Causes and Prevention Research

Causes and Prevention Research

Cancer Prevention Overview (PDQ®)–Health Professional Version

Cancer Prevention Overview (PDQ®)–Health Professional Version

The Burden of Cancer

In 2025, an estimated 2,041,910 people will be diagnosed with cancer in the United States, and an estimated 618,120 people will die of cancer.[1] Cancer incidence and mortality help to define the scope of the burden that cancer imposes on society, but these indicators do not fully characterize the impact that cancer has on cancer patients and their families. In addition to the physical morbidity caused by cancer, cancer is frequently associated with emotional distress and an overall reduction in quality of life.[2] Cancer has also been observed to be a financial stressor. In a population-based study in western Washington, 197,840 cancer patients were matched with an equal number of controls by age, sex, and zip code. Cancer patients were 2.6 times more likely to file for bankruptcy than the cancer-free controls (P < .05).[3]

References
  1. American Cancer Society: Cancer Facts and Figures 2025. American Cancer Society, 2025. Available online. Last accessed January 16, 2025.
  2. Faller H, Schuler M, Richard M, et al.: Effects of psycho-oncologic interventions on emotional distress and quality of life in adult patients with cancer: systematic review and meta-analysis. J Clin Oncol 31 (6): 782-93, 2013. [PUBMED Abstract]
  3. Ramsey S, Blough D, Kirchhoff A, et al.: Washington State cancer patients found to be at greater risk for bankruptcy than people without a cancer diagnosis. Health Aff (Millwood) 32 (6): 1143-52, 2013. [PUBMED Abstract]

Description of the Evidence

Prevention is defined as the reduction of cancer mortality via reduction in the incidence of cancer. This can be accomplished by avoiding a carcinogen or altering its metabolism; pursuing lifestyle or dietary practices that modify cancer-causing factors or genetic predispositions; medical interventions (e.g., chemoprevention) or risk-reducing surgical procedures; or early detection strategies that can result in removal of precancerous lesions, such as colonoscopy for colorectal polyps.

About the PDQ Cancer Prevention Summaries

The PDQ cancer prevention summaries are primarily organized by specific anatomical cancer site to facilitate consideration of the unique characteristics of specific malignancies. This section provides an overview of cancer prevention strategies, including a summary of evidence for selected strategies used to prevent a broad spectrum of malignancies. The strength of evidence and magnitude of effects of these strategies, however, may vary by cancer site. Other PDQ cancer prevention summaries address the prevention of specific types of cancer and provide more detailed descriptions of the evidence.

There are many common beliefs or speculations about causes of cancer. However, putative causes of cancer for which there is very little scientific evidence, positive or negative, are not considered in these summaries. Therefore, absence of an environmental, dietary, or lifestyle factor from these summaries implies insufficient evidence for detailed consideration and not necessarily absence of effect. Many such factors are deserving of research regarding their potential roles in cancer, but if that research does not exist, has not been published, or the Editorial Board judges the research to be of insufficient quantity or of poor quality, they are not addressed in these summaries.

Carcinogenesis

Carcinogenesis refers to an underlying etiological pathway that leads to cancer. Several models of carcinogenesis have been proposed. Knudson proposed a “two-hit” model requiring a mutation in both copies of a gene resulting in cancer. Expansion of this concept has resulted in other widely cited models of carcinogenesis including those of Vogelstein and Kinzler [1] and Hanahan and Weinberg.[2] The model of Vogelstein and Kinzler emphasizes that cancer is ultimately a disease of damaged DNA, comprised of a series of genetic mutations that can transform normal cells to cancerous cells. The genetic mutations include inactivation of tumor suppressor genes and activation of oncogenes. Compared with cancers arising in the general population, individuals with a major inherited predisposition to cancer are born with inherited (i.e., germline) mutations in genes involved in cancer causation, giving them a head start on the pathway to cancer. Similar mutations would be expected to result in cancer progression among all individuals; however, in those without a major inherited cancer predisposition, the mutation would occur as a somatic mutation later during their lifetime.

The model of Hanahan and Weinberg focuses on the hallmark events at the cellular level that lead to a malignant tumor. In this model, the hallmarks of cancer include sustained angiogenesis, limitless replicative potential, evading apoptosis, self-sufficiency in growth signals, and insensitivity to antigrowth signals, leading to the defining characteristics of malignant tumors, which give them the ability to invade and metastasize. This model highlights the fact that malignant tumors arise and flourish within the environment of a whole organism. The tissue organizational field theory [3] posits that carcinogenesis is better conceptualized at the level of tissues rather than cells. This theory is based on the dual premise that carcinogenesis is driven by defects in tissue organization and that all cells are inherently in a proliferative state.

Models of carcinogenesis such as these are purposefully simplistic but, nevertheless, illustrate that carcinogenesis requires a constellation of steps that often take place for decades.

The complexity of carcinogenesis is magnified when one considers that the specific details of the carcinogenic pathway described by these models would be expected to have unique characteristics for each anatomical site. Under these circumstances, the risk factors and clinical characteristics of malignancies exhibit considerable variation by anatomic site and by different tumor types within the same anatomical site. For these reasons, human cancer is really not a single disease but a family of different diseases.

References
  1. Vogelstein B, Kinzler KW: Cancer genes and the pathways they control. Nat Med 10 (8): 789-99, 2004. [PUBMED Abstract]
  2. Hanahan D, Weinberg RA: The hallmarks of cancer. Cell 100 (1): 57-70, 2000. [PUBMED Abstract]
  3. Sonnenschein C, Soto AM: Theories of carcinogenesis: an emerging perspective. Semin Cancer Biol 18 (5): 372-7, 2008. [PUBMED Abstract]

Risk Factors

The promise of cancer prevention is derived from observational epidemiological studies that show associations between modifiable lifestyle factors or environmental exposures and specific cancers. The expectation is that, if a risk factor truly causes cancer, it would also be the case that a lifestyle modification (i.e., changing one’s risk profile from bad to good) would actually reduce cancer risk, at least partially. This expectation can be fulfilled only if the association is due to a causal (and ideally, reversible) relationship. Because observational studies rarely provide conclusive evidence of such relationships, additional evidence is required.[1] For a few exposures, randomized controlled trials (RCTs) have tested whether interventions suggested by epidemiological studies and leads based on laboratory research result in reduced cancer incidence and mortality.

Risk Factors Causally Associated With Cancer

Cigarette smoking/tobacco use

Decades of research have consistently established the strong association between tobacco use and cancers of many sites. Specifically, cigarette smoking has been established as a cause of a range of cancers, including lung, oral cavity, esophageal, bladder, kidney, pancreatic, stomach, and cervical cancers, and acute myelogenous leukemia. The body of epidemiological evidence confirming these associations is substantial. Further support is demonstrated by the lung cancer death rates in the United States, which have mirrored smoking patterns, with increases in smoking followed by dramatic increases in lung cancer death rates and, more recently, decreases in smoking followed by decreases in lung cancer death rates in men. As a single exposure that is relatively easy to measure accurately, this extensive body of evidence has led to the estimation that cigarette smoking causes 30% of all cancer deaths in the United States. Smoking avoidance and smoking cessation result in decreased incidence and mortality from cancer.[2] For more information, see Lung Cancer Prevention; Lung Cancer Screening; and Cigarette Smoking: Health Risks and How to Quit.

Infections

Globally, infectious agents have been estimated to cause about 13% of all cancer cases.[3] Infection with an oncogenic strain of human papillomavirus (HPV) is considered a necessary event for subsequent cervical cancer, and vaccine-conferred immunity results in a marked decrease in precancerous lesions. Oncogenic strains of HPV are also linked with cancers of the penis, vagina, anus, and oropharynx. Other examples of infectious agents that cause cancer are hepatitis B and hepatitis C viruses (liver cancer), Epstein-Barr virus (Burkitt lymphoma), and Helicobacter pylori (gastric cancer).[3] If an infectious agent is truly a cause of cancer, then efficacious, anti-infective interventions would be expected in most instances to be effective cancer-prevention interventions as has been shown in the case of HPV vaccination for the prevention of invasive cervical cancers.[4] For more information, see the following PDQ summaries:

Radiation

Radiation is energy in the form of high-speed particles or electromagnetic waves. Exposure to radiation, primarily UV radiation and ionizing radiation, is a clearly established cause of cancer. Exposure to solar UV radiation is the major cause of nonmelanoma skin cancers, which are by far the most common malignancies in human populations.[5]

Ionizing radiation is radiation with enough energy to remove tightly bound electrons from their orbits, causing atoms to become charged or ionized. Ions formed in the molecules of living cells can go on to react with and potentially damage other molecules in the cell. At low doses (e.g., those associated with background radiation), the cells repair the damage rapidly. At moderate doses, the cells may be changed permanently or die from their inability to repair the damage. Cells changed permanently may go on to produce abnormal cells when they divide, and in some circumstances, these altered cells may become cancerous or lead to other abnormalities (e.g., birth defects). Defects in ability to repair damage caused by ionizing radiation may influence the impact of radiation exposure on cancer risk.

There is extensive epidemiological and biological evidence that links exposure to ionizing radiation with the development of cancer, and in particular, cancer that involves the hematological system, breast, lungs, and thyroid. The National Research Council of the National Academies’ Committee to Assess the Health Risks from Exposure to Low Levels of Ionizing Radiation report, the Biologic Effects of Ionizing Radiation VII,[6] the most widely cited source on the topic, concluded after a comprehensive review of the medical literature that no dose of radiation should be considered completely safe, and attempts should be made to keep radiation doses as low as possible. In this report, several lines of evidence were cited documenting the association between ionizing radiation exposure and cancer. The first line of evidence comes from studies of the development of cancer among Japanese atomic-bomb survivors. Even at low doses of radiation, atomic-bomb survivors were at increased risk of developing cancer.[6] The second line of evidence comes from epidemiological studies of medically irradiated populations who were therapeutically irradiated for both malignant and benign diseases. Following high-dose radiation therapy for malignant disease, the risk of secondary malignancy is high. The relatively common use of radiation for benign disease between 1940 and 1960 resulted in a substantially increased relative risk (RR) of developing cancer. An additional line of evidence comes from an increased risk of cancer-specific mortality associated with exposure to medical ionizing radiation, for both the recipients of diagnostic x-rays and x-ray personnel.

The major sources of population exposure to ionizing radiation are medical radiation (including x-rays, computed tomography [CT], fluoroscopy, and nuclear medicine) and naturally occurring radon gas in the basements of homes. Limiting unnecessary CT scans and other diagnostic studies, as well as reducing radiation exposure doses, are important prevention strategies.[7,8] For more information, see the following PDQ summaries:

Exposure to ionizing radiation has increased during the last two decades as a result of the dramatic increase in the use of CT. Exposure to ionizing radiation associated with CT is in the range where carcinogenesis has been demonstrated.[9,10] Repeat exposure to radiation from medical imaging will further increase cancer risk, because risk is proportional to exposure. One study found that half the subjects who were exposed to radiation from medical imaging underwent repeat imaging within 3 years. Overall, 0.2% of the nearly 1 million participants followed for 3 years received doses above 50 mSv.[11]

One approach to estimate the potential contribution of exposure to ionizing radiation from medical imaging is to develop statistical models based on the estimated cancer risks associated with a range of dose levels. For example, one estimate of the CT scans performed in the United States in 2007 predicted that 29,000 (95% uncertainty limits of 15,000–45,000) cancers might result in the future. One-third of the projected cancers were caused by CT scans done on individuals aged 35 to 54 years. This estimate was derived from risk models based on organ-specific radiation doses from national surveys, frequency of CT scans in 2007 by age and sex from survey and insurance claim data, and the National Research Council of the National Academies’ report, Biological Effects of Ionizing Radiation.[9]

Data are now emerging from studies large enough to directly estimate the cancer risk associated with diagnostic imaging using ionizing radiation. For example, in a cohort of 10.9 million Australians, electronic medical records were used to document the diagnostic CT scans of youths who received CT scans when they were aged 0 to 19 years. This cohort was then linked to the National Death Index and Australian Cancer Database.[12] Compared with those who did not have a CT scan, those who had at least one CT scan were statistically significantly more likely to be diagnosed with cancer as they were followed into young adulthood (RR, 1.24; 95% confidence interval [CI], 1.20–1.29; average follow-up in those who had a CT was 9.5 years). A statistically significant dose-response relationship was observed, with cancer risk increasing with each additional CT scan. Thus, the findings of cohort studies with directly measured CT scans now substantiate the statistical models and document the real-world cancer risks associated with exposure to ionizing radiation via medical imaging.

Diagnostic imaging in childhood and adolescence is even associated with an elevated risk of a broad range of solid and hematologic malignancies at a young age. In a population-based South Korean cohort of more than 12 million children aged 0 to 19 years, the incidence rate ratio of cancers in the 10.6% of those exposed to diagnostic radiation was 1.64 after a lag period of 2 years since exposure (95% CI, 1.56–1.73; P < .001), compared with those who had no exposure.[13]

Immunosuppression after organ transplant

Medications that suppress the immune system in patients undergoing organ transplant are associated with an increased cancer risk.[14] A retrospective population-based cohort study of solid-organ transplant recipients in Ontario, Canada, during a 20-year period demonstrated that solid organ transplant recipients are at increased risk of cancer-specific death, regardless of age, sex, and organ transplanted. The risk is higher during the first 6 months posttransplant but persists for many years. It is especially high for cancers linked to viral infections. As outcomes of transplant have improved, cancer mortality from secondary cancers has increased and is now the second most common cause of death after transplant.[15]

Risk/Protective Factors With Uncertain Associations With Cancer

Diet

Estimates concerning the potential contribution of diet to the population burden of cancer have varied widely.[16] In contrast to the epidemiological evidence on cigarette smoking and cancer, evidence for the influence of dietary factors and cancer is uncertain. An assessment of the potential role of diet entails measuring the net contribution of diets, comprising factors that may protect against cancer and other factors that may increase cancer risk. Measuring an individual’s usual diet and its direct relevance to cancer risk also poses challenges.[17]

Examples in which the type of study design led to substantively different results further illustrate the complexities of the relationship between food and nutrient intake and human cancer risk. Observational epidemiological studies (case-control and cohort studies), which used self-reported dietary assessments that are prone to substantial measurement error, have suggested associations between diet and cancer development, but randomized trials of interventions provided little or no support. For example, based on population-based epidemiological data, high-fiber diets were recommended to prevent colon neoplasms. However, a 2017 Cochrane database systematic review of RCTs of supplemental fiber found a lack of evidence to suggest that increased dietary fiber intake reduces the recurrence of adenomatous polyps in those with a history of adenomatous polyps within a 2- to 8-year period.[18] Likewise, systematic evidence reviews of cohort studies [19,20] and randomized trials [21] found small or uncertain effects of red meat intake or reduction in intake on overall cancer incidence and mortality. The overall quality of evidence was graded as low to very low. Likewise, a systematic evidence review and meta-analysis of prospective cohort studies found no evident association between dietary total protein, animal protein, or plant protein intakes and cancer mortality.[22]

Associations reported from observational epidemiological analysis based on self-reported assessments should be viewed in the context of the limitations described above. On the other hand, stronger evidence of causal relationships is unlikely to be provided by relatively short-term RCTs, especially if lifelong dietary patterns or dietary intake during specific life stages are most important in inducing or preventing cancer.

Alcohol

With respect to dietary factors that may increase cancer risk, the strongest evidence in the World Cancer Research Fund and American Institute for Cancer Research (WCRF/AICR) report was for drinking alcohol. The evidence was judged to be “convincing” that drinking alcohol increased the risk of cancers of the mouth, esophagus, breast, and colorectum (the latter in men). Further, the evidence was judged to be “probable” that drinking alcohol increased the risk of liver cancer and colorectal cancer (the latter in women).

In relation to human cancer, diets reflect the sum total of a complex mixture of exposures, as demonstrated by the examples of fruit/vegetable intake and alcohol consumption. No dietary factors appear to be uniformly relevant to all forms of cancer. For more information, see the following PDQ summaries:

Physical activity

A growing body of epidemiological evidence suggests that people who are more physically active have a lower risk of certain malignancies than those who are more sedentary. The evidence was judged to be “probable” that physical activity was associated with lower risk of postmenopausal breast cancer and endometrial cancer. As with the dietary factors described above, physical activity seems to play a more prominent role in selected malignancies. The inverse associations observed for selected malignancies make this a promising area for cancer prevention research, particularly because causal associations have not been established. The excess risk of many cancers seen with obesity, in combination with evidence to suggest that physical activity is inversely associated with at least a few cancers, raises the hypothesis that energy balance may influence cancer risk. For more information, see Breast Cancer Prevention; Colorectal Cancer Prevention; and Endometrial Cancer Prevention.

Obesity

Obesity is being increasingly recognized as an important cancer risk factor. The WCRF/AICR report concluded that obesity is convincingly linked to postmenopausal breast cancer and cancers of the esophagus, pancreas, colorectum, endometrium, and kidney. Furthermore, the WCRF/AICR report judged body fatness to be a probable risk factor for cancer of the gallbladder and the evidence to be “limited suggestive” for liver cancer. These conclusions from the WCRF/AICR evidence review were corroborated in a cohort study based on medical records data from 5.24 million adults in the United Kingdom.[23] The results of this U.K. cohort study also bolstered the evidence for an association between body mass index (BMI) and gallbladder cancer (RR, 1.3; 95% CI, 1.1–1.5 per 5 kg/m2 increase in BMI) and liver cancer (RR, 1.19; 95% CI, 1.12–1.27 per 5 kg/m2 increase in BMI).[23] A prospective study of nationally representative cohorts that examined obesity in relation to cancer mortality emphasized that factors associated with cancer do not uniformly apply to all human malignancies. The study results revealed that obesity was associated with an increased risk of dying of obesity-associated malignancies, but obesity was not associated with overall cancer mortality.[24] If the associations between obesity and the cancers mentioned above are causal, which has yet to be established, the current increase in the prevalence of obesity in the United States and elsewhere poses a severe challenge to cancer prevention efforts. The magnitude of the impact of obesity on public health and the population burden of cancer is likely to be substantial but is expected to be less than that of cigarette smoking. Smoking has a high prevalence and is causally associated with 13 types of cancer, and the magnitude of the associations are often much stronger than those observed for obesity. Furthermore, weight loss has yet to be shown to reduce the risk of obesity-associated malignancies.[25] For more information, see the following PDQ summaries:

A recent analysis [1] of the long-running Nurses’ Health Study and Health Professionals Follow-up Study estimated the proportions of cancer cases and deaths in the U.S. population based on adoption of a low-risk lifestyle. A low-risk lifestyle is characterized by being a never-smoker or former smoker, drinking alcohol moderately or not at all, having a BMI between 18.5 and 27.5, and meeting the 2008 Physical Activity Guidelines for Americans. One major weakness of the study was that its premise assumed the causality of the nonsmoking risk factors. The analysis was further weakened by using self-reported measures of diet and alcohol use and by measuring only leisure-time (rather than all) physical activity. Also, the authors did not present the effects of the nonsmoking risk factors after accounting for smoking. This analysis and others with similar weaknesses should therefore be interpreted cautiously.

Recent efforts to refine associations between obesity and cancer risk center around the hypothesis that visceral adipose tissue (surrounding internal organs) may be driving the associations that have been observed with BMI (which is technically a measure of body size, not adiposity per se).[26,27] These efforts explore more comprehensive and targeted measures of adiposity than BMI alone to characterize cancer risk.

Diabetes

Observational studies suggest that all-cancer incidence and mortality are slightly increased (10%–15%) in individuals with diabetes, although the increase is greater for certain organ sites and null for others.[2830] Because there is biological heterogeneity in diabetes and cancer, diabetes and cancer share a number of risk factors, and diabetes almost always requires long-term medication use, it is not possible to know what the observed associations (especially those that are small) actually represent. Furthermore, most observational studies rely on self-reports of diabetes (as “has diabetes” or “does not have diabetes”), making it impossible to explore whether associations differ by diabetic type or severity, degree of diabetic control, and other factors that can be determined only using biospecimens and repeated measures. These limitations must be considered when findings are interpreted.

At least four of the following characteristics of diabetes have been hypothesized to increase cancer risk:

  • Hyperinsulinemia (including insulin resistance).
  • Hyperglycemia.
  • Downregulation of sex hormone–binding globulin.
  • Chronic inflammation.

Diabetes and cancer share a number of risk factors, including aging, obesity, smoking, unhealthy diet, and physical inactivity.[2] Diabetes treatments include exogenous insulin injections, as well as oral medications that modify insulin secretion and sensitivity, reduce blood glucose levels, or prevent the kidneys from reabsorbing blood glucose.[31]

In prospective observational studies, risk of, and death due to, cancers of the liver, pancreas, colon/colorectum, and female breast are consistently higher in individuals with diabetes. Increases in risk or death also have been observed for cancers of the endometrium, ovary, bladder, and oral cavity/pharynx. A prospective cohort study that included long-term follow-up of more than a million U.S. adults evaluated diabetes as a predictor of cancer mortality.[29] The analyses controlled for age, education, BMI, smoking, alcohol intake, vegetable intake, red meat intake, physical activity, and aspirin use. The study found the greatest increase in mortality for the aforementioned cancer sites was for liver cancer in males (RR, 2.26; 95% CI, 1.89–2.70); the smallest increase in mortality was for breast cancer in females (RR, 1.16; 95% CI, 1.03–1.29). Except for death due to male breast cancer (analysis included 12 patients with diabetes who were dying of the cancer), the remainder of positive statistically significant RRs were no greater than 1.5. A pooled data analysis of 97 prospective studies (almost 821,000 individuals) that controlled for age, smoking status, and BMI presented non–sex-stratified hazard ratios (HRs).[28] The analysis reported findings similar to those in the aforementioned study. However, contrary to that study, it found increases in risk of death caused by lung cancer (HR, 1.27; 95% CI, 1.13–1.43) and ovarian cancer (HR, 1.45; 95% CI, 1.03–2.02). An umbrella review of meta-analyses [30] of type 2 diabetes and cancer reported a statistically significant 10% increase in risk of all-cancer incidence, a statistically significant 16% increase in all-cancer mortality, and statistically significant increases in the incidence of 12 cancers. Relative increases in the incidence of pancreas, endometrium, and liver cancer were roughly twofold and statistically significant.

Metformin use has been associated with a decrease in breast cancer incidence and mortality in observational studies and is currently under study in clinical trials. Metformin has been hypothesized to reduce risk by inhibiting tumor cell growth and proliferation through adenosine monophosphate (AMP)–kinase activation. The use of medications that affect incretin receptor signaling has been postulated to increase pancreatic cancer incidence, but neither animal nor clinical data (which are limited) support this claim at this time.[32] Long-term use of exogenous, long-acting insulin has never consistently been shown to increase cancer risk.

The Impact of Screen Detection on Measures of Risk

Many of the groundbreaking observational studies in cancer etiology date back to a time when widespread cancer screening did not occur. Given the extensive uptake of screening for certain cancers over the past quarter-century, recently conducted observational etiological studies included participants whose disease was detected through screening. When overdiagnosis exists with screening, and screening behavior or willingness to seek diagnostic evaluation is correlated with cancer risk factors, relative risk measures generated from today’s etiology studies may not agree with those from studies conducted before the widespread use of screening. This is because overdiagnosed cases would never have been diagnosed in the absence of screening. For example, assume that blue eyes (relative to brown eyes) are associated with receiving prostate-specific antigen screening or preference for diagnostic biopsy, but not with prostate cancer. In the absence of screening, a null result would have been observed for the association of blue eyes and prostate cancer. In the presence of screening, blue eyes would be associated with prostate cancer because blue eyes would lead to screening, and screening would detect overdiagnosed cases.[33]

References
  1. Song M, Giovannucci E: Preventable Incidence and Mortality of Carcinoma Associated With Lifestyle Factors Among White Adults in the United States. JAMA Oncol 2 (9): 1154-61, 2016. [PUBMED Abstract]
  2. U.S. Department of Health and Human Services: The Health Consequences of Smoking—50 Years of Progress: A Report of the Surgeon General. U.S. Department of Health and Human Services, CDC, National Center for Chronic Disease Prevention and Health Promotion, Office on Smoking and Health, 2014. Also available online. Last accessed December 30, 2024.
  3. de Martel C, Georges D, Bray F, et al.: Global burden of cancer attributable to infections in 2018: a worldwide incidence analysis. Lancet Glob Health 8 (2): e180-e190, 2020. [PUBMED Abstract]
  4. Lei J, Ploner A, Elfström KM, et al.: HPV Vaccination and the Risk of Invasive Cervical Cancer. N Engl J Med 383 (14): 1340-1348, 2020. [PUBMED Abstract]
  5. Scotto J, Fears TR, Fraumeni JF Jr: Solar radiation. In: Schottenfeld D, Fraumeni JF Jr, eds.: Cancer Epidemiology and Prevention. 2nd ed. Oxford University Press, 1996, pp 355-72.
  6. National Research Council (U.S.), Committee to Assess Health Risks from Exposure to Low Levels of Ionizing Radiation: Health Risks From Exposure to Low Levels of Ionizing Radiation: BEIR VII Phase 2. National Academies Press, 2006. Also available online. Last accessed February 5, 2025.
  7. National Council on Radiation Protection and Measurements: Ionizing Radiation Exposure of the Population of the United States. National Council on Radiation Protection and Measurements, 2009. Also available online. Last accessed February 5, 2025.
  8. Mettler FA, Thomadsen BR, Bhargavan M, et al.: Medical radiation exposure in the U.S. in 2006: preliminary results. Health Phys 95 (5): 502-7, 2008. [PUBMED Abstract]
  9. Berrington de González A, Mahesh M, Kim KP, et al.: Projected cancer risks from computed tomographic scans performed in the United States in 2007. Arch Intern Med 169 (22): 2071-7, 2009. [PUBMED Abstract]
  10. Smith-Bindman R, Lipson J, Marcus R, et al.: Radiation dose associated with common computed tomography examinations and the associated lifetime attributable risk of cancer. Arch Intern Med 169 (22): 2078-86, 2009. [PUBMED Abstract]
  11. Fazel R, Krumholz HM, Wang Y, et al.: Exposure to low-dose ionizing radiation from medical imaging procedures. N Engl J Med 361 (9): 849-57, 2009. [PUBMED Abstract]
  12. Mathews JD, Forsythe AV, Brady Z, et al.: Cancer risk in 680,000 people exposed to computed tomography scans in childhood or adolescence: data linkage study of 11 million Australians. BMJ 346: f2360, 2013. [PUBMED Abstract]
  13. Hong JY, Han K, Jung JH, et al.: Association of Exposure to Diagnostic Low-Dose Ionizing Radiation With Risk of Cancer Among Youths in South Korea. JAMA Netw Open 2 (9): e1910584, 2019. [PUBMED Abstract]
  14. Engels EA, Pfeiffer RM, Fraumeni JF, et al.: Spectrum of cancer risk among US solid organ transplant recipients. JAMA 306 (17): 1891-901, 2011. [PUBMED Abstract]
  15. Acuna SA, Fernandes KA, Daly C, et al.: Cancer Mortality Among Recipients of Solid-Organ Transplantation in Ontario, Canada. JAMA Oncol 2 (4): 463-9, 2016. [PUBMED Abstract]
  16. Schoenfeld JD, Ioannidis JP: Is everything we eat associated with cancer? A systematic cookbook review. Am J Clin Nutr 97 (1): 127-34, 2013. [PUBMED Abstract]
  17. Freedman LS, Schatzkin A, Midthune D, et al.: Dealing with dietary measurement error in nutritional cohort studies. J Natl Cancer Inst 103 (14): 1086-92, 2011. [PUBMED Abstract]
  18. Yao Y, Suo T, Andersson R, et al.: Dietary fibre for the prevention of recurrent colorectal adenomas and carcinomas. Cochrane Database Syst Rev 1: CD003430, 2017. [PUBMED Abstract]
  19. Han MA, Zeraatkar D, Guyatt GH, et al.: Reduction of Red and Processed Meat Intake and Cancer Mortality and Incidence: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 171 (10): 711-720, 2019. [PUBMED Abstract]
  20. Vernooij RWM, Zeraatkar D, Han MA, et al.: Patterns of Red and Processed Meat Consumption and Risk for Cardiometabolic and Cancer Outcomes: A Systematic Review and Meta-analysis of Cohort Studies. Ann Intern Med 171 (10): 732-741, 2019. [PUBMED Abstract]
  21. Zeraatkar D, Johnston BC, Bartoszko J, et al.: Effect of Lower Versus Higher Red Meat Intake on Cardiometabolic and Cancer Outcomes: A Systematic Review of Randomized Trials. Ann Intern Med 171 (10): 721-731, 2019. [PUBMED Abstract]
  22. Naghshi S, Sadeghi O, Willett WC, et al.: Dietary intake of total, animal, and plant proteins and risk of all cause, cardiovascular, and cancer mortality: systematic review and dose-response meta-analysis of prospective cohort studies. BMJ 370: m2412, 2020. [PUBMED Abstract]
  23. Bhaskaran K, Douglas I, Forbes H, et al.: Body-mass index and risk of 22 specific cancers: a population-based cohort study of 5·24 million UK adults. Lancet 384 (9945): 755-65, 2014. [PUBMED Abstract]
  24. Flegal KM, Graubard BI, Williamson DF, et al.: Cause-specific excess deaths associated with underweight, overweight, and obesity. JAMA 298 (17): 2028-37, 2007. [PUBMED Abstract]
  25. Wolin KY, Colditz GA: Can weight loss prevent cancer? Br J Cancer 99 (7): 995-9, 2008. [PUBMED Abstract]
  26. Lu Y, Zhao YC, Liu K, et al.: A validated estimate of visceral adipose tissue volume in relation to cancer risk. J Natl Cancer Inst 116 (12): 1942-1951, 2024. [PUBMED Abstract]
  27. Parra-Soto S, Boonpor J, Lynskey N, et al.: Association between visceral adiposity index and cancer risk in the UK Biobank cohort. Cancer 131 (1): e35576, 2025. [PUBMED Abstract]
  28. Seshasai SR, Kaptoge S, Thompson A, et al.: Diabetes mellitus, fasting glucose, and risk of cause-specific death. N Engl J Med 364 (9): 829-41, 2011. [PUBMED Abstract]
  29. Coughlin SS, Calle EE, Teras LR, et al.: Diabetes mellitus as a predictor of cancer mortality in a large cohort of US adults. Am J Epidemiol 159 (12): 1160-7, 2004. [PUBMED Abstract]
  30. Tsilidis KK, Kasimis JC, Lopez DS, et al.: Type 2 diabetes and cancer: umbrella review of meta-analyses of observational studies. BMJ 350: g7607, 2015. [PUBMED Abstract]
  31. Type 2 Diabetes. Scottsdale, AZ: Mayo Clinic, 1998. Available online. Last accessed February 5, 2025.
  32. Egan AG, Blind E, Dunder K, et al.: Pancreatic safety of incretin-based drugs–FDA and EMA assessment. N Engl J Med 370 (9): 794-7, 2014. [PUBMED Abstract]
  33. Tangen CM, Goodman PJ, Till C, et al.: Biases in Recommendations for and Acceptance of Prostate Biopsy Significantly Affect Assessment of Prostate Cancer Risk Factors: Results From Two Large Randomized Clinical Trials. J Clin Oncol 34 (36): 4338-4344, 2016. [PUBMED Abstract]

Interventions With Possible Benefits

Chemoprevention

Chemoprevention refers to the use of natural or synthetic compounds to interfere with early stages of carcinogenesis, before invasive cancer appears.[1] Several agents have proven benefit.

Selective estrogen receptor modulators (tamoxifen and raloxifene), taken daily for up to 5 years, reduce breast cancer incidence by 50% in high-risk women.[1] Widespread use of these medications for prevention is limited because of side effects (hot flashes, and in the case of tamoxifen, endometrial cancer). For more information, see Breast Cancer Prevention.

Finasteride (an alpha-reductase inhibitor) lowers the incidence of prostate cancer.[2] Finasteride lowers prostate-specific antigen levels, resulting in fewer prostate biopsies, and shrinks normal prostate tissue, which allows easier detection of cancers. Both of these effects may account for the finding that finasteride recipients have an absolute higher incidence of high-grade prostate cancer, i.e., a lower incidence of low-risk cancer (lower overdiagnosis). Long-term follow-up (median, 18 years) after completion of the 7-year treatment intervention in the finasteride randomized trial demonstrated that there was a continued reduction in prostate cancer risk. Concerns regarding the increased number of high-grade tumors have been addressed with the long-term evidence of no increased risk of prostate cancer mortality in men who received finasteride (hazard ratio [HR] for risk of prostate cancer death, finasteride vs. placebo, 0.75; 95% confidence interval [CI], 0.50–1.12).[3] For more information, see Prostate Cancer Prevention.

COX-2 inhibitors inhibit the cyclooxygenase enzymes that are involved in the synthesis of proinflammatory prostaglandins. Evidence suggests that COX-2 inhibitors may prevent colon and breast cancer, but concerns about cardiovascular risk preclude extensive study. A randomized controlled trial of moderately high-dose celecoxib in patients with arthritis showed no difference in cardiovascular outcomes when compared with nonselective nonsteroidal anti-inflammatory agents (NSAIDs).[4] For more information, see Breast Cancer Prevention and Colorectal Cancer Prevention.

Bariatric Surgery

Bariatric surgery is currently the most effective method for achieving long-term weight loss, and in concert, dramatically improving or preventing diabetes mellitus and hypertension, even in those with previous severe obesity.[5,6] An observational study assessed the relationship between contemporary bariatric procedures (i.e., Roux-en-Y gastric bypass or sleeve gastrectomy), and the incidence and mortality of 13 obesity-associated cancer types as assigned by the International Research on Cancer Handbook Working Group.[7] This study made use of analyzed data from the Surgical Procedures and Long-term Effectiveness in Neoplastic Disease Incidence and Death (SPLENDID) study, which was a retrospective, observational, matched cohort study in patients with obesity who underwent bariatric surgery or received usual care (no bariatric surgery) at the Cleveland Clinic Health System (CCHS).[7] The median follow-up time was 6.1 years. This study found that bariatric surgery was associated with reductions in the 13 obesity-related cancers. However, when each of these cancers was examined individually, the association only remained for endometrial cancer.[7] Cancer-related mortality occurred with an incidence rate of 0.6 events per 1,000 person-years in the bariatric-surgery group compared with 1.2 events per 1,000 person-years in the usual-care group. The cumulative incidence of cancer-related mortality at 10 years was 0.8% (95% CI, 0.4%–1.2%) in the bariatric-surgery group and 1.4% (95% CI, 1.1%–1.6%) in the nonsurgical control group (absolute risk difference, 0.6% [95% CI, 0.1%–1.0%]; adjusted HR, 0.52 [95% CI, 0.31–0.88]; P = .01). There were limitations to this study, which included selection bias and different rates of cancer screening behaviors between the study arms, stemming from the observational nature of the study. Also, there was a low number of incident cancers and a limited follow-up time.

References
  1. William WN, Heymach JV, Kim ES, et al.: Molecular targets for cancer chemoprevention. Nat Rev Drug Discov 8 (3): 213-25, 2009. [PUBMED Abstract]
  2. Andriole GL, Bostwick DG, Brawley OW, et al.: Effect of dutasteride on the risk of prostate cancer. N Engl J Med 362 (13): 1192-202, 2010. [PUBMED Abstract]
  3. Goodman PJ, Tangen CM, Darke AK, et al.: Long-Term Effects of Finasteride on Prostate Cancer Mortality. N Engl J Med 380 (4): 393-394, 2019. [PUBMED Abstract]
  4. Nissen SE, Yeomans ND, Solomon DH, et al.: Cardiovascular Safety of Celecoxib, Naproxen, or Ibuprofen for Arthritis. N Engl J Med 375 (26): 2519-29, 2016. [PUBMED Abstract]
  5. Buchwald H, Avidor Y, Braunwald E, et al.: Bariatric surgery: a systematic review and meta-analysis. JAMA 292 (14): 1724-37, 2004. [PUBMED Abstract]
  6. Schauer DP: Impact of Bariatric Surgery on Life Expectancy in Severely Obese Patients With Diabetes. Ann Surg 266 (6): e57-e58, 2017. [PUBMED Abstract]
  7. Aminian A, Wilson R, Al-Kurd A, et al.: Association of Bariatric Surgery With Cancer Risk and Mortality in Adults With Obesity. JAMA 327 (24): 2423-2433, 2022. [PUBMED Abstract]

Interventions With No Proven Benefit

Aspirin

Aspirin has been studied extensively as a chemopreventive agent. However, the evidence of benefit for the prevention of cancer or cancer deaths in the general population is mixed, but generally negative. A secondary analysis of pooled data from seven placebo-controlled randomized controlled trials (RCTs) with primary end points of vascular events showed that daily aspirin for at least 4 years reduced overall cancer deaths by 18% (odds ratio, 0.82; 95% confidence [CI], 0.70–0.95).[1] The effect of aspirin on cancer incidence seems to be limited to colorectal cancer in this analysis. A more recent meta-analysis of 16 RCTs, with a mean follow-up of 5.48 years (range, 2–10.7 years) that compared aspirin (doses varying from 81–1,200 mg daily) with placebo controls did not reveal favorable effects of aspirin on cancer mortality (relative risk [RR], 0.99; 95% CI, 0.87–1.12), all-cause mortality (RR, 0.97; 95% CI, 0.92–1.02), or cancer incidence (RR, 0.98; 95% CI, 0.92–1.04).[2]

Cancer incidence was a prospective secondary, albeit underpowered end point in the aspirin components of a 2 × 2 factorial placebo-controlled trial of a polypill (containing simvastatin, atenolol, hydrochlorothiazide, and ramipril) and aspirin (75 mg/day).[3] A total of 5,713 participants with a mean age of 63.9 years underwent randomization after a 3- to 4-week active run-in period and were followed for up to 6 years (mean, 4.6 years). About 48% of the participants were from India, and about 29% of the participants were from the Philippines. About 82% and 81% of participants were adherent to the aspirin and placebo components of the trial, respectively, at 24 months. At 48 months, adherence was 73% and 71%, respectively. Cancer incidence was 1.3% for participants receiving aspirin versus 1.6% for those receiving placebo (hazard ratio [HR], 0.83; 95% CI, 0.54–1.27). Cancer incidence was 1.3% for participants receiving aspirin plus polypill versus 1.7% for those receiving double placebo (HR, 0.78; 95% CI, 0.43–1.42). Likewise, a secondary analysis of cancer outcomes in a placebo-controlled RCT of aspirin/omega-3 fatty acid chemoprevention for cardiovascular disease in patients with diabetes mellitus found no evidence of reduced gastrointestinal cancer risk caused by aspirin use, although the authors noted that the power to detect differences in cancer rates was low.[4] Only one randomized trial of aspirin for primary prevention focused on older individuals without a specific indication to take aspirin, and it suggested that aspirin use may have an adverse effect on cancer outcomes in the elderly. The Aspirin in Reducing Events in the Elderly (ASPREE) trial included study participants aged 70 years and older (≥65 years for Black and Hispanic individuals in the United States) who did not have cardiovascular disease, dementia, or disability. In contrast to other randomized trials of aspirin, an increase in all-cause mortality (HR, 1.14; 95% CI, 1.01–1.29) and risk of cancer death (HR, 1.31; 95% CI, 1.10–1.56) were observed in the aspirin group. An accompanying editorial highlighted that the follow-up time was slightly shorter than in other similar trials and that results with continued follow-up will be informative. Additional characteristics of the trial included a study population that appeared to be healthier than the general population, and mortality rates that were lower in the study group compared with the general population of similar age, sex, and race and ethnicity distribution. At year 5 of the trial, no evidence of a net benefit had been shown in this healthy population with no underlying reason or medical indications for aspirin use.[5,6] Of note, aspirin use was associated with a trend toward an increased risk of metastatic cancers (6.1 vs. 5.1 per 1,000 person-years; HR, 1.19; 95% CI, 1.00–1.43), which tended to be metastatic at diagnosis. Post hoc analysis showed that aspirin use was also associated with a higher risk of death with cancers that presented at stage III (HR, 2.11; 95% CI, 1.03–4.33) or stage IV (HR, 1.31; 95% CI, 1.04–1.64), suggesting that aspirin use may accelerate cancer progression in the elderly.[7] A significant side effect of aspirin use is bleeding, which may preclude widespread use for cancer prevention. Evidence of harm from bleeding, including major bleeding, is more consistent than the evidence of benefit summarized above.

Because aspirin may help reduce death from cardiovascular disease (which is responsible for more deaths than cancer), use of aspirin should be considered in a larger context of prevention beyond cancer. Similarly, serious harms from bleeding (from the gastrointestinal tract or intracranially) should be considered in light of patients’ individual risks of specific harms. For more information, see Colorectal Cancer Prevention.

Vitamin and Dietary Supplement Use

Some have advocated vitamin and mineral supplements for cancer prevention. Many different mechanistic pathways for anticancer effects have been invoked. A commonly tested hypothesis is that antioxidant vitamins may protect against cancer, based on the premise that oxidative damage to DNA leads to cancer progression. Hence preventing oxidative DNA damage would prevent progression to cancer. However, the evidence is insufficient to support the use of multivitamin and mineral supplements or single vitamins or minerals to prevent cancer.[8] Beta carotene is an antioxidant that was thought to prevent or reverse smoking-related changes leading to lung cancer, based on the results of several observational epidemiological studies examining either dietary intake of beta carotene from food sources or blood levels as a marker of dietary intake.[9] However, two prospective, placebo-controlled trials found that smokers and former smokers who received beta carotene supplements had increased lung cancer incidence and mortality.[10]

Other unanticipated adverse events have been documented for dietary supplement use. A meta-analysis of 11 randomized, double-blind, placebo-controlled trials of daily doses of calcium greater than or equal to 500 mg/day versus placebo documented that calcium supplements were associated with a significantly elevated risk of myocardial infarction (RR, 1.27; 95% CI, 1.01–1.59).[11] Dietary calcium intake has not been observed to be associated with an increased risk of myocardial infarction.[12] The discrepancy in findings between calcium in the diet versus high-dose supplementation raises questions about the value of dietary supplements compared with dietary intake. The Iowa Women’s Health Study, an observational study that enrolled over 40,000 women aged 55 to 69 years in 1986, examined the association between dietary supplement use and mortality.[13] Statistically significant excess mortality risk was observed with the use of multivitamins, vitamin B6, folic acid, iron, magnesium, zinc, and copper. Only calcium users were associated with a statistically significant reduction in mortality rates compared with nonusers.

Research into the potential anticancer properties of vitamin and mineral supplements is ongoing, and the results continue to reinforce the lack of efficacy of vitamin supplements in preventing cancer. The extended follow-up results of the Selenium and Vitamin E Cancer Prevention Trial (SELECT) found a statistically significant excess risk of prostate cancer associated with vitamin E supplementation (400 IU/day of all rac-α-tocopherol acetate) compared with placebo (HR, 1.17; 99% CI, 1.0004–1.36; P = .008). The absolute increase in risk of prostate cancer with vitamin E use was 1.6 per 1,000 person-years. Selenium did not reduce the risk of prostate cancer (HR, 1.09; 99% CI, 0.93–1.27).[14]

The results of the Physicians’ Health Study (PHS) II demonstrated that supplementation with vitamin E and/or vitamin C had no benefit, compared with placebo, in preventing either prostate cancer incidence or total cancer incidence.[15]

The results of the Women’s Antioxidant Cardiovascular Study indicated that, compared with placebo, supplementation with vitamin C, vitamin E, or beta carotene was not efficacious in reducing total cancer incidence.[16] In this same study, daily supplements containing folic acid, vitamin B6, and vitamin B12 were compared with placebo; this intervention was not efficacious in reducing the overall risk of developing cancer.[17] An exploratory analysis of pooled data from two Norwegian RCTs showed an increase in both cancer incidence and cancer death in patients treated with folic acid and vitamin B12 versus those receiving placebo or vitamin B6 alone.[18] For more information, see the following PDQ summaries:

Vitamin D has also generated interest as a potential anticancer agent. Sources of vitamin D include cutaneous synthesis upon exposure to sunlight, dietary intake, and supplements. Evidence for the efficacy of vitamin D supplements with or without calcium in preventing cancer incidence is available as a secondary end point from RCTs, with a summary of the results from three trials providing evidence of lack of efficacy.[19] A fourth RCT further corroborates this lack of cancer chemopreventive effect.[20] The overall body of experimental evidence from randomized trials in humans indicates that at the doses studied (range, 400–1,100 IU daily), vitamin D supplements do not reduce or increase the overall risk of cancer.[21,22] Also, there is no high-level evidence that testing a general (Western) population for vitamin D blood levels and the use of supplements in those found to have low vitamin D levels affects cancer incidence.[23] The VITamin D and OmegA-3 TriaL (VITAL), a placebo-controlled trial of two forms of supplementation (2,000 IU/day of vitamin D and 1g/day of omega-3 fatty acids), found that neither type of supplementation resulted in lower incidence of invasive cancer. Because invasive cancer incidence was one of the primary end points of VITAL (with major cardiovascular events as the coprimary end point), the null results of VITAL provided additional evidence that even large doses of supplemental vitamin D have no discernible impact on cancer incidence.[22,2426] Despite the negative coprimary end point of cancer incidence, a post hoc analysis of the study showed a possible reduction in advanced-stage (metastatic or fatal) cancers associated with vitamin D supplementation versus placebo (1.7% versus 2.1%; HR, 0.83; 95% CI, 0.69–0.99). However, the association was limited to the 31% of participants with a normal BMI (BMI <25 kg/m2), and the analysis was prone to multiplicity and chance post hoc observations.[27] Moreover, there was no apparent effect in the minority of participants who had a low-baseline serum vitamin D level (<20 ng/mL). The VITAL primary end point findings concerning omega-3 fatty acids agree with those from a secondary analysis of cancer outcomes in a placebo-controlled RCT of aspirin/omega-3 fatty acid chemoprevention for cardiovascular disease in patients with diabetes mellitus.[28]

None of the RCTs mentioned above studied multivitamin supplements as commonly taken by the general U.S. population; however, a separate arm of the PHS II directly studied this question. In the PHS II, 14,641 male physicians were randomly assigned to receive either a daily multivitamin supplement or a placebo for a median of 11 years.[29] Multivitamin supplements were associated with an 8% relative decrease in cancer incidence (HR, 0.92; 95% CI, 0.86–0.998; P = .04). The overall reduction in cancer risk was more pronounced in men who had been diagnosed with cancer before the study began (HR, 0.66; 95% CI, 0.50–0.88) than in those with no history of cancer (HR, 0.95; 95% CI, 0.87–1.03), suggesting that the small benefit of multivitamins in reducing overall cancer incidence largely stemmed from the prevention of second primary cancers. This puzzling result, along with the weak association and multiple statistical comparisons made for many different trial end points, diminishes the strength of evidence provided by the PHS II trial. Of note, no significant association between multivitamin use and total mortality was observed in the PHS II (HR, 0.94; 95% CI, 0.88–1.02; P = .13), suggesting neither a negative nor positive effect on life span.[30] This finding differs from the association between supplements and higher mortality reported in the observational Iowa Women’s Health Study.[13]

References
  1. Rothwell PM, Fowkes FG, Belch JF, et al.: Effect of daily aspirin on long-term risk of death due to cancer: analysis of individual patient data from randomised trials. Lancet 377 (9759): 31-41, 2011. [PUBMED Abstract]
  2. Haykal T, Barbarawi M, Zayed Y, et al.: Safety and efficacy of aspirin for primary prevention of cancer: a meta-analysis of randomized controlled trials. J Cancer Res Clin Oncol 145 (7): 1795-1809, 2019. [PUBMED Abstract]
  3. Yusuf S, Joseph P, Dans A, et al.: Polypill with or without Aspirin in Persons without Cardiovascular Disease. N Engl J Med 384 (3): 216-228, 2021. [PUBMED Abstract]
  4. Bowman L, Mafham M, Wallendszus K, et al.: Effects of Aspirin for Primary Prevention in Persons with Diabetes Mellitus. N Engl J Med 379 (16): 1529-1539, 2018. [PUBMED Abstract]
  5. McNeil JJ, Nelson MR, Woods RL, et al.: Effect of Aspirin on All-Cause Mortality in the Healthy Elderly. N Engl J Med 379 (16): 1519-1528, 2018. [PUBMED Abstract]
  6. McNeil JJ, Wolfe R, Woods RL, et al.: Effect of Aspirin on Cardiovascular Events and Bleeding in the Healthy Elderly. N Engl J Med 379 (16): 1509-1518, 2018. [PUBMED Abstract]
  7. McNeil JJ, Gibbs P, Orchard SG, et al.: Effect of Aspirin on Cancer Incidence and Mortality in Older Adults. J Natl Cancer Inst 113 (3): 258-265, 2021. [PUBMED Abstract]
  8. Fortmann SP, Burda BU, Senger CA, et al.: Vitamin and mineral supplements in the primary prevention of cardiovascular disease and cancer: An updated systematic evidence review for the U.S. Preventive Services Task Force. Ann Intern Med 159 (12): 824-34, 2013. [PUBMED Abstract]
  9. Food, Nutrition, Physical Activity, and the Prevention of Cancer: A Global Perspective. Washington, DC: World Cancer Research Fund/American Institute for Cancer Research, 2007. Also available online. Last accessed February 5, 2025.
  10. Gallicchio L, Boyd K, Matanoski G, et al.: Carotenoids and the risk of developing lung cancer: a systematic review. Am J Clin Nutr 88 (2): 372-83, 2008. [PUBMED Abstract]
  11. Bolland MJ, Avenell A, Baron JA, et al.: Effect of calcium supplements on risk of myocardial infarction and cardiovascular events: meta-analysis. BMJ 341: c3691, 2010. [PUBMED Abstract]
  12. Al-Delaimy WK, Rimm E, Willett WC, et al.: A prospective study of calcium intake from diet and supplements and risk of ischemic heart disease among men. Am J Clin Nutr 77 (4): 814-8, 2003. [PUBMED Abstract]
  13. Mursu J, Robien K, Harnack LJ, et al.: Dietary supplements and mortality rate in older women: the Iowa Women’s Health Study. Arch Intern Med 171 (18): 1625-33, 2011. [PUBMED Abstract]
  14. Klein EA, Thompson IM, Tangen CM, et al.: Vitamin E and the risk of prostate cancer: the Selenium and Vitamin E Cancer Prevention Trial (SELECT). JAMA 306 (14): 1549-56, 2011. [PUBMED Abstract]
  15. Gaziano JM, Glynn RJ, Christen WG, et al.: Vitamins E and C in the prevention of prostate and total cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA 301 (1): 52-62, 2009. [PUBMED Abstract]
  16. Lin J, Cook NR, Albert C, et al.: Vitamins C and E and beta carotene supplementation and cancer risk: a randomized controlled trial. J Natl Cancer Inst 101 (1): 14-23, 2009. [PUBMED Abstract]
  17. Zhang SM, Cook NR, Albert CM, et al.: Effect of combined folic acid, vitamin B6, and vitamin B12 on cancer risk in women: a randomized trial. JAMA 300 (17): 2012-21, 2008. [PUBMED Abstract]
  18. Ebbing M, Bønaa KH, Nygård O, et al.: Cancer incidence and mortality after treatment with folic acid and vitamin B12. JAMA 302 (19): 2119-26, 2009. [PUBMED Abstract]
  19. Chung M, Lee J, Terasawa T, et al.: Vitamin D with or without calcium supplementation for prevention of cancer and fractures: an updated meta-analysis for the U.S. Preventive Services Task Force. Ann Intern Med 155 (12): 827-38, 2011. [PUBMED Abstract]
  20. Avenell A, MacLennan GS, Jenkinson DJ, et al.: Long-term follow-up for mortality and cancer in a randomized placebo-controlled trial of vitamin D(3) and/or calcium (RECORD trial). J Clin Endocrinol Metab 97 (2): 614-22, 2012. [PUBMED Abstract]
  21. Bjelakovic G, Gluud LL, Nikolova D, et al.: Vitamin D supplementation for prevention of cancer in adults. Cochrane Database Syst Rev 6: CD007469, 2014. [PUBMED Abstract]
  22. Manson JE, Bassuk SS, Lee IM, et al.: The VITamin D and OmegA-3 TriaL (VITAL): rationale and design of a large randomized controlled trial of vitamin D and marine omega-3 fatty acid supplements for the primary prevention of cancer and cardiovascular disease. Contemp Clin Trials 33 (1): 159-71, 2012. [PUBMED Abstract]
  23. Kahwati LC, LeBlanc E, Weber RP, et al.: Screening for Vitamin D Deficiency in Adults: Updated Evidence Report and Systematic Review for the US Preventive Services Task Force. JAMA 325 (14): 1443-1463, 2021. [PUBMED Abstract]
  24. Manson JE, Cook NR, Lee IM, et al.: Vitamin D Supplements and Prevention of Cancer and Cardiovascular Disease. N Engl J Med 380 (1): 33-44, 2019. [PUBMED Abstract]
  25. Manson JE, Cook NR, Lee IM, et al.: Marine n-3 Fatty Acids and Prevention of Cardiovascular Disease and Cancer. N Engl J Med 380 (1): 23-32, 2019. [PUBMED Abstract]
  26. Keaney JF, Rosen CJ: VITAL Signs for Dietary Supplementation to Prevent Cancer and Heart Disease. N Engl J Med 380 (1): 91-93, 2019. [PUBMED Abstract]
  27. Chandler PD, Chen WY, Ajala ON, et al.: Effect of Vitamin D3 Supplements on Development of Advanced Cancer: A Secondary Analysis of the VITAL Randomized Clinical Trial. JAMA Netw Open 3 (11): e2025850, 2020. [PUBMED Abstract]
  28. Bowman L, Mafham M, Wallendszus K, et al.: Effects of n-3 Fatty Acid Supplements in Diabetes Mellitus. N Engl J Med 379 (16): 1540-1550, 2018. [PUBMED Abstract]
  29. Gaziano JM, Sesso HD, Christen WG, et al.: Multivitamins in the prevention of cancer in men: the Physicians’ Health Study II randomized controlled trial. JAMA 308 (18): 1871-80, 2012. [PUBMED Abstract]
  30. Sesso HD, Christen WG, Bubes V, et al.: Multivitamins in the prevention of cardiovascular disease in men: the Physicians’ Health Study II randomized controlled trial. JAMA 308 (17): 1751-60, 2012. [PUBMED Abstract]

Environmental Exposures and Pollutants

The relationship between environmental pollutants and cancer risk has been of long-standing interest to researchers and the public. When estimates of the potential burden of cancer have been calculated for different classes of exposure, the factors described earlier, such as cigarette smoking and infections, have represented much greater proportions of the cancer burden than have environmental pollutants. Nevertheless, some associations between environmental pollutants and cancer have been clearly established. Perhaps because the lungs are most heavily exposed to air pollutants, many of the most firmly established examples of pollutants and cancer relate specifically to lung cancer, including secondhand tobacco smoke, indoor radon, outdoor air pollution, and asbestos for mesothelioma. Another environmental pollutant linked with cancer is highly concentrated inorganic arsenic in drinking water, which is causally associated with cancers of the skin, bladder, and lung. Many other environmental pollutants, such as pesticides, have been assessed for risk with human cancer, but with indeterminate results. There are challenging methodological issues to address in these studies, such as accurately measuring exposures for long periods, which often make it difficult to clearly establish an association between an environmental pollutant and cancer.

Summary

The list of topics considered above is not exhaustive. Other lifestyle and environmental factors known to affect cancer risk (either beneficially or detrimentally) include certain sexual and reproductive practices, the use of exogenous estrogens, and certain occupational and chemical exposures.

In this summary, factors were selected that appear to impact the risk of several types of cancer and that have been identified as being potentially modifiable. These risk factors include cigarette smoking, which has been conclusively linked with a wide range of malignancies. Avoidance of cigarette smoking has been shown to reduce cancer incidence. Other potential modifiable cancer risk factors include alcohol consumption and obesity, as well as physical activity, which is inversely associated with the risk of certain cancers. More research is needed to determine whether these associations are causal and whether avoiding risk behaviors or increasing protective behaviors would actually reduce cancer incidence.

Latest Updates to This Summary (02/12/2025)

The PDQ cancer information summaries are reviewed regularly and updated as new information becomes available. This section describes the latest changes made to this summary as of the date above.

The Burden of Cancer

Updated statistics with estimated new cases and deaths for 2025 (cited American Cancer Society as reference 1).

Risk Factors

Added text to state that recent efforts to refine associations between obesity and cancer risk center around the hypothesis that visceral adipose tissue may be driving the associations that have been observed with body mass index (BMI) (cited Lu et al. and Parra-Soto et al. as references 26 and 27, respectively). These efforts explore more comprehensive and targeted measures of adiposity than BMI alone to characterize cancer risk.

This summary is written and maintained by the PDQ Screening and Prevention Editorial Board, which is editorially independent of NCI. The summary reflects an independent review of the literature and does not represent a policy statement of NCI or NIH. More information about summary policies and the role of the PDQ Editorial Boards in maintaining the PDQ summaries can be found on the About This PDQ Summary and PDQ® Cancer Information for Health Professionals pages.

About This PDQ Summary

Purpose of This Summary

This PDQ cancer information summary for health professionals provides comprehensive, peer-reviewed, evidence-based information about cancer prevention. It is intended as a resource to inform and assist clinicians in the care of their patients. It does not provide formal guidelines or recommendations for making health care decisions.

Reviewers and Updates

This summary is reviewed regularly and updated as necessary by the PDQ Screening and Prevention Editorial Board, which is editorially independent of the National Cancer Institute (NCI). The summary reflects an independent review of the literature and does not represent a policy statement of NCI or the National Institutes of Health (NIH).

Board members review recently published articles each month to determine whether an article should:

  • be discussed at a meeting,
  • be cited with text, or
  • replace or update an existing article that is already cited.

Changes to the summaries are made through a consensus process in which Board members evaluate the strength of the evidence in the published articles and determine how the article should be included in the summary.

Any comments or questions about the summary content should be submitted to Cancer.gov through the NCI website’s Email Us. Do not contact the individual Board Members with questions or comments about the summaries. Board members will not respond to individual inquiries.

Levels of Evidence

Some of the reference citations in this summary are accompanied by a level-of-evidence designation. These designations are intended to help readers assess the strength of the evidence supporting the use of specific interventions or approaches. The PDQ Screening and Prevention Editorial Board uses a formal evidence ranking system in developing its level-of-evidence designations.

Permission to Use This Summary

PDQ is a registered trademark. Although the content of PDQ documents can be used freely as text, it cannot be identified as an NCI PDQ cancer information summary unless it is presented in its entirety and is regularly updated. However, an author would be permitted to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks succinctly: [include excerpt from the summary].”

The preferred citation for this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Cancer Prevention Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /causes-prevention/hp-prevention-overview-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389451]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use within the PDQ summaries only. Permission to use images outside the context of PDQ information must be obtained from the owner(s) and cannot be granted by the National Cancer Institute. Information about using the illustrations in this summary, along with many other cancer-related images, is available in Visuals Online, a collection of over 2,000 scientific images.

Disclaimer

The information in these summaries should not be used as a basis for insurance reimbursement determinations. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s Email Us.

Immunosuppression

Immunosuppression

Many people who receive organ transplants take medications to suppress the immune system so the body won’t reject the organ. These “immunosuppressive” drugs make the immune system less able to detect and destroy cancer cells or fight off infections that cause cancer. Infection with HIV also weakens the immune system and increases the risk of certain cancers. 

Research has shown that transplant recipients are at increased risk of a large number of different cancers. Some of these cancers can be caused by infectious agents, whereas others are not. The four most common cancers among transplant recipients and that occur more commonly in these individuals than in the general population are non-Hodgkin lymphoma (NHL) and cancers of the lung, kidney, and liver. NHL can be caused by Epstein-Barr virus (EBV) infection, and liver cancer by chronic infection with the hepatitis B (HBV) and hepatitis C (HCV) viruses. Lung and kidney cancers are not generally thought to be associated with infection.

People with HIV/AIDS also have increased risks of cancers that are caused by infectious agents, including EBV; human herpesvirus 8, or Kaposi sarcoma-associated virus; HBV and HCV, which cause liver cancer; and human papillomavirus, which causes cervical, anal, oropharyngeal, and other cancers. HIV infection is also associated with increased risks of cancers that are not thought to be caused by infectious agents, such as lung cancer.

For more information, see the HIV Infection and Cancer Risk fact sheet and the video on Transplant-Associated Immunosuppression and Cancer.

Sunlight

Sunlight

mother applying sun screen on child's face

To protect against the sun, apply sunscreen to uncovered skin 30 minutes before going outside and again every two hours or after swimming or sweating.

Credit: Veer

The sun, sunlamps, and tanning booths all give off ultraviolet (UV) radiation. Exposure to UV radiation causes early aging of the skin and damage that can lead to skin cancer.

People of all ages and skin tones should limit the amount of time they spend in the sun, especially between mid-morning and late afternoon, and avoid other sources of UV radiation, such as tanning beds. Keep in mind that UV radiation is reflected by sand, water, snow, and ice and can go through windshields and windows. Even though skin cancer is more common among people with a light skin tone, people of all skin tones can develop skin cancer, including those with dark skin.

Follow these tips to protect your skin from sunlight.

  • Wear a hat with a wide brim all around that shades your face, neck, and ears. Baseball caps and some sun visors protect only parts of your skin.
  • Wear sunglasses that block UV radiation to protect the skin around your eyes.
  • Wear long sleeves and long pants. Tightly woven, dark fabrics are best. Some fabrics are rated with an ultraviolet protection factor (UPF). The higher the rating, the greater the protection from sunlight.
  • Use sunscreen products with a sun protection factor (SPF) of at least 15. (Some doctors suggest using a product with an SPF of at least 30.) Apply the product’s recommended amount to uncovered skin 30 minutes before going outside, and apply again every two hours or after swimming or sweating.

Keep in mind that the sun’s rays…

  • are strongest between 10:00 a.m. and 4:00 p.m.
  • can go through light clothing, windshields, windows, and clouds
  • are reflected by sand, water, snow, ice, and pavement

Cancer Prevention Overview (PDQ®)–Patient Version

Cancer Prevention Overview (PDQ®)–Patient Version

What Is Prevention?

Cancer prevention is action taken to lower the chance of getting cancer. In 2025, about 2 million people will be diagnosed with cancer in the United States. In addition to the physical problems and emotional distress caused by cancer, the high costs of care are also a burden to patients, their families, and to the public. By preventing cancer, the number of new cases of cancer is lowered. Hopefully, this will reduce the burden of cancer and lower the number of deaths caused by cancer.

Cancer is not a single disease but a group of related diseases. Many things in our genes, our lifestyle, and the environment around us may increase or decrease our risk of getting cancer.

Scientists are studying many different ways to help prevent cancer, including:

  • Ways to avoid or control things known to cause cancer.
  • Changes in diet and lifestyle.
  • Finding precancerous conditions early. Precancerous conditions are conditions that may become cancer.
  • Chemoprevention (medicines to treat a precancerous condition or to keep cancer from starting).
  • Risk-reducing surgery.

Carcinogenesis

Key Points

  • Carcinogenesis is the process in which normal cells turn into cancer cells.
  • Changes (mutations) in genes occur during carcinogenesis.

Carcinogenesis is the process in which normal cells turn into cancer cells.

Carcinogenesis is the series of steps that take place as a normal cell becomes a cancer cell. Cells are the smallest units of the body and they make up the body’s tissues. Each cell contains genes that guide the way the body grows, develops, and repairs itself. There are many genes that control whether a cell lives or dies, divides (multiplies), or takes on special functions, such as becoming a nerve cell or a muscle cell.

Changes (mutations) in genes occur during carcinogenesis.

Changes (mutations) in genes can cause normal controls in cells to break down. When this happens, cells do not die when they should and new cells are produced when the body does not need them. The buildup of extra cells may cause a mass (tumor) to form.

Tumors can be benign or malignant (cancerous). Malignant tumor cells invade nearby tissues and spread to other parts of the body. Benign tumor cells do not invade nearby tissues or spread.

Risk Factors

Key Points

  • Factors that are known to increase the risk of cancer
    • Cigarette smoking and tobacco use
    • Infections
    • Radiation
    • Immunosuppressive medicines after organ transplant
  • Factors that may affect the risk of cancer
    • Diet
    • Alcohol
    • Physical activity
    • Obesity
    • Diabetes
    • Environmental risk factors

Scientists study risk factors and protective factors to find ways to prevent new cancers from starting. Anything that increases your chance of developing cancer is called a cancer risk factor; anything that decreases your chance of developing cancer is called a cancer protective factor.

Some risk factors for cancer can be avoided, but many cannot. For example, both smoking and inheriting certain genes are risk factors for some types of cancer, but only smoking can be avoided. Risk factors that a person can control are called modifiable risk factors.

Many other factors in our environment, diet, and lifestyle may cause or prevent cancer. This summary reviews only the major cancer risk factors and protective factors that can be controlled or changed to reduce the risk of cancer. Risk factors that are not described in the summary include certain sexual behaviors, the use of estrogen, and being exposed to certain substances at work or to certain chemicals.

Factors that are known to increase the risk of cancer

Cigarette smoking and tobacco use

Tobacco use is strongly linked to an increased risk for many kinds of cancer. Smoking cigarettes is the leading cause of the following types of cancer:

Not smoking or quitting smoking lowers the risk of getting cancer and dying from cancer. Scientists believe that cigarette smoking causes about 30% of all cancer deaths in the United States.

To learn more, visit the following PDQ summaries:

Infections

Certain viruses and bacteria are able to cause cancer. Examples of cancer-causing viruses and bacteria include:

Two vaccines to prevent infection by cancer-causing agents have been developed and approved by the U.S. Food and Drug Administration (FDA). One is a vaccine to prevent infection with hepatitis B virus. The other protects against infection with strains of HPV that cause cervical cancer. Scientists continue to work on vaccines against infections that cause cancer.

To learn more, visit the following PDQ summaries:

Radiation

Being exposed to radiation is a known cause of cancer. There are two main types of radiation linked with an increased risk of cancer:

Scientists believe that ionizing radiation causes leukemia, thyroid cancer, and breast cancer in women. Ionizing radiation may also be linked to myeloma and cancers of the lung, stomach, colon, esophagus, bladder, and ovary. Being exposed to radiation from diagnostic x-rays increases the risk of cancer in patients and x-ray technicians. Diagnostic radiation in children and adolescents has been linked with a higher risk of cancers at a young age.

The growing use of CT scans over the last 20 years has increased exposure to ionizing radiation. The risk of cancer also increases with the number of CT scans a patient has and the radiation dose used each time.

To learn more, visit the following PDQ summaries:

Immunosuppressive medicines after organ transplant

Immunosuppressive medicines are used after an organ transplant. These medicines stop a transplanted organ from being rejected by decreasing the body’s immune response. Immunosuppressive medicines are linked to an increased risk of cancer because they lower the body’s ability to keep cancer from forming. The risk of cancer, especially cancer caused by a virus, is higher in the first 6 months after organ transplant, but the risk lasts for many years.

Factors that may affect the risk of cancer

Diet

The foods that you eat on a regular basis make up your diet. Diet is being studied as a risk factor for cancer. It is hard to study the effects of diet on cancer because a person’s diet includes foods that may protect against cancer and foods that may increase the risk of cancer.

It is also hard for people who take part in the studies to keep track of what they eat over a long period of time. This may explain why studies have different results about how diet affects the risk of cancer.

Some studies have shown that a diet high in fat, proteins, calories, and red meat increases the risk of colorectal cancer, but other studies have not shown this.

It is not known if a diet low in fat and high in fiber, fruits, and vegetables lowers the risk of colorectal cancer.

Alcohol

Studies have shown that drinking alcohol is linked to an increased risk of the following types of cancers:

Drinking alcohol may also increase the risk of liver cancer and female colorectal cancer.

To learn more, visit the following PDQ summaries:

Physical activity

Studies show that people who are physically active have a lower risk of certain cancers than those who are not. It is not known if physical activity itself is the reason for this.

Some studies show that physical activity protects against postmenopausal breast cancer and endometrial cancer.

To learn more, visit the following PDQ summaries:

Obesity

Studies show that obesity is linked to a higher risk of the following types of cancer:

  • postmenopausal breast cancer
  • colorectal cancer
  • endometrial cancer
  • esophageal cancer
  • kidney cancer
  • pancreatic cancer

Some studies show that obesity is also a risk factor for gallbladder cancer and liver cancer.

Studies have shown that people who lose weight decrease their risk of these cancers.

To learn more, visit the following PDQ summaries:

Diabetes

Some studies show that diabetes may slightly increase the risk of having the following types of cancer:

Diabetes and cancer share some of the same risk factors. These risk factors include:

  • being older
  • having obesity
  • smoking
  • not eating a healthy diet
  • not exercising

Because diabetes and cancer share these risk factors, it is hard to know whether the risk of cancer is increased more by diabetes or by these risk factors.

Studies are being done to see how medicine that is used to treat diabetes affects cancer risk.

Environmental risk factors

Being exposed to chemicals and other substances in the environment has been linked to some cancers:

  • Links between air pollution and cancer risk have been found. These include links between lung cancer and secondhand tobacco smoke, outdoor air pollution, and asbestos.
  • Drinking water that contains a large amount of arsenic has been linked to skin, bladder, and lung cancers.

Studies have been done to see if pesticides and other pollutants increase the risk of cancer. The results of those studies have been unclear because other factors can change the results of the studies.

Interventions That Are Known to Lower Cancer Risk

Key Points

  • Chemoprevention is being studied in people who have a high risk of developing cancer.
  • Studies have shown that weight loss surgery lowers cancer risk.
  • Other types of surgery can help lower the risk of cancer.

An intervention is a treatment or action taken to prevent or treat disease, or improve health in other ways. Many studies are being done to find ways to keep cancer from starting or coming back.

Chemoprevention is being studied in people who have a high risk of developing cancer.

Chemoprevention is the use of substances to lower the risk of cancer, or keep it from recurring. The substances may be natural or made in the laboratory. Some chemopreventive agents are tested in people who are at high risk for a certain type of cancer. The risk may be because of a precancerous condition, family history, or lifestyle factors.

Taking one of the following agents may lower the risk of cancer:

Studies have shown that weight loss surgery lowers cancer risk.

Weight loss surgery, also called bariatric surgery, is a procedure that people with obesity can have to lose weight and improve their overall health and quality of life. The surgery changes the anatomy of the stomach or changes the way the body absorbs nutrients. A person who undergoes this procedure will lose a lot of weight and as a result, will have a decreased risk of cancers linked to overweight.

To learn more about cancer prevention, visit the NCI website.

Other types of surgery can help lower the risk of cancer.

People with changes in the BRCA1 or BRCA2 gene, a personal or family history of cancer, inherited syndromes, and other high risk factors may want to have surgery to lower their risk. It’s important to have a cancer risk assessment and counseling before making this decision. The following surgeries could help lower your risk of getting certain types of cancer:

Interventions That Are Not Known to Lower Cancer Risk

Key Points

  • Aspirin has not been shown to prevent most cancers.
  • Vitamin and dietary supplements have not been shown to prevent cancer.
  • New ways to prevent cancer are being studied in clinical trials.

Aspirin has not been shown to prevent most cancers.

Aspirin has been studied as chemoprevention. The studies show mixed results but most have shown that aspirin does not prevent cancer. However, there is evidence that taking aspirin for long periods of time may prevent colorectal cancer in certain people. Learn more at Colorectal Cancer Prevention.

Results from a randomized trial suggest that taking aspirin may make cancer grow more quickly in the elderly, but longer follow up is needed to confirm these results.

Bleeding in the gastrointestinal tract or brain is a side effect of aspirin. Even though aspirin has not been shown to reduce the risk of most cancers, it has many uses, including helping to lower the chances of dying from heart disease. Before beginning long-term aspirin use, it is important to talk with your doctor about the related benefits and harms.

Vitamin and dietary supplements have not been shown to prevent cancer.

An intervention is a treatment or action taken to prevent or treat disease, or improve health in other ways.

There is not enough proof that taking multivitamin and mineral supplements or single vitamins or minerals can prevent cancer. The following vitamins and mineral supplements have been studied, but have not been shown to lower the risk of cancer:

The Selenium and Vitamin E Cancer Prevention Trial (SELECT) found that vitamin E taken alone increased the risk of prostate cancer. The risk continued even after the men stopped taking vitamin E. Taking selenium with vitamin E or taking selenium alone did not increase the risk of prostate cancer.

Vitamin D has also been studied to see if it has anticancer effects. Skin exposed to sunshine can make vitamin D. Vitamin D can also be consumed in the diet and in dietary supplements. Taking vitamin D in doses from 400–1100 IU/day has not been shown to lower or increase the risk of cancer.

The VITamin D and OmegA-3 TriaL (VITAL) is under way to study whether taking vitamin D (2000 IU/day) and omega-3 fatty acids from marine (oily fish) sources lowers the risk of cancer.

The Physicians’ Health Study found that men who have had cancer in the past and take a multivitamin daily may have a slightly lower risk of having a second cancer.

To learn more, visit the following PDQ summaries:

New ways to prevent cancer are being studied in clinical trials.

Information about clinical trials supported by NCI can be found on NCI’s clinical trials search webpage. Clinical trials supported by other organizations can be found on the ClinicalTrials.gov website.

About This PDQ Summary

About PDQ

Physician Data Query (PDQ) is the National Cancer Institute’s (NCI’s) comprehensive cancer information database. The PDQ database contains summaries of the latest published information on cancer prevention, detection, genetics, treatment, supportive care, and complementary and alternative medicine. Most summaries come in two versions. The health professional versions have detailed information written in technical language. The patient versions are written in easy-to-understand, nontechnical language. Both versions have cancer information that is accurate and up to date and most versions are also available in Spanish.

PDQ is a service of the NCI. The NCI is part of the National Institutes of Health (NIH). NIH is the federal government’s center of biomedical research. The PDQ summaries are based on an independent review of the medical literature. They are not policy statements of the NCI or the NIH.

Purpose of This Summary

This PDQ cancer information summary has current information about cancer prevention. It is meant to inform and help patients, families, and caregivers. It does not give formal guidelines or recommendations for making decisions about health care.

Reviewers and Updates

Editorial Boards write the PDQ cancer information summaries and keep them up to date. These Boards are made up of experts in cancer treatment and other specialties related to cancer. The summaries are reviewed regularly and changes are made when there is new information. The date on each summary (“Updated”) is the date of the most recent change.

The information in this patient summary was taken from the health professional version, which is reviewed regularly and updated as needed, by the PDQ Screening and Prevention Editorial Board.

Clinical Trial Information

A clinical trial is a study to answer a scientific question, such as whether one treatment is better than another. Trials are based on past studies and what has been learned in the laboratory. Each trial answers certain scientific questions in order to find new and better ways to help cancer patients. During treatment clinical trials, information is collected about the effects of a new treatment and how well it works. If a clinical trial shows that a new treatment is better than one currently being used, the new treatment may become “standard.” Patients may want to think about taking part in a clinical trial. Some clinical trials are open only to patients who have not started treatment.

Clinical trials can be found online at NCI’s website. For more information, call the Cancer Information Service (CIS), NCI’s contact center, at 1-800-4-CANCER (1-800-422-6237).

Permission to Use This Summary

PDQ is a registered trademark. The content of PDQ documents can be used freely as text. It cannot be identified as an NCI PDQ cancer information summary unless the whole summary is shown and it is updated regularly. However, a user would be allowed to write a sentence such as “NCI’s PDQ cancer information summary about breast cancer prevention states the risks in the following way: [include excerpt from the summary].”

The best way to cite this PDQ summary is:

PDQ® Screening and Prevention Editorial Board. PDQ Cancer Prevention Overview. Bethesda, MD: National Cancer Institute. Updated <MM/DD/YYYY>. Available at: /causes-prevention/patient-prevention-overview-pdq. Accessed <MM/DD/YYYY>. [PMID: 26389424]

Images in this summary are used with permission of the author(s), artist, and/or publisher for use in the PDQ summaries only. If you want to use an image from a PDQ summary and you are not using the whole summary, you must get permission from the owner. It cannot be given by the National Cancer Institute. Information about using the images in this summary, along with many other images related to cancer can be found in Visuals Online. Visuals Online is a collection of more than 3,000 scientific images.

Disclaimer

The information in these summaries should not be used to make decisions about insurance reimbursement. More information on insurance coverage is available on Cancer.gov on the Managing Cancer Care page.

Contact Us

More information about contacting us or receiving help with the Cancer.gov website can be found on our Contact Us for Help page. Questions can also be submitted to Cancer.gov through the website’s E-mail Us.

Reproductive History and Cancer Risk

Reproductive History and Cancer Risk

Is there a relationship between pregnancy and breast cancer risk?

Studies have shown that a woman’s risk of developing breast cancer is related to her exposure to hormones that are produced by her ovaries (endogenous estrogen and progesterone). Reproductive factors that increase the duration and/or levels of exposure to ovarian hormones, which stimulate cell growth, have been associated with an increase in breast cancer risk. These factors include early onset of menstruation, late onset of menopause, and factors that may allow breast tissue to be exposed to high levels of hormones for longer periods of time, such as later age at first pregnancy and never having given birth.

Conversely, pregnancy and breastfeeding, which both reduce a woman’s lifetime number of menstrual cycles, and thus her cumulative exposure to endogenous hormones (1), are associated with a decrease in breast cancer risk. In addition, pregnancy and breastfeeding have direct effects on breast cells, causing them to differentiate, or mature, so they can produce milk. Some researchers hypothesize that these differentiated cells are more resistant to becoming transformed into cancer cells than cells that have not undergone differentiation (2, 3).

Some pregnancy-related factors have been associated with a reduced risk of developing breast cancer later in life. These factors include:

  • Early age at first full-term pregnancy. Women who have their first full-term pregnancy at an early age have a decreased risk of developing breast cancer later in life. For example, in women who have a first full-term pregnancy before age 20, the risk of developing breast cancer is about half that of women whose first full-term pregnancy occurs after the age of 30 (4). This risk reduction is limited to hormone receptor–positive breast cancer; age at first full-term pregnancy does not appear to affect the risk of hormone receptor-negative breast cancer (5, 6).
  • Increasing number of births. The risk of breast cancer declines with the number of children borne. Women who have given birth to five or more children have half the breast cancer risk of women who have not given birth (7). Some evidence indicates that the reduced risk associated with a higher number of births may be limited to hormone receptor–positive breast cancer.
  • History of preeclampsia. Women who have had preeclampsia may have a decreased risk of developing breast cancer (811). Preeclampsia is a complication of pregnancy in which a woman develops high blood pressure and excess amounts of protein in her urine. Scientists are studying whether certain hormones and proteins associated with preeclampsia may affect breast cancer risk (8, 12, 13).
  • Longer duration of breastfeeding. Breastfeeding for an extended period (at least a year) is associated with decreased risks of both hormone receptor–positive and hormone receptor–negative breast cancers (6, 14).

Some factors related to pregnancy may increase the risk of breast cancer. These factors include:

  • Older age at birth of first child. The older a woman is when she has her first full-term pregnancy, the higher her risk of breast cancer. Women who are older than 30 when they give birth to their first child have a higher risk of breast cancer than women who have never given birth (15).
  • Recent childbirth. Women who have recently given birth have a short-term increase in breast cancer risk that declines after about 10 years. The reason for this temporary increase is not known, but some researchers believe that it may be due to the effect of high levels of hormones on the development of cancers or to the rapid growth of breast cells during pregnancy (16).
  • Taking diethylstilbestrol (DES) during pregnancy. DES is a synthetic form of estrogen that was used between the early 1940s and 1971 to prevent miscarriages and other pregnancy problems. Women who took DES during pregnancy may have a slightly higher risk of developing breast cancer than women who did not take DES during pregnancy (17). Some studies have shown that daughters of women who took DES during pregnancy may also have a slightly higher risk of developing breast cancer after age 40 than women who were not exposed to DES while in the womb (18), but the evidence is inconsistent (19).

Is abortion linked to breast cancer risk?

A few retrospective (case-control) studies reported in the mid-1990s suggested that induced abortion (the deliberate ending of a pregnancy) was associated with an increased risk of breast cancer. However, these studies had important design limitations that could have affected the results. A key limitation was their reliance on self-reporting of medical history information by the study participants, which can introduce bias. Prospective studies, which are more rigorous in design and unaffected by such bias, have consistently shown no association between induced abortion and breast cancer risk (2025). Moreover, in 2009, the Committee on Gynecologic Practice of the American College of Obstetricians and Gynecologists concluded that “more rigorous recent studies demonstrate no causal relationship between induced abortion and a subsequent increase in breast cancer risk” (26). Major findings from these studies include:

  • Women who have had an induced abortion have the same risk of breast cancer as other women.
  • Women who have had a spontaneous abortion (miscarriage) have the same risk of breast cancer as other women.
  • Cancers other than breast cancer also appear to be unrelated to a history of induced or spontaneous abortion.

Does pregnancy affect the risk of other cancers?

Research has shown the following with regard to pregnancy and the risk of other cancers:

  • Women who have had a full-term pregnancy have reduced risks of ovarian (27, 28) and endometrial (29) cancers. Furthermore, the risks of these cancers decline with each additional full-term pregnancy.
  • Pregnancy also plays a role in an extremely rare type of tumor called a gestational trophoblastic tumor. In this type of tumor, which starts in the uterus, cancer cells grow in the tissues that are formed following conception.
  • There is some evidence that pregnancy-related factors may affect the risk of other cancer types, but these relationships have not been as well studied as those for breast and gynecologic cancers. The associations require further study to clarify the exact relationships.

As in the development of breast cancer, exposures to hormones are thought to explain the role of pregnancy in the development of ovarian, endometrial, and other cancers. Changes in the levels of hormones during pregnancy may contribute to the variation in risk of these tumors after pregnancy (30).

Does fertility treatment affect the risk of breast or other cancers?

Women who have difficulty becoming pregnant or carrying a pregnancy to term may receive fertility treatment. Such treatment can include surgery (to repair diseased, damaged, or blocked fallopian tubes or to remove uterine fibroids, patches of endometriosis, or adhesions); medications to stimulate ovulation; and assisted reproductive technology.

Ovarian stimulation and some assisted reproductive technologies involve treatments that temporarily change the levels of estrogen and progesterone in a woman’s body. For example, women undergoing in vitro fertilization (IVF) receive multiple rounds of hormone treatment to first suppress ovulation until the developing eggs are ready, then stimulate development of multiple eggs, and finally promote maturation of the eggs. The use of hormones in some fertility treatments has raised concerns about possible increased risks of cancer, particularly cancers that are linked to elevated levels of these hormones.

Many studies have examined possible associations between use of fertility drugs or IVF and the risks of breast, ovarian, and endometrial cancers. The results of such studies can be hard to interpret because infertility itself is linked to increased risks of these cancers (that is, compared with fertile women, infertile women are at higher risk of these cancers even if they do not use fertility drugs). Also, these cancers are relatively rare and tend to develop years after treatment for infertility, which can make it difficult to link their occurrence to past use of fertility drugs.

  • Breast cancer: The bulk of the evidence is consistent with no increased risk of breast cancer associated with the use of fertility drugs or IVF (3134). 
  • Ovarian cancer: There is some uncertainty about whether treatment for infertility is a risk factor for ovarian cancer. A 2013 systematic review of 25 studies that included more than 180,000 women found, overall, no strong evidence of an increased risk of invasive ovarian cancer for women treated with fertility drugs (35). In one study, women who underwent IVF had an increase in risk of ovarian borderline malignant tumors (36).
  • Endometrial cancer: Overall, the use of fertility drugs or IVF does not appear to increase the risk of endometrial cancer (34).

Diethylstilbestrol (DES) Exposure and Cancer

Diethylstilbestrol (DES) Exposure and Cancer

What is DES?

Diethylstilbestrol (DES) is a synthetic form of the female hormone estrogen. It was prescribed to pregnant women between 1940 and 1971 to prevent miscarriage, premature labor, and related complications of pregnancy (1). The use of DES declined after studies in the 1950s showed that it was not effective in preventing these problems, although it continued to be used to stop lactation, for emergency contraception, and to treat menopausal symptoms in women (2).

In 1971, researchers linked prenatal (while in the womb, or in utero) DES exposure to a type of cancer of the cervix and vagina called clear cell adenocarcinoma in a small group of women (3). Soon after, the Food and Drug Administration (FDA) notified health care providers throughout the country that DES should not be prescribed to pregnant women (4). The drug continued to be prescribed to pregnant women in Europe until 1978 (5).

DES is now known to be an endocrine-disrupting chemical, one of a number of substances that interfere with the endocrine system to potentially cause cancer, birth defects, and other developmental abnormalities. 

What is the cancer risk of people who were exposed to DES in utero?

The overall risk of cancer is not elevated in people whose mothers used DES while pregnant compared with the general population (68). However, females exposed to DES in utero, commonly called DES daughters, are at increased risk of several specific cancers, including:

  • Clear cell adenocarcinoma. DES daughters have about 40 times the risk of developing clear cell adenocarcinoma of the lower genital tract as unexposed women (women who were not exposed to DES prenatally). However, this type of cancer is still rare; approximately 1 in 1,000 DES daughters developed it. The first DES daughters with clear cell adenocarcinoma were very young at the time of their diagnoses (3). Subsequent research has shown that the risk of developing this disease remained elevated as these individuals aged into their 40s and 50s, but it continued to be rare (8, 9).
  • Breast cancer. DES daughters may have a slightly increased risk of breast cancer after age 40. A 2006 study from the United States suggested that breast cancer risk is not increased in DES daughters overall but that after age 40, DES daughters have approximately twice the risk of breast cancer as unexposed women of the same age and with similar risk factors (6). A 2011 study also found that a large cohort of DES daughters had nearly twice the risk of developing breast cancer at 40 years or older as unexposed women (10), but a 2019 follow-up study showed that their breast cancer risk has lessened over time (7). It is therefore possible that risk was increased for a limited time at middle age. However, a 2010 study from Europe found no difference in breast cancer risk between DES daughters and women not exposed to DES in utero (8).
  • Pancreatic cancer. A 2021 study found that DES daughters had about two times the risk of pancreatic cancer as women in the general population (11). Research is ongoing to determine if the increased risk persists as these individuals get older.
  • Cervical precancers. Studies show that DES daughters were about 2 times more likely to have high-grade cell changes in the cervix than females not exposed to DES in utero. Approximately 4% of DES daughters developed these conditions because of their exposure (10). 

Males exposed to DES in utero, referred to as DES sons, have been studied for their risk of testicular and prostate cancers. There is no evidence to date that DES exposure in utero increases the risk of prostate cancer (12, 13).  However, the evidence around testicular cancer is mixed.

Do the children of women who took DES have problems with fertility and pregnancy?

Several studies have found increased risks of premature birth, miscarriage, and ectopic pregnancy in females exposed to DES in utero. An analysis of updated data published in 2011 (10) determined the cumulative risk of various fertility complications in DES daughters as follows:

Fertility, pregnancy, or birth complication

Cumulative risk* to age 45
DES-exposed women  Unexposed women
Infertility 33% 15%

Ectopic pregnancy

15%

  3%

Miscarriage (second trimester)

16%

  2%

Preeclampsia

26%

14%

Premature delivery

53%

18%

Stillbirth   9%  3%
Neonatal death   8%   1%
*The total risk (probability) that a certain problem will occur. For example, a DES daughter has a 53% risk of premature delivery to the age of 45 years and the risk in unexposed women is 18%.

Some studies suggest that the increased risk of infertility in DES daughters is due mainly to uterine or fallopian tube problems (14).

Males exposed to DES in utero have an increased risk of testicular abnormalities, including undescended testicles or development of cysts in the epididymis (15). There is also some evidence of increased risks of inflammation or infection of the testicles (15). However, DES sons do not have an increased risk of infertility, even when they have genital abnormalities (15). 

What other health issues or characteristics might DES daughters and DES sons have?

People who were exposed to DES in utero may have other health issues or characteristics, including:

Autoimmune conditions.  Concerns have been raised that individuals exposed to DES in utero may have problems with their immune system. However, research thus far suggests that DES daughters do not have an increased risk of autoimmune diseases. Researchers found no difference in the rates of lupus, rheumatoid arthritis, optic neuritis, and idiopathic thrombocytopenia purpura between women who were and were not exposed to DES in utero (16).

Cardiovascular disease.  Individuals exposed to DES have an increased risk of high cholesterol, hypertension, coronary artery disease, and heart attack but not of stroke (17, 18). The associations between prenatal DES exposure and coronary artery disease and heart attack appear to be stronger in DES daughters than DES sons (17).

Pancreatic disorders. One study found a higher risk of pancreatic disorders and pancreatitis (inflammation of the pancreas) in both DES daughters and DES sons compared with unexposed females and males (11). 

Early menopause. DES daughters have more than twice the risk of early menopause (menopause that begins before age 45) as unexposed women. Scientists estimate that 3% of DES-exposed women have experienced early menopause due to their exposure (10).

Depression. One study found a 40% higher risk of depression in DES daughters than in unexposed women (19), but other studies have not found increased risks (20, 21). Prenatal exposure of men to DES was not associated with the risk of depression (21). 

Psychosexual characteristics. Findings from animal studies have raised the possibility that prenatal exposure to DES may influence certain psychological and sexual characteristics of adult men and women. However, a 2003 study found little evidence that such exposure is associated with the likelihood of ever having been married, age at first sexual intercourse, number of sexual partners, or having had a same-sex sexual partner in adulthood (20). 

A study published in 2020 found that DES daughters were about 40% less likely to identify as gay/lesbian or bisexual compared with unexposed women (22). There were indications that DES-exposed men were more likely to be gay or bisexual, but these associations were not statistically significant (22).

What health issues might DES grandchildren have?

Researchers are also studying possible health effects among the children of DES daughters. These groups are called DES granddaughters and DES grandsons, or the third generation. Researchers are studying these groups because studies in animal models suggest that DES may cause DNA changes (i.e., altered patterns of methylation) in mice exposed to the chemical during early development (23). These changes can be heritable and have the potential to affect subsequent generations.

A comparison of the results of DES granddaughters’ pelvic exams with those of their mothers’ first pelvic exams found none of the changes that had been associated with prenatal DES exposure in their mothers (14). However, another analysis showed that DES granddaughters began their menstrual periods later and were more likely to have menstrual irregularities than unexposed women of the same age (that is, women whose mothers were not exposed to DES before birth) (24). The data also suggested that infertility was greater among DES granddaughters than among unexposed women of the same age (25) and that they may have an increased risk of preterm delivery (24). However, this association is based on small numbers of events and was not statistically significant. Researchers will continue to follow these individuals to study the risk of infertility.

Recent studies have found that DES granddaughters and DES grandsons may have a slightly higher risk of cancer (26) and birth defects (27), including hypospadias in DES grandsons (28). However, because each of these associations is based on small numbers of events, researchers will continue to study these groups to clarify the findings.

What health issues might women who took DES during pregnancy have?

The women who used DES are now in their 70s and older. These women have already experienced the slight increase in risks of developing (29) and dying from (30) breast cancer documented in follow-up studies in which they participated. No evidence exists to suggest that women who took DES are at higher risk for any other type of cancer (5).

How can people find out if they took DES during pregnancy or were exposed to DES in utero?

It is estimated that 5 to 10 million Americans—pregnant women and the children born to them—were exposed to DES between 1940 and 1971 (5). DES was given widely to pregnant women between 1940 and 1971 to prevent complications during pregnancy. DES was provided under many different product names and also in various forms, such as pills, creams, and vaginal suppositories (31). The table below includes examples of products that contained DES.

DES Product Names
Nonsteroidal estrogens
Benzestrol
Chlorotrianisene
Comestrol
Cyren A.
Cyren B.
Delvinal
DES
Desplex
Dibestil
Diestryl
Dienostrol
Dienoestrol
Diethylsteilbestrol dipalmitate
Diethylstilbestrol diphosphate
Diethylstilbestrol dipropionate
Diethylstilbenediol
Digestil
Dinestrol
Domestrol
Estilben
Estrobene
Estrobene DP
Estrosyn
Fonatol
Gynben
Gyneben
Hexestrol
Hexoestrol
Hi-Bestrol
Menocrin
Meprane
Mestilbol
Microest
Methallenestril
Mikarol
Mikarol forti
Milestrol
Monomestrol
Neo-Oestranol I
Neo-Oestranol II
Nulabort
Oestrogenine
Oestromenin
Oestromon
Orestol
Pabestrol D
Palestrol
Restrol
Stil-Rol
Stilbal
Stilbestrol
Stilbestronate
Stilbetin
Stilbinol
Stilboestroform
Silboestrol
Stilboestrol DP
Stilestrate
Stilpalmitate
Stilphostrol
Stilronate
Stilrone
Stils
Synestrin
Synestrol
Synthosestrin
Tace
Vallestril
Willestrol
Nonsteroidal estrogenandrogen combinations
Amperone
Di-Erone
Estan
Metystil
Teserene
Tylandril
Tylostereone
 
Nonsteroidal estrogenprogesterone combinations
Progravidium    
Vaginal cream suppositories with nonsteroidal estrogens
AVC cream with dienestrol
Dienestrol cream
   

Women who think they used DES during pregnancy, or people who think that their mother used DES during pregnancy, can try contacting the health care provider or institution where they received their care to request a review of their medical records. If any medications were taken during pregnancy, obstetrical records could be checked to determine the name of the drug.

However, finding medical records many decades later can be difficult. If the health care provider has retired or died, another provider may have taken over the practice as well as the records. The county medical society or health department may know where the records have been stored. Some pharmacies keep records for a long time and can be contacted regarding prescription dispensing information. Military medical records are kept for 25 years. In most cases, however, it may be impossible to confirm whether DES was used. Although records may not be available, some anatomic features that may be visible during a pelvic exam can lead a health care provider to suspect DES exposure.

What should DES daughters do?

Women who know or believe they were exposed to DES before birth should be aware of the health effects of DES and inform their health care provider about their possible exposure. 

Several major organizations publish guidelines about routine medical examinations and screening for women, but none of them address the needs of DES daughters specifically. These individuals have generally been advised to have an annual medical examination to check for adverse health effects of DES, including abnormal cervical cells and clear cell adenocarcinoma. In the past, that medical examination may have included a pelvic examination (in which the health care provider checks the vulva, vagina, cervix, ovaries, uterus, and rectum for any abnormalities) with a Pap test that collected cells from the cervix and the vagina; colposcopy (examination of the cervix with magnification) has been recommended to follow up on any abnormal findings. 

However, now that the population of DES daughters has become older (the youngest having been born in 1972), the relative benefits and harms of this approach compared with what is recommended for DES-unexposed individuals is unclear. For example, no guidelines address the age at which screening exams can end for these individuals. 

It is generally recommended that DES daughters follow the routine breast cancer screening recommendations for their age group.

What should DES sons do?

Men whose mothers took DES while pregnant should inform their health care provider of their exposure and be examined periodically. Although the risk of developing testicular cancer among DES sons is unclear, males with undescended or unusually small testicles have an increased risk of testicular cancer whether or not they were exposed to DES. Most men diagnosed with testicular cancer are younger, with less than 9% diagnosed over age 55, so the risk among DES sons, the youngest of whom are now 50, is likely to be low.

What should women who used DES while pregnant do?

Women who used DES during pregnancy (DES mothers) should follow recommendations for their age group regarding breast cancer screenings, pelvic exams, and annual medical check-ups. 

Is it safe for DES daughters to use hormone replacement therapy?

Each woman should discuss this question with her health care provider. There is no evidence that hormone replacement therapy is unsafe for DES daughters. However, some clinicians believe that DES daughters should avoid these medications because they contain estrogen (32).

What is the focus of current research on DES exposure?

In 1992, NCI, together with collaborators at five research centers, began a long-term study of individuals prenatally exposed to DES, the DES Follow-up Study. Participants were initially drawn from eight different medical centers and consisted of five individual cohorts of people. And in 2000, NCI began following the daughters of the DES daughters, or third-generation women, through the DES Follow-up Study. For the study findings to be valid, enrollment is limited to participants who have been part of existing cohorts. For that reason, the DES Follow-up Study does not accept new participants.

Researchers continue to study DES daughters as they move through their menopausal years. In a pilot study, postmenopausal DES daughters had altered estrogen metabolism, suggesting that prenatal exposure to this endocrine disruptor may influence estrogen metabolism many years later (33). The cancer risks for exposed sons are also being studied. In addition, researchers are studying possible health effects on the DES grandchildren. 

The National Institute of Environmental Health Sciences (NIEHS) is leading animal studies to investigate DES exposure and its effects on health. NIEHS researchers developed a rodent model of prenatal DES exposure that has been useful in replicating and predicting adverse health effects. This experimental model has been used worldwide to study mechanisms involved in DES-related toxicity and the adverse effects of less potent environmental estrogens.

Where can DES-exposed people get additional information?

Resources for people who were exposed to DES either while pregnant or in utero include the following:

NCI’s DES Follow-up Study
Since 1992, NCI, in collaboration with research centers throughout the United States, has been conducting the DES Follow-up Study of more than 21,000 mothers, daughters, and sons, to better understand the long-term health effects of exposure to DES.

Registry for Research on Hormonal Transplacental Carcinogenesis
(Clear Cell Cancer Registry)

The Registry for Research on Hormonal Transplacental Carcinogenesis (also called the Clear Cell Cancer Registry) is a worldwide registry for individuals diagnosed with clear cell adenocarcinoma of the vagina and/or cervix. Staff members also answer questions from the public.

Hormones

Hormones

Estrogens, a group of female sex hormones, are known human carcinogens. Although these hormones have essential physiological roles in both females and males, they have also been associated with an increased risk of certain cancers. For instance, taking combined menopausal hormone therapy (estrogen plus progestin, which is a synthetic version of the female hormone progesterone) can increase a woman’s risk of breast cancer. Menopausal hormone therapy with estrogen alone increases the risk of endometrial cancer and is used only in women who have had a hysterectomy.

A woman who is thinking about menopausal hormone therapy should discuss the possible risks and benefits with her doctor.

Studies have also shown that a woman’s risk of breast cancer is related to the estrogen and progesterone made by her ovaries (known as endogenous estrogen and progesterone). Being exposed for a long time and/or to high levels of these hormones has been linked to an increased risk of breast cancer. Increases in exposure can be caused by starting menstruation early, going through menopause late, being older at first pregnancy, and never having given birth. Conversely, having given birth is a protective factor for breast cancer.

Diethylstilbestrol (DES) is a form of estrogen that was given to some pregnant women in the United States between 1940 and 1971 to prevent miscarriages, premature labor, and related problems with pregnancy. Women who took DES during pregnancy have an increased risk of breast cancer. Their daughters have an increased risk of a cancer of the vagina or cervix. The possible effects on the sons and grandchildren of women who took DES during pregnancy are being studied.

For more information, see the following fact sheets:

Vitamin D and Cancer

Vitamin D and Cancer

What is vitamin D?

Vitamin D is a group of fat-soluble hormones and prohormones (substances that usually have little hormonal activity by themselves but that the body can turn into hormones) that help the body use calcium and phosphorus to make strong bones and teeth. These nutrients also perform many other important functions in the body, including reducing inflammation and controlling cell growth, as well as influencing neuromuscular and immune function and glucose metabolism.

People obtain vitamin D by making it naturally in sun-exposed skin and by consuming it in foods. The form that is made in skin is vitamin D3, or cholecalciferol. This form is also abundant in some foods, including fatty fish (salmon, trout, tuna, and mackerel), fish liver oil, liver, and eggs. Another form, vitamin D2, or ergocalciferol, is found in some plants and fungi. Vitamin D supplements may contain either form.

Both cholecalciferol and ergocalciferol are converted in the body to calcitriol, which is the active form of vitamin D. It works by binding to the vitamin D receptor (VDR) that is found in many tissues and cell types in the body. 

Most people get at least some vitamin D through sunlight exposure, but they also obtain it from their diet and from supplements. Most of the vitamin D that people obtain from their diet comes from foods fortified with vitamin D, such as milk, juices, and breakfast cereals, and by eating the few foods that are rich in it.

How much vitamin D do people need?

The Institute of Medicine (IOM) of the National Academies has developed the following recommended daily intakes of vitamin D, assuming minimal sun exposure (1, 2), which are the basis for the recommendations in the Dietary Guidelines for Americans, 2020–2025:

  • For those between 1 and 70 years of age, including women who are pregnant or lactating, the recommended dietary allowance (RDA) is 15 micrograms (μg) per day. Because 1 μg is equivalent  to 40 International Units (IU), this RDA can also be expressed as 600 IU per day.
  • For those 71 years or older, the RDA is 20 μg per day (800 IU per day).
  • For infants, the IOM could not determine an RDA due to a lack of data. However, the IOM set an Adequate Intake level of 10 μg per day (400 IU per day), which should provide sufficient vitamin D.

It is important to remember that excessive intake of any nutrient, including vitamin D, can have harmful effects. Too much vitamin D can cause calcium to build up, which can lead to calcinosis (the deposit of calcium salts in soft tissues, such as the kidneys, heart, or lungs) and hypercalcemia (high blood levels of calcium). The current safe upper intake level of vitamin D for adults and children older than 8 years of age is 100 μg per day (4000 IU per day) (3). People who do not take vitamin D supplements are unlikely to have excessive vitamin D levels.

People who do not take supplements sometimes wonder if they should spend more time in the sun to boost their vitamin D levels. However, the IOM states that people should not try to increase vitamin D production by increasing their exposure to sunlight because doing so will also increase their risk of skin cancer (2). 

For most people, a blood level of 25-hydroxyvitamin D of 50 nmol/L (20 ng/mL) or higher is considered adequate for bone and overall health. Levels below 30 nmol/L (12 ng/mL) are too low, or “deficient,” and might weaken your bones and affect your health in other ways. Levels above 125 nmol/L (50 ng/mL) are too high (3).

Although the average dietary intakes of vitamin D in the United States are below the guideline levels, data from the 2011–2014 National Health and Nutrition Examination Survey (NHANES) revealed that 73% of Americans had sufficient blood levels of vitamin D (4). 

Why are cancer researchers studying a possible connection between vitamin D and cancer?

Studies of populations of people, also known as epidemiologic studies, along with laboratory experiments, have raised the possibility that vitamin D influences cancer risk and development. 

Early epidemiologic research found that people living at southern latitudes, where levels of sunlight exposure are relatively high, were less likely to develop or die from certain cancers than people living at northern latitudes. Because exposure to sunlight leads to the production of vitamin D in the skin, researchers hypothesized that variation in vitamin D levels might account for those cancer associations. 

In experimental studies of cancer cells and of tumors in rodents, vitamin D has been found to have several biological activities that might slow or prevent the development of cancer, including promoting cellular differentiation, decreasing cancer cell growth, stimulating cell death (apoptosis), reducing tumor blood vessel formation (angiogenesis), and decreasing tumor progression and metastasis (59). Vitamin D was also found to suppress a type of immune cell that normally prevents the immune system from responding strongly to cancer (10).

This kind of evidence led researchers to carry out studies in people, such as prospective observational studies and randomized controlled trials, to determine whether the blood level of vitamin D or the amount of vitamin D consumed are associated with the risk of developing or dying from cancer.

Does vitamin D prevent cancer or lower the risk of dying from cancer?

Researchers have conducted both observational studies and randomized controlled trials to look at possible links between someone’s vitamin D level or use of vitamin D supplements and their risk of developing or dying from cancer (11). Randomized trials are considered a stronger design because they control for the possibility that other differences between people, rather than their vitamin D status, explain associations seen in observational studies. However, vitamin supplementation trials are typically limited to testing one daily dosage, as compared with the measurement of a range of blood levels in observational studies. 

Evidence from observational studies

Cancer risk. Observational studies have examined a number of individual cancer sites for possible associations of risk with vitamin D level. Higher vitamin D levels have been consistently associated with reduced risks of colorectal cancer (12) and, to a lesser extent, bladder cancer (13). Studies have consistently shown no association between vitamin D levels and risk of breast, lung, and several other, less common cancers (1417). By contrast, opposite (i.e., harmful) associations of risk with higher blood vitamin D levels have been suggested for prostate cancer (18) and possibly pancreatic cancer (19, 20).

Cancer mortality. Possible associations between vitamin D status and cancer mortality have generally been studied for all cancers combined. Most meta-analyses (i.e., studies that combine multiple individual studies) of observational studies have found that lower serum vitamin D levels are associated with higher overall cancer mortality (11, 2124). For example, a meta-analysis of 12 cohort studies found a 14% higher cancer mortality among people with the lowest 25-hydroxyvitamin D levels than among those with the highest levels (22). Similarly, an analysis of approximately 4,000 cancer cases within the Prostate, Lung, Colorectal, and Ovarian Cancer Screening Trial found a 17% lower cancer mortality among men and women in the highest category of vitamin D than in the lowest category (25). 

Evidence from randomized controlled trials

Cancer risk. Most randomized controlled trials have found that vitamin D supplements, with or without calcium, do not reduce the risk of developing cancer overall or of developing specific cancers (11, 2629). An evidence report prepared for the United States Preventive Serves Task Force (USPSTF) in its assessment of nutrient supplements to prevent cardiovascular disease or cancer found little or no benefit for vitamin D in preventing cancer, cardiovascular disease, and death (30). 

For example, the early large randomized Women’s Health Initiative trial found that supplementation with 400 IU vitamin D plus 1000 mg calcium had no effect on the incidence of breast or colorectal cancer among postmenopausal women (3133). 

More recently, the largest trial of vitamin D supplementation, VITAL, assigned more than 25,000 participants aged 50 and over (men) or 55 and over (women) to receive a daily dose of 2000 IU vitamin D plus fish oil omega-3 fatty acids or of placebo. After 5 years of follow-up, the vitamin D/omega-3 group had the same overall cancer incidence as the placebo group (29). The incidence of breast, prostate, and colorectal cancer was also the same in both groups. Another large trial of vitamin D supplementation, ViDA, conducted among New Zealanders aged 50–84, also found no association between supplementation and the risk of cancer overall (34).  

In addition, findings from several trials cast doubt on the idea that taking vitamin D supplements prevents the development of colorectal adenomas, which can become colorectal cancer. In the VITAL trial, people who took vitamin D supplements did not have a lower risk of colorectal adenomas or serrated polyps at 5 years of follow-up (35). An ancillary study of a randomized trial in US adults with prediabetes and overweight or obesity found that vitamin D supplementation was not associated with incident cancer or colorectal polyps (36). And in the Vitamin D/Calcium Polyp Prevention Study, which studied people who had had at least one adenoma removed during colonoscopy at the start of the study, taking a daily vitamin D supplement did not reduce the risk that adenomas would recur during the following 10 years (37).

Cancer mortality. Several randomized controlled trials have studied whether vitamin D supplements lowers the risk of death from cancer, with varying results (11, 27, 29, 38, 39). For example, in the VITAL trial, vitamin D did not reduce cancer deaths overall, although a mortality reduction was seen in analyses that excluded deaths in the first few years of follow-up (28). In the D-Health trial, which included Australians 60 years and older, a monthly dose of 60,000 IU vitamin D for 5 years also did not reduce cancer mortality (40). 

However, a meta-analysis of 10 randomized controlled trials through 2018 (including the VITAL trial) found that vitamin D supplementation was associated with a slight (13%) reduction in cancer mortality over 3–10 years of follow-up (27). A meta-analysis of 21 randomized trials found no evidence that vitamin D supplementation was associated with reduced mortality from all causes combined or from cardiovascular disease (41). 

Many participants in these trials had blood levels of vitamin D that are considered adequate for overall health. This has led to speculation that any effects of vitamin D supplementation on cancer mortality might be more evident in people with low vitamin D levels (42), and researchers are pursuing this question.

How is vitamin D being studied now in cancer research?

Clinical trials are being conducted to examine the potential benefit of adding vitamin D supplements to other treatments for people with cancer. For example, the phase 3 SOLARIS trial is testing whether adding high-dose vitamin D3 to chemotherapy and bevacizumab would extend the length of time patients with advanced or metastatic colorectal cancer live without their disease getting worse. 

Researchers are also studying vitamin D analogs—chemicals with structures similar to that of vitamin D—which may have the anticancer activity of vitamin D but not the toxic effects of high doses (43). For example, ongoing clinical trials are testing both vitamin D and its analog paricalcitol alone or in combination with other treatments, including immunotherapy and chemotherapy, in patients with pancreatic cancer (44).

Another research question relates to the differing prevalence of vitamin D deficiency among racial/ethnic groups and whether these may contribute to some cancer disparities (45, 46). According to NHANES data for 2011–2014, the prevalence of vitamin D deficiency (defined as a serum 25-hydroxyvitamin D concentration of less than 30 nmol/L) among adults in the United States was 18% among non-Hispanic Black people, 2% among non-Hispanic White people, 8% among non-Hispanic Asian people, and 6% among Hispanic people (4). Black people are also less likely to use vitamin D supplements than White people (47).

Observational studies and investigations of biological mechanisms through which vitamin D status and supplementation influence cancer risk are ongoing. Also under study is whether any beneficial effects of vitamin D on cancer outcomes may be restricted to people who have certain genetic variants in genes that metabolize or transport vitamin D (48, 49). For example, a recent analysis of a US population found improved cancer survival primarily among women and men with a specific form of a vitamin D binding protein called GC (25). 

Menopausal Hormone Therapy and Cancer

Menopausal Hormone Therapy and Cancer

What is menopausal hormone therapy?

Menopausal hormone therapy (MHT)—also called postmenopausal hormone therapy and hormone replacement therapy—is sometimes used to replace the natural hormones estrogen and progesterone in a woman’s body during and after menopause, when levels of these hormones drop. Providers may recommend MHT to relieve common symptoms of menopause, such as hot flashes and vaginal dryness, and to address long-term biological changes, such as bone loss (osteoporosis), that result from declining levels of estrogen and progesterone.

Like most therapies, MHT has not only potential benefits but also possible harms. People should discuss the likely benefits and harms they might experience with their providers before deciding whether to use MHT and what form to use.  

MHT usually consists of estrogen alone or estrogen plus progestin, a synthetic form of progesterone. The hormones used in MHT are approved by the U.S. Food and Drug Administration (FDA) and come from a variety of plants and animals or are made in a laboratory. The chemical structure of these hormones is similar to those of hormones produced by women’s bodies. MHT can be given in a variety of ways. When the goal is to treat hot flashes and other systemic symptoms or to prevent osteoporosis, it is usually given as a pill, but it can be also be given systemically through the skin (e.g., via a patch, gel, or spray) or via an implant. When the goal is to address genitourinary symptoms such as vaginal dryness, MHT (containing low-dose estrogen only) is applied directly in the vagina (as a cream or suppository).

Which form of MHT is used depends on whether a woman has a uterus. Because estrogen, when used alone (i.e., without progestin) for systemic MHT, is associated with an increased risk of endometrial cancer, estrogen is used alone only in women who have had a hysterectomy. Women who have a uterus—that is, who have not had a hysterectomy—are generally prescribed estrogen plus progestin for systemic MHT. Vaginal estrogen to treat genitourinary symptoms is prescribed regardless of hysterectomy status. 

Non-FDA-approved hormone products, sometimes referred to as “bioidentical hormones,” are custom-mixed (or compounded) drugs that are sometimes sold without a prescription on the internet. Claims that these products are “safer” or more “natural” than FDA-approved hormonal products are not supported by credible scientific evidence. More information about these products can be found on FDA’s Menopause & Hormones: Common Questions fact sheet.

What are the health effects of menopausal hormone therapy?

Much of the evidence about the health effects of MHT comes from two randomized clinical trials that were sponsored by the National Institutes of Health as part of the Women’s Health Initiative (WHI):

  • The WHI Estrogen-plus-Progestin Study, in which women with a uterus were randomly assigned to receive either a hormone pill containing both estrogen and progestin (Prempro) or a placebo. The median duration of treatment was 5.6 years.
  • The WHI Estrogen-Alone Study, in which women without a uterus were randomly assigned to receive either a hormone pill containing estrogen alone (Premarin) or a placebo. The median duration of treatment was 7.2 years.

Both trials were stopped early (in 2002 and 2004, respectively), when it was determined that both types of therapy were associated with specific health risks. 

Findings of follow-up studies of WHI participants and other studies have shown that MHT is associated with both potential benefits and potential harms (1). 

Potential benefits of MHT include: 

  • relief of hot flashes, night sweats, vaginal dryness, and painful intercourse with systemic and local estrogen or systemic estrogen plus progestin for as long as MHT is taken
  • lower risk of hip and vertebral fractures with systemic estrogen or estrogen plus progestin for as long as MHT is taken (25)
  • lower risk of breast cancer with systemic estrogen (3, 5, 6)
  • lower risk of death from breast cancer with systemic estrogen (6, 7)

Potential harms of systemic MHT include:

  • increased risk of vaginal bleeding with estrogen plus progestin (8) that may require assessment by endometrial biopsy (because bleeding is a risk factor for uterine cancer)
  • increased risk of urinary incontinence with both estrogen alone and estrogen plus progestin (2, 9)
  • increased risk of dementia with both estrogen alone and estrogen plus progestin when taken by those 65 years or older (1014)
  • increased risk of stroke, blood clots, and heart attack with estrogen alone and estrogen plus progestin for as long as MHT is taken (25)
  • increased risk of endometrial cancer in people with an intact uterus with estrogen alone
  • increased risk of breast cancer with prior use of estrogen plus progestin for at least a decade after use is discontinued (6, 15, 16)
  • increased breast density with estrogen plus progestin, making mammography less effective and also increasing breast cancer risk (1720)
  • increased risk of death from lung cancer with estrogen plus progestin (21)

Importantly, MHT is not associated with an increased risk of death from all causes (7).

Who should not take menopausal hormone therapy?

Women who have had breast cancer in the past are often advised to avoid MHT because some studies suggest that it may increase the risk of breast cancer recurrence (22, 23). However, other studies have not shown an increased risk. For example, a Danish cohort study of postmenopausal women treated for early-stage breast cancer showed no increased risk of recurrence or mortality associated with the use of vaginal or systemic MHT (24).

Many studies have also been done to investigate whether MHT is safe for women who have experienced premature or severe menopausal symptoms as a result of cancer treatments that reduce hormone levels. A 2020 clinical practice statement from the Society of Gynecologic Oncology concluded that the benefits of MHT are likely to outweigh the risks for most people with epithelial ovarian, early-stage endometrial, and cervical cancer as well as for people with BRCA1 or BRCA2 gene mutations or Lynch syndrome and no history of breast cancer (25). However, the statement recommended against the use of MHT in women with advanced endometrial cancer, uterine sarcoma, or endometrioid or low-grade serous ovarian cancer.   

Women who are seeking relief from hot flashes and vaginal dryness should talk with their health care provider about whether to take MHT, the possible risks of using MHT, what formulation might be most appropriate for them, and possible alternative ways to address their symptoms. FDA advises women to use MHT for the shortest time and at the lowest dose possible to control menopausal symptoms.

Are there alternatives for women who choose not to take menopausal hormone therapy?

Women who are concerned about the changes that occur naturally with the decline in hormone production that occurs during menopause can make changes in their lifestyle and diet to reduce the risk of certain health effects. For example, eating foods that are rich in calcium and vitamin D or taking dietary supplements containing these nutrients may help to prevent osteoporosis

Medications may be an option to reduce certain changes that come with menopause. For instance, three non-hormonal treatments are approved by the FDA to treat symptoms of menopause: fezolinetant (Veozah) and paroxetine (Brisdelle), to treat moderate to severe hot flashes associated with menopause, and ospemifene (Osphena), to treat moderate to severe pain with sexual activity due to menopause-associated vaginal changes. Other non-hormonal therapies suggested by the North America Menopause Society for relief of menopausal hot flashes include selective serotonin reuptake inhibitors, serotonin-norepinephrine reuptake inhibitors, oxybutynin, gabapentin, and cognitive behavioral therapy (26).  

Bone loss can be prevented with several FDA-approved drugs, such as alendronate (Fosamax), raloxifene (Evista), and risedronate (Actonel).

Some women seek relief from menopausal symptoms with complementary and alternative therapies. Some of these remedies contain phytoestrogens, which are estrogen-like compounds derived from plant-based sources such as soy products, whole-grain cereals, oilseeds (primarily flaxseed), legumes, or black cohosh. However, the North America Menopause Society does not recommend supplements, herbal remedies, or acupuncture for relief of hot flashes (26).

A 2016 systematic review and meta-analysis of randomized clinical trials of phytoestrogen-containing therapies found that some of these were associated with modest reductions in the frequency of hot flashes and vaginal dryness (27). According to the National Center for Complementary and Integrative Health, there is little information on the long-term safety of the use of natural products for menopausal symptoms, and some can have harmful side effects or interact with other drugs a woman may be taking.