assigned to take pazopanib first; however, for the patients taking sunitinib, the 2-week washout period was just the completion of their second 6-week treatment cycle. In other words, patients assigned to pazopanib first had a true 2-week break from treatment, and their drug preference was assessed at the peak period of toxic effects from sunitinib; however, the patients assigned to sunitinib first had no true treatment break before starting pazopanib and may have had less opportunity to recover from the side effects of sunitinib.

    • Despite these limitations, 70% of the patients preferred pazopanib, and 22% of the patients preferred sunitinib (P < .001).
    • More patients preferred pazopanib regardless of the treatment they received first; however, that difference was greater for the patients who received pazopanib first (80% vs. 11%) compared with the patients who received sunitinib first (62% vs. 32%).
    • The main side effects cited by the patients that contributed to patient preference were diarrhea, HRQOL, fatigue, loss of appetite, taste changes, nausea and vomiting, hand and foot soreness, stomach pain, and mouth and throat soreness.
    • The patients who preferred pazopanib cited less fatigue and better overall QOL as the most common reasons for their preference.
    • The patients who preferred sunitinib cited less diarrhea and better QOL as the most common reasons for their preference.
    • Physician preference was a secondary end point of the study, and 61% of physicians preferred to continue patient treatment with pazopanib, compared with 22% of physicians who preferred to continue patient treatment with sunitinib.
Sorafenib

Sorafenib is an orally available multikinase inhibitor (CRAF, BRAF, KIT, FLT-3, VEGFR-2, VEGFR-3, and PDGFRB) and has also been approved for the treatment of patients with advanced renal cell carcinoma.[58]

Evidence (sorafenib):

  1. In an international, multicenter, randomized trial, 769 patients were stratified by the Memorial Sloan Kettering Cancer Center prognostic risk category and by country. Patients were randomly assigned to receive either sorafenib (400 mg bid) or a placebo. Approximately 82% of the patients had received IL-2 previously and/or interferon alfa in both arms of the study. The primary end points were PFS and OS.
    • The median PFS for patients randomly assigned to sorafenib was 167 days compared with 84 days for patients randomly assigned to placebo (P < .001).
    • The estimated HR for the risk of progression with sorafenib compared with a placebo was 0.44 (95% CI, 0.35–0.55). There was no significant difference in OS.[58][Level of evidence B1]
  2. A phase II study randomly assigned 189 patients to either sorafenib or interferon alfa.[29]
    • No difference was reported in PFS (5.7 months vs. 5.6 months), but sorafenib was associated with better QOL than interferon alfa.
Axitinib

Axitinib has prolonged PFS when given as second-line systemic therapy.

Evidence (axitinib):

  1. A randomized controlled trial of 723 patients conducted at 175 sites in 22 countries evaluated axitinib versus sorafenib as treatment for renal cell carcinoma. Patients had disease with a clear cell component that had progressed during or after first-line treatment with sunitinib (54%), cytokines (35%), bevacizumab plus interferon alfa (8%), or temsirolimus (3%).[36,55] The primary end point was PFS, and the data were analyzed when disease in 88% of the axitinib patients and 90% of the sorafenib patients had progressed, while 58% and 59%, respectively, had died.
    • Median PFS was 8.3 months for axitinib and 5.7 months for sorafenib (HRprogression or death, 0.656; 95% CI, 0.552–0.779, one-sided log-rank P < .0001 and a threshold of P < .025 for significance).
    • Median OS was 20.1 months with axitinib compared with 19.2 months with sorafenib (HR, 0.969; 95% CI, 0.80–1.17, P = .374).
    • However, the largest benefit was seen in patients who received cytokines as first-line therapy and whose median PFS was 12.2 months with axitinib compared with 8.2 months with sorafenib (P < .0001), while median OS was 29.4 months with axitinib compared with 27.8 months with sorafenib (HR, 0.81; 95% CI, 0.55–1.19; P = .144).
    • In contrast, in patients who had previously received sunitinib, axitinib was associated with a 2.1-month increase in PFS compared with sorafenib (6.5 months vs. 4.4 months, one-sided P = .002), but median OS was nearly identical: 15.2 months with axitinib compared with 16.5 months with sorafenib (HR, 1.0; 95% CI, 0.782–1.270; P = .49).[36]

    Comparing the toxicity of the axitinib and sorafenib regimens is complicated because the axitinib arm included a dose-escalation component, and only those patients who tolerated the lower dose were subsequently given the higher doses. Hypertension, nausea, dysphonia, and hypothyroidism were more common with axitinib, whereas palmar-plantar erythrodysesthesia, alopecia, and rash were more common with sorafenib.[36,55]

Tivozanib

Tivozanib is a TKI that is selective for the VEGF receptor. A phase III randomized controlled trial compared tivozanib with sorafenib for first-line treatment of patients with metastatic renal cell cancer. The study reported that tivozanib was associated with a longer median PFS, but OS favored sorafenib.[26] A subsequent phase III randomized controlled trial compared the two drugs in patients who had at least two prior systemic treatments, including at least one prior VEGF inhibitor. This second trial reported a longer median PFS for patients treated with tivozanib and no difference in OS.[27] In the United States, the FDA has approved tivozanib for patients who have had two or more prior systemic therapies.

Evidence (tivozanib):

  1. In an open-label, phase III, randomized controlled trial, tivozanib was compared with sorafenib as initial targeted therapy. The study included 517 patients with metastatic renal cell cancer with a clear cell component who had received zero to one prior systemic therapy. Prior treatment with VEGF-targeted therapy and mTOR inhibitors was not permitted. The primary end point was PFS.[26]
    • The median PFS was longer for patients who received tivozanib than for patients who received sorafenib (11.9 months vs. 9.1 months; HR, 0.797; 95% CI, 0.639–0.993; P = .042). A total of 156 patients (61%) who had disease progression while receiving sorafenib crossed over to receive tivozanib.[26][Level of evidence B1]
    • There was no difference in OS.
    • The two medications had different toxicity profiles. Adverse events that were more common with tivozanib than with sorafenib included hypertension (44% vs. 34%) and dysphonia (21% vs. 5%). Adverse events that were more common with sorafenib than with tivozanib included hand-foot skin reaction (54% vs. 14%) and diarrhea (33% vs. 23%).
  2. In an open-label randomized controlled trial (NCT02627963), tivozanib was compared with sorafenib. The study included 350 patients with metastatic renal cell cancer who had previously been treated with at least two different systemic therapies, including one VEGF inhibitor.[27]
    • With a median follow-up of 19.0 months, the median PFS was longer for patients who received tivozanib (5.6 months vs. 3.9 months; HR, 0.73; 95% CI, 0.56–0.94; P = .016).[27][Level of evidence B1]
    • No significant difference was reported for OS. The median OS was 16.4 months for patients who received tivozanib and 19.2 months for patients who received sorafenib (HR, 0.97; 95% CI, 0.75–1.24).[59]
    • Grades 3 to 4 treatment-related adverse events were reported in 11% of patients who received tivozanib and 10% of patients who received sorafenib.

Mammalian target of rapamycin (mTOR) inhibitors

Temsirolimus

Temsirolimus is an intravenously administered mTOR inhibitor.

Evidence (temsirolimus):

  1. A phase III randomized controlled trial enrolled intermediate- and poor-risk patients with a variety of subtypes of renal cell carcinoma. The trial was not restricted to clear cell kidney cancer.
    • Temsirolimus was shown to result in prolonged OS compared with interferon alfa.
    • The HRdeath was 0.73 (95% CI, 0.58–0.92; P = .008), making temsirolimus the only therapy for renal cell carcinoma to clearly show results in longer OS than did interferon alfa using conventional statistical analysis.[31]
Everolimus

Everolimus is an orally administered mTOR inhibitor.

Evidence (everolimus):

  1. Everolimus was evaluated in a double-blind, randomized, placebo-controlled, phase III trial that enrolled patients with metastatic renal cell carcinoma with a clear cell component that had progressed during or within 6 months of stopping treatment with sunitinib, sorafenib, or both drugs.
    • Median PFS was 4.0 months with everolimus compared with 1.9 months with placebo.[37]
    • No difference in OS was reported.

Hypoxia-inducible factor (HIF)-2alpha inhibitors

Belzutifan

Belzutifan is an HIF-2alpha inhibitor used to treat advanced clear cell renal cell carcinoma in patients with disease progression after one to three prior lines of systemic therapy, including immune checkpoint inhibitors and VEGF-targeted treatments.

  1. The open-label phase III LITESPARK-005 trial (NCT04195750) compared belzutifan with everolimus in patients with advanced clear cell renal cell carcinoma who experienced disease progression after one to three lines of prior systemic therapies, including immune checkpoint inhibitors and VEGF-targeted treatments. The co-primary end points of the study were PFS, as assessed by Response Evaluation Criteria in Solid Tumors (RECIST) version 1.1 via blinded independent central review, and OS.[25]
    • The trial demonstrated a significant improvement in PFS with belzutifan compared with everolimus (HR, 0.75; 95% CI, 0.63–0.90; P = .0016). Objective response rates were also 19.2% higher in the belzutifan arm (95% CI, 14.8%–24.0%). However, OS did not improve significantly (HR, 0.88; 95% CI, 0.73–1.07; P = .20), indicating no clinically meaningful survival difference. The lack of OS benefit raises concerns about the clinical meaningfulness of the PFS improvement.[25][Level of evidence B1]
    • Grade 3 or higher adverse events of any cause occurred in 61.8% of patients in the belzutifan group (grade 5 severity occurred in 3.5% of patients) and in 62.5% of patients in the everolimus group (grade 5 severity occurred in 5.3% of patients). Adverse events led to treatment discontinuation in 5.9% of patients in the belzutifan group and 14.7% of patients in the everolimus group.

    The FDA approved belzutifan for the treatment of advanced renal cell carcinoma in the second-line and beyond based on the PFS benefit observed in the trial. However, the trial did not meet the co-primary end point of OS. Also, the cost of belzutifan is $31,000 per month for uninsured patients, while everolimus, a generic drug, costs approximately $450 per month (in 2024 dollars).

Combined Therapy With Multitargeted TKIs and mTOR Inhibitors

Lenvatinib plus everolimus

Lenvatinib is a multitargeted tyrosine kinase inhibitor with activity against VEGFR-1, VEGFR-2, and VEGFR-3, with inhibitory activity against fibroblast growth factor receptors (FGFR1, FGFR2, FGFR3, and FGFR4), PDGFRA, RET, and KIT.

Evidence (lenvatinib plus everolimus):

  1. The combination of lenvatinib plus everolimus was compared with each medication as a single agent in a randomized, controlled phase II study of 153 subjects with advanced-stage renal cell carcinoma who had received previous antiangiogenic therapy.[23] The primary end point was PFS.
    • Median PFS was significantly longer in the combination arm (14.6 months) than in the everolimus arm (5.5 months) (HR, 0.40; 95% CI, 0.24–0.68).[23][Level of evidence B1]
    • Median PFS was 7.4 months for lenvatinib, which was not significantly shorter than in the combination arm (HR, 0.66; 0.39–1.10), but was significantly longer than in the everolimus arm (HR, 0.61; 95% CI, 0.38–0.98; P = .048).
    • There was no significant difference in OS at the time of data cutoff. A later, post hoc analysis of OS with longer follow-up did show longer survival in the combination arm compared with the everolimus-alone arm (25.5 months [95% CI, 16.4 to not evaluable] vs. 15.4 months [95% CI, 11.8–19.6]; HR, 0.51; 95% CI, 0.30–0.88; P = .024).
    • Median OS in the lenvatinib-alone arm was 19.1 months and did not differ significantly from the other two arms.
    • All patients experienced adverse events and almost all of these were judged to be related to treatment. Seventy-one percent of patients had adverse events that were grade 3 or higher. The most common toxicities in the combination arm were diarrhea, hypertension, fatigue, loss of appetite, vomiting, and cough. One patient in the combination arm died of a cerebral hemorrhage that was thought to be related to treatment.

Chemotherapy

Responses to cytotoxic chemotherapy generally have not exceeded 10% for any regimen that has been studied in adequate numbers of patients.

Current Clinical Trials

Use our advanced clinical trial search to find NCI-supported cancer clinical trials that are now enrolling patients. The search can be narrowed by location of the trial, type of treatment, name of the drug, and other criteria. General information about clinical trials is also available.

References
  1. Motzer RJ, Tannir NM, McDermott DF, et al.: Nivolumab plus Ipilimumab versus Sunitinib in Advanced Renal-Cell Carcinoma. N Engl J Med 378 (14): 1277-1290, 2018. [PUBMED Abstract]
  2. Rini BI, Plimack ER, Stus V, et al.: Pembrolizumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 380 (12): 1116-1127, 2019. [PUBMED Abstract]
  3. Motzer R, Alekseev B, Rha SY, et al.: Lenvatinib plus Pembrolizumab or Everolimus for Advanced Renal Cell Carcinoma. N Engl J Med 384 (14): 1289-1300, 2021. [PUBMED Abstract]
  4. Choueiri TK, Powles T, Burotto M, et al.: Nivolumab plus Cabozantinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 384 (9): 829-841, 2021. [PUBMED Abstract]
  5. Flanigan RC, Salmon SE, Blumenstein BA, et al.: Nephrectomy followed by interferon alfa-2b compared with interferon alfa-2b alone for metastatic renal-cell cancer. N Engl J Med 345 (23): 1655-9, 2001. [PUBMED Abstract]
  6. Mickisch GH, Garin A, van Poppel H, et al.: Radical nephrectomy plus interferon-alfa-based immunotherapy compared with interferon alfa alone in metastatic renal-cell carcinoma: a randomised trial. Lancet 358 (9286): 966-70, 2001. [PUBMED Abstract]
  7. Méjean A, Ravaud A, Thezenas S, et al.: Sunitinib Alone or after Nephrectomy in Metastatic Renal-Cell Carcinoma. N Engl J Med 379 (5): 417-427, 2018. [PUBMED Abstract]
  8. Mathieu R, Pignot G, Ingles A, et al.: Nephrectomy improves overall survival in patients with metastatic renal cell carcinoma in cases of favorable MSKCC or ECOG prognostic features. Urol Oncol 33 (8): 339.e9-15, 2015. [PUBMED Abstract]
  9. Choueiri TK, Halabi S, Sanford BL, et al.: Cabozantinib Versus Sunitinib As Initial Targeted Therapy for Patients With Metastatic Renal Cell Carcinoma of Poor or Intermediate Risk: The Alliance A031203 CABOSUN Trial. J Clin Oncol 35 (6): 591-597, 2017. [PUBMED Abstract]
  10. Choueiri TK, Hessel C, Halabi S, et al.: Cabozantinib versus sunitinib as initial therapy for metastatic renal cell carcinoma of intermediate or poor risk (Alliance A031203 CABOSUN randomised trial): Progression-free survival by independent review and overall survival update. Eur J Cancer 94: 115-125, 2018. [PUBMED Abstract]
  11. Motzer RJ, Penkov K, Haanen J, et al.: Avelumab plus Axitinib versus Sunitinib for Advanced Renal-Cell Carcinoma. N Engl J Med 380 (12): 1103-1115, 2019. [PUBMED Abstract]
  12. Motzer RJ, Hutson TE, Tomczak P, et al.: Sunitinib versus interferon alfa in metastatic renal-cell carcinoma. N Engl J Med 356 (2): 115-24, 2007. [PUBMED Abstract]
  13. Motzer RJ, Hutson TE, Tomczak P, et al.: Overall survival and updated results for sunitinib compared with interferon alfa in patients with metastatic renal cell carcinoma. J Clin Oncol 27 (22): 3584-90, 2009. [PUBMED Abstract]
  14. Motzer RJ, Hutson TE, Cella D, et al.: Pazopanib versus sunitinib in metastatic renal-cell carcinoma. N Engl J Med 369 (8): 722-31, 2013. [PUBMED Abstract]
  15. Escudier B, Porta C, Bono P, et al.: Randomized, controlled, double-blind, cross-over trial assessing treatment preference for pazopanib versus sunitinib in patients with metastatic renal cell carcinoma: PISCES Study. J Clin Oncol 32 (14): 1412-8, 2014. [PUBMED Abstract]
  16. Coppin C, Porzsolt F, Awa A, et al.: Immunotherapy for advanced renal cell cancer. Cochrane Database Syst Rev (1): CD001425, 2005. [PUBMED Abstract]
  17. Negrier S, Perol D, Ravaud A, et al.: Medroxyprogesterone, interferon alfa-2a, interleukin 2, or combination of both cytokines in patients with metastatic renal carcinoma of intermediate prognosis: results of a randomized controlled trial. Cancer 110 (11): 2468-77, 2007. [PUBMED Abstract]
  18. Pyrhönen S, Salminen E, Ruutu M, et al.: Prospective randomized trial of interferon alfa-2a plus vinblastine versus vinblastine alone in patients with advanced renal cell cancer. J Clin Oncol 17 (9): 2859-67, 1999. [PUBMED Abstract]
  19. Interferon-alpha and survival in metastatic renal carcinoma: early results of a randomised controlled trial. Medical Research Council Renal Cancer Collaborators. Lancet 353 (9146): 14-7, 1999. [PUBMED Abstract]
  20. McDermott DF, Regan MM, Clark JI, et al.: Randomized phase III trial of high-dose interleukin-2 versus subcutaneous interleukin-2 and interferon in patients with metastatic renal cell carcinoma. J Clin Oncol 23 (1): 133-41, 2005. [PUBMED Abstract]
  21. Yang JC, Topalian SL, Parkinson D, et al.: Randomized comparison of high-dose and low-dose intravenous interleukin-2 for the therapy of metastatic renal cell carcinoma: an interim report. J Clin Oncol 12 (8): 1572-6, 1994. [PUBMED Abstract]
  22. Motzer RJ, Rini BI, McDermott DF, et al.: Nivolumab for Metastatic Renal Cell Carcinoma: Results of a Randomized Phase II Trial. J Clin Oncol 33 (13): 1430-7, 2015. [PUBMED Abstract]
  23. Motzer RJ, Hutson TE, Glen H, et al.: Lenvatinib, everolimus, and the combination in patients with metastatic renal cell carcinoma: a randomised, phase 2, open-label, multicentre trial. Lancet Oncol 16 (15): 1473-1482, 2015. [PUBMED Abstract]
  24. Choueiri TK, Escudier B, Powles T, et al.: Cabozantinib versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373 (19): 1814-23, 2015. [PUBMED Abstract]
  25. Choueiri TK, Powles T, Peltola K, et al.: Belzutifan versus Everolimus for Advanced Renal-Cell Carcinoma. N Engl J Med 391 (8): 710-721, 2024. [PUBMED Abstract]
  26. Motzer RJ, Nosov D, Eisen T, et al.: Tivozanib versus sorafenib as initial targeted therapy for patients with metastatic renal cell carcinoma: results from a phase III trial. J Clin Oncol 31 (30): 3791-9, 2013. [PUBMED Abstract]
  27. Rini BI, Pal SK, Escudier BJ, et al.: Tivozanib versus sorafenib in patients with advanced renal cell carcinoma (TIVO-3): a phase 3, multicentre, randomised, controlled, open-label study. Lancet Oncol 21 (1): 95-104, 2020. [PUBMED Abstract]
  28. Sternberg CN, Davis ID, Mardiak J, et al.: Pazopanib in locally advanced or metastatic renal cell carcinoma: results of a randomized phase III trial. J Clin Oncol 28 (6): 1061-8, 2010. [PUBMED Abstract]
  29. Escudier B, Szczylik C, Hutson TE, et al.: Randomized phase II trial of first-line treatment with sorafenib versus interferon Alfa-2a in patients with metastatic renal cell carcinoma. J Clin Oncol 27 (8): 1280-9, 2009. [PUBMED Abstract]
  30. Escudier B, Eisen T, Stadler WM, et al.: Sorafenib in advanced clear-cell renal-cell carcinoma. N Engl J Med 356 (2): 125-34, 2007. [PUBMED Abstract]
  31. Hudes G, Carducci M, Tomczak P, et al.: Temsirolimus, interferon alfa, or both for advanced renal-cell carcinoma. N Engl J Med 356 (22): 2271-81, 2007. [PUBMED Abstract]
  32. Yang JC, Haworth L, Sherry RM, et al.: A randomized trial of bevacizumab, an anti-vascular endothelial growth factor antibody, for metastatic renal cancer. N Engl J Med 349 (5): 427-34, 2003. [PUBMED Abstract]
  33. Rini BI, Halabi S, Rosenberg JE, et al.: Bevacizumab plus interferon alfa compared with interferon alfa monotherapy in patients with metastatic renal cell carcinoma: CALGB 90206. J Clin Oncol 26 (33): 5422-8, 2008. [PUBMED Abstract]
  34. Escudier B, Pluzanska A, Koralewski P, et al.: Bevacizumab plus interferon alfa-2a for treatment of metastatic renal cell carcinoma: a randomised, double-blind phase III trial. Lancet 370 (9605): 2103-11, 2007. [PUBMED Abstract]
  35. Escudier B, Bellmunt J, Négrier S, et al.: Phase III trial of bevacizumab plus interferon alfa-2a in patients with metastatic renal cell carcinoma (AVOREN): final analysis of overall survival. J Clin Oncol 28 (13): 2144-50, 2010. [PUBMED Abstract]
  36. Motzer RJ, Escudier B, Tomczak P, et al.: Axitinib versus sorafenib as second-line treatment for advanced renal cell carcinoma: overall survival analysis and updated results from a randomised phase 3 trial. Lancet Oncol 14 (6): 552-62, 2013. [PUBMED Abstract]
  37. Motzer RJ, Escudier B, Oudard S, et al.: Efficacy of everolimus in advanced renal cell carcinoma: a double-blind, randomised, placebo-controlled phase III trial. Lancet 372 (9637): 449-56, 2008. [PUBMED Abstract]
  38. Motzer RJ, Escudier B, McDermott DF, et al.: Nivolumab versus Everolimus in Advanced Renal-Cell Carcinoma. N Engl J Med 373 (19): 1803-13, 2015. [PUBMED Abstract]
  39. Rosenberg SA, Lotze MT, Muul LM, et al.: A progress report on the treatment of 157 patients with advanced cancer using lymphokine-activated killer cells and interleukin-2 or high-dose interleukin-2 alone. N Engl J Med 316 (15): 889-97, 1987. [PUBMED Abstract]
  40. Fisher RI, Coltman CA, Doroshow JH, et al.: Metastatic renal cancer treated with interleukin-2 and lymphokine-activated killer cells. A phase II clinical trial. Ann Intern Med 108 (4): 518-23, 1988. [PUBMED Abstract]
  41. Weiss GR, Margolin KA, Aronson FR, et al.: A randomized phase II trial of continuous infusion interleukin-2 or bolus injection interleukin-2 plus lymphokine-activated killer cells for advanced renal cell carcinoma. J Clin Oncol 10 (2): 275-81, 1992. [PUBMED Abstract]
  42. Rosenberg SA, Yang JC, Topalian SL, et al.: Treatment of 283 consecutive patients with metastatic melanoma or renal cell cancer using high-dose bolus interleukin 2. JAMA 271 (12): 907-13, 1994 Mar 23-30. [PUBMED Abstract]
  43. Fyfe G, Fisher RI, Rosenberg SA, et al.: Results of treatment of 255 patients with metastatic renal cell carcinoma who received high-dose recombinant interleukin-2 therapy. J Clin Oncol 13 (3): 688-96, 1995. [PUBMED Abstract]
  44. Sleijfer DT, Janssen RA, Buter J, et al.: Phase II study of subcutaneous interleukin-2 in unselected patients with advanced renal cell cancer on an outpatient basis. J Clin Oncol 10 (7): 1119-23, 1992. [PUBMED Abstract]
  45. Atkins MB, Sparano J, Fisher RI, et al.: Randomized phase II trial of high-dose interleukin-2 either alone or in combination with interferon alfa-2b in advanced renal cell carcinoma. J Clin Oncol 11 (4): 661-70, 1993. [PUBMED Abstract]
  46. Motzer R, Porta C, Alekseev B, et al.: Health-related quality-of-life outcomes in patients with advanced renal cell carcinoma treated with lenvatinib plus pembrolizumab or everolimus versus sunitinib (CLEAR): a randomised, phase 3 study. Lancet Oncol 23 (6): 768-780, 2022. [PUBMED Abstract]
  47. Motzer RJ, Powles T, Burotto M, et al.: Nivolumab plus cabozantinib versus sunitinib in first-line treatment for advanced renal cell carcinoma (CheckMate 9ER): long-term follow-up results from an open-label, randomised, phase 3 trial. Lancet Oncol 23 (7): 888-898, 2022. [PUBMED Abstract]
  48. Murthy SC, Kim K, Rice TW, et al.: Can we predict long-term survival after pulmonary metastasectomy for renal cell carcinoma? Ann Thorac Surg 79 (3): 996-1003, 2005. [PUBMED Abstract]
  49. van der Poel HG, Roukema JA, Horenblas S, et al.: Metastasectomy in renal cell carcinoma: A multicenter retrospective analysis. Eur Urol 35 (3): 197-203, 1999. [PUBMED Abstract]
  50. Eggener SE, Yossepowitch O, Kundu S, et al.: Risk score and metastasectomy independently impact prognosis of patients with recurrent renal cell carcinoma. J Urol 180 (3): 873-8; discussion 878, 2008. [PUBMED Abstract]
  51. Kwak C, Park YH, Jeong CW, et al.: Metastasectomy without systemic therapy in metastatic renal cell carcinoma: comparison with conservative treatment. Urol Int 79 (2): 145-51, 2007. [PUBMED Abstract]
  52. Russo P, O’Brien MF: Surgical intervention in patients with metastatic renal cancer: metastasectomy and cytoreductive nephrectomy. Urol Clin North Am 35 (4): 679-86; viii, 2008. [PUBMED Abstract]
  53. Hofmann HS, Neef H, Krohe K, et al.: Prognostic factors and survival after pulmonary resection of metastatic renal cell carcinoma. Eur Urol 48 (1): 77-81; discussion 81-2, 2005. [PUBMED Abstract]
  54. Wroński M, Arbit E, Russo P, et al.: Surgical resection of brain metastases from renal cell carcinoma in 50 patients. Urology 47 (2): 187-93, 1996. [PUBMED Abstract]
  55. Rini BI, Escudier B, Tomczak P, et al.: Comparative effectiveness of axitinib versus sorafenib in advanced renal cell carcinoma (AXIS): a randomised phase 3 trial. Lancet 378 (9807): 1931-9, 2011. [PUBMED Abstract]
  56. Choueiri TK, Escudier B, Powles T, et al.: Cabozantinib versus everolimus in advanced renal cell carcinoma (METEOR): final results from a randomised, open-label, phase 3 trial. Lancet Oncol 17 (7): 917-927, 2016. [PUBMED Abstract]
  57. Motzer RJ, Escudier B, Powles T, et al.: Long-term follow-up of overall survival for cabozantinib versus everolimus in advanced renal cell carcinoma. Br J Cancer 118 (9): 1176-1178, 2018. [PUBMED Abstract]
  58. Nexavar® [label information]. Rockville, Md: Center for Drug Evaluation and Research, FDA, 2007. Available online. Last accessed February 17, 2025.
  59. Pal SK, Escudier BJ, Atkins MB, et al.: Final Overall Survival Results from a Phase 3 Study to Compare Tivozanib to Sorafenib as Third- or Fourth-line Therapy in Subjects with Metastatic Renal Cell Carcinoma. Eur Urol 78 (6): 783-785, 2020. [PUBMED Abstract]

Latest Updates to This Summary (05/13/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

Editorial changes were made to this summary.

This summary is written and maintained by the PDQ Adult Treatment Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about the treatment of renal cancer. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Adult Treatment Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

The lead reviewers for Renal Cell Cancer Treatment are:

  • Juskaran S. Chadha, DO (Moffitt Cancer Center)
  • Jad Chahoud, MD, MPH (Moffitt Cancer Center)
  • Timothy Gilligan, MD (Cleveland Clinic Taussig Cancer Institute)
  • Joseph J. Park, MD (Duke University Medical Center)

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Adult Treatment Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Adult Treatment Editorial Board. PDQ Renal Cell Cancer Treatment. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /types/kidney/hp/kidney-treatment-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389256]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

Based on the strength of the available evidence, treatment options may be described as either “standard” or “under clinical evaluation.” These classifications should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Kidney (Renal Cell) Cancer—Health Professional Version

Kidney (Renal Cell) Cancer—Health Professional Version

Causes & Prevention

NCI does not have PDQ evidence-based information about prevention of kidney cancer.

Screening

NCI does not have PDQ evidence-based information about screening for kidney cancer.

Supportive & Palliative Care

We offer evidence-based supportive and palliative care information for health professionals on the assessment and management of cancer-related symptoms and conditions.

Cancer Pain Nausea and Vomiting Nutrition in Cancer Care Transition to End-of-Life Care Last Days of Life View all Supportive and Palliative Care Summaries